Перестановочные шифры.

Шифры перестановки

Этот метод заключается в том, что символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов, т.е. преобразования приводят к изменению только порядка следования символов исходного сообщения. Рассмотрим некоторые наиболее часто встречающиеся разновидности этого метода - простую, усложненную по таблице и усложненную по маршрутам перестановку.

Шифрование простой перестановкой (вертикальной перестановкой) осуществляется следующим образом:

1) выбирается ключевое слово с неповторяющимися символами;

2) шифруемый текст записывается последовательными строками под символами ключевого слова;

3) зашифрованный текст выписывается колонками в той последовательности, в которой располагаются в алфавите буквы ключа (или в порядке следования цифр в натуральном ряду, если ключ цифровой).

В качестве иллюстрации приведем пример шифрования способом простой перестановки сообщения: «БУДЬТЕ ОСТОРОЖНЫ С ПРЕДСТАВИТЕЛЕМ ФИРМЫ "ФЕНИКС". При этом применим цифровой ключ 5 – 8 – 1 – 3 – 7 – 4 – 6 – 2. В исходном тексте вместо пробелов используется буква а.

Б У Д Ь Т Е а О
С Т О Р О Ж Н Ы
А С а П Р Е Д С
Т А В И Т Е Л Е
М а Ф И Р М Ы а
Ф Е Н И К С а а

Выписывая текст по колонкам и группируя символы по пять, получаем зашифрованный текст в виде:

ДО ВФ НОЫСЕ ЬРП ИИИЕЖ ЕЕМСБ С ТМФ НДЛЫ TOPT РКУТС A E .

Расшифрование выполняется в следующем порядке:

1) подсчитываем число знаков в зашифрованном тексте и делим на число знаков ключа;

2) выписываем ключевое слово и под его знаками в соответствующей последовательности выписываем символы зашифрованного текста в определенном выше количестве;

3) по строкам таблицы читаем исходный текст.

Число ключей не более m!, где m - число столбцов таблицы.

Слабость шифрования простой перестановкой обуславливается тем, что при большой длине шифруемого текста в зашифрованном тексте могут проявиться закономерности символов ключа. Для устранения этого недостатка можно менять ключ после зашифровки определенного числа знаков. При достаточно частой смене ключа стойкость шифрования можно существенно повысить. При этом, однако, усложняется организация процесса шифрования и расшифрования.

Для получения и запоминания числового ключа существуют различные методы. Один из самых распространенных состоит в том, чтобы приписывать буквам числа в соответствии с алфавитным порядком букв. Возьмем, например, слово ПЕРЕСТАНОВКА. Присутствующая в нем буква А получает №1. Если какая-то буква входит несколько раз, то ее появления нумеруются последовательно слева направо. Поэтому второе вхождение буквы А получает №2. Буквы Б в этом слове нет, то буква В получает №3, и т.д.:

П Е Р Е С Т А Н О В К А

Усложнение перестановки по таблице заключается в том, что для записи символов шифруемого текста используется специальная таблица, в которую введены некоторые усложняющие элементы. Усложнение состоит в том, что определенное число клеток таблицы не используется (на рисунке они пусты). Количество и расположение неиспользуемых элементов является дополнительным ключом шифрования. Шифруемый текст блоками по m х n – s элементов (m х n – размеры таблицы,s – число неиспользуемых элементов) записывается в таблицу. Далее шифрование аналогична простой перестановке.

Б У Д Ь Т Е а О С
Т О Р О Ж Н Ы а
С а О Р Е Д С Т А
В И Т Е Л Е М а Ф
И Р М Ы а Ф Е Н И
К С а а а а А а а

Зашифрованный текст будет выглядеть так: ДОПР БСВИК РРТМ ОЫ Н ЕНСЕФ УТ И СС АФ И ЬОЕ ЕЫ Т МЕ ТЖ ДЛ .

При расшифровании знаки зашифрованного текста записываются столбцами таблицы в последовательности знаков ключа с пропуском неиспользуемых элементов. Исходный текст считывается по строкам. Варьируя размерами таблицы, последовательностью символов ключа, количеством и расположением неиспользуемых элементов, можно получить требуемую стойкость зашифрованного текста.

Еще один вариант - шифр "Поворотная решетка" . предназначен для сообщений длины 4mk. Берется трафарет размером 2m*2k клеток, вырезается m*k клеток так, что при наложении его на лист бумаги того же размера 4 различными способами (поворачивая на 90°) его вырезы полностью покрывают всю площадь листа. Буквы сообщения последовательно вписываются в вырезы трафарета по строкам, в каждой строке слева направо, при каждом из 4-х его возможных положений в заранее установленном порядке. Число возможных трафаретов, т.е. количество ключей этого шифра составляет 4 mk (при размере трафарета 8*8 число вариантов превосходит 4 миллиарда).

Весьма высокую стойкость шифрования можно обеспечить усложнением перестановок по маршрутам типа гамильтоновских. При этом для записи символов шифруемого текста используются вершины некоторого гиперкуба, а знаки зашифрованного текста считываются по маршрутам Гамильтона, причем используется несколько различных маршрутов. Для примера рассмотрим шифрование по маршругам Гамильтона при n =3. Структура и три маршрута показаны на Рис. 7, а пример шифрования – на Рис. 8.объемной (многомерной) перестановки . В 1992 – 94 гг. идея применения объемной перестановки для шифрования открытого текста получила дальнейшее развитие. Усовершенствованная схема перестановок по принципу кубика Рубика, в которой наряду с открытым текстом перестановке подвергаются и функциональные элементы самого алгоритма шифрования, легла в основу системы «Рубикон». В качестве прообразов пространственных многомерных структур, на основании объемных преобразований которых осуществляются перестановки, в ней используются трехмерный куб и тетраэдр.

Шифрование перестановкой заключается в том, что символы открытого текста переставляются по определенному правилу в пределах некоторого блока этого текста. Рассмотрим перестановку, предназначенную для шифрования сообщения длиной n символов. Его можно представить с помощью таблицы

где i 1 номер места шифртекста, на которое попадает первая буква открытого текста при выбранном преобразовании, i 2 - номер места для второй буквы и т. д. В верхней строке таблицы выписаны по порядку числа от 1 до n , а в нижней те же числа, но в произвольном порядке. Такая таблица называется перестановкой степени n .

Зная перестановку, задающую преобразование, можно осуществить как шифрование, так и расшифрование текста. В этом случае, сама таблица перестановки служит ключом шифрования.

Число различных преобразований шифра перестановки, предназначенного для шифрования сообщений длины n , меньше либо равно n ! (n факториал). Заметим, что в это число входит и вариант преобразования, оставляющий все символы на своих местах.

С увеличением числа n значение n ! растет очень быстро. Для использования на практике такой шифр не удобен, так как при больших значениях n приходится работать с длинными таблицами. Поэтому широкое распространение получили шифры, использующие не саму таблицу перестановки, а некоторое правило, порождающее эту таблицу. Рассмотрим несколько примеров таких шифров.

Шифр перестановки "скитала". Известно, что в Vвеке до нашей эры правители Спарты, наиболее воинственного из греческих государств, имели хорошо отработанную систему секретной военной связи и шифровали свои послания с помощью скитала, первого простейшего криптографического устройства, реализующего метод простой перестановки.

Шифрование выполнялось следующим образом. На стержень цилиндрической формы, который назывался скитала, наматывали спиралью (виток к витку) полоску пергамента и писали на ней вдоль стержня несколько строк текста сообщения (рис. 1.2). Затем снимали со стержня полоску пергамента с написанным текстом. Буквы на этой полоске оказывались расположенными хаотично.

Рис. 1.2. Шифр "Скитала"

Такой же результат можно получить, если буквы сообщения писать по кольцу не подряд, а через определенное число позиций до тех пор, пока не будет исчерпан весь текст. Сообщение "НАСТУПАЙТЕ " при размещении его по окружности стержня по три буквы дает шифртекст: "НУТАПЕСА_ТЙ ".

Для расшифрования такого шифртекста нужно не только знать правило шифрования, но и обладать ключом в виде стержня определенного диаметра. Зная только вид шифра, но не имея ключа, расшифровать сообщение было непросто.

Шифрующие таблицы. С начала эпохи Возрождения (конец XIV столетия) начала возрождаться и криптография. В разработанных шифрах перестановки того времени применяются шифрующие таблицы, которые, в сущности, задают правила перестановки букв в сообщении.

В качестве ключа в шифрующих таблицах используются:

    размер таблицы;

    слово или фраза, задающие перестановку;

    особенности структуры таблицы.

Одним из самых примитивных табличных шифров перестановки является простая перестановка, для которой ключом служит размер таблицы. Этот метод шифрования сходен с шифром скитала. Например, сообщение "ТЕРМИНАТОР ПРИБЫВАЕТ СЕДЬМОГО В ПОЛНОЧЬ "записывается в таблицу поочередно по столбцам. Результат заполнения таблицы из 5 строк и 7 столбцов показан на рис. 1.3.

После заполнения таблицы текстом сообщения по столбцам для формирования шифртекста считывают содержимое таблицы по строкам. Если шифртекст записывать группами по пять букв, получается такое шифрованное сообщение: "ТНПВЕ ГЛЕАР АДОНР ТИЕЬВ ОМОБТ МПЧИР ЫСООЬ ".

Рис. 1.3. Заполнение шифрующей таблицы из 5 строк и 7 столбцов

Естественно, отправитель и получатель сообщения должны заранее условиться об общем ключе в виде размера таблицы. Следует заметить, что объединение букв шифртекста в 5-буквенные группы не входит в ключ шифра и осуществляется для удобства записи несмыслового текста. При расшифровании действия выполняют в обратном порядке.

Несколько большей стойкостью к раскрытию обладает метод шифрования, называемый одиночной перестановкой по ключу . Этот метод отличается от предыдущего тем, что столбцы таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы.

Применим в качестве ключа, например, слово "ПЕЛИКАН ", а текст сообщения возьмем из предыдущего примера. На рис. 1.4 показаны две таблицы, заполненные текстом сообщения и ключевым словом, при этом левая таблица соответствует заполнению до перестановки, а правая таблица – заполнению после перестановки.

Рис. 1.4. Шифрующие таблицы, заполненные ключевым словом и текстом сообщения

В верхней строке левой таблицы записан ключ, а номера под буквами ключа определены в соответствии с естественным порядком соответствующих букв ключа в алфавите. Если бы в ключе встретились одинаковые буквы, они бы были понумерованы слева направо. В правой таблице столбцы переставлены в соответствии с упорядоченными номерами букв ключа.

При считывании содержимого правой таблицы по строкам и записи шифртекста группами по пять букв получим шифрованное сообщение: "ГНВЕП ЛТООА ДРНЕВ ТЕЬИО РПОТМ БЧМОР СОЫЬИ ".

Для обеспечения дополнительной скрытности можно повторно зашифровать сообщение, которое уже прошло шифрование. Такой метод шифрования называется двойной перестановкой . В случае двойной перестановки столбцов и строк таблицы перестановки определяются отдельно для столбцов и отдельно для строк. Сначала в таблицу записывается текст сообщения, а потом поочередно переставляются столбцы, а затем строки. При расшифровании порядок перестановок должен быть обратным.

Пример выполнения шифрования методом двойной перестановки показан на рис. 1.5. Если считывать шифртекст из правой таблицы построчно блоками по четыре буквы, то получится следующее: "ТЮАЕ ООГМ РЛИП ОЬСВ ".

Рис. 1.5. Пример выполнения шифрования методом двойной перестановки

Ключом к шифру двойной перестановки служит последовательность номеров столбцов и номеров строк исходной таблицы (в нашем примере последовательности 4132 и 3142 соответственно).

Число вариантов двойной перестановки быстро возрастает при увеличении размера таблицы:

    для таблицы 3x3 36 вариантов;

    для таблицы 4x4 576 вариантов;

    для таблицы 5x5 14400 вариантов.

Шифрование с помощью магических квадратов. В средние века для шифрования перестановкой применялись и магические квадраты. Магическими квадратами называют квадратные таблицы с вписанными в их клетки последовательными натуральными числами, начиная от 1, которые дают в сумме по каждому столбцу, каждой строке и каждой диагонали одно и то же число.

Шифруемый текст вписывали в магические квадраты в соответствии с нумерацией их клеток. Если затем выписать содержимое такой таблицы по строкам, то получится шифртекст, сформированный благодаря перестановке букв исходного сообщения.

Пример магического квадрата и его заполнения сообщением "ПРИЛЕТАЮ ВОСЬМОГО " показан на рис. 1.6.

Рис. 1.6. Пример магического квадрата 4х4 и его заполнение сообщением

Шифртекст, получаемый при считывании содержимого правой таблицы по строкам, имеет вполне загадочный вид: "ОИРМ ЕОСЮ ВТАЪ ЛГОП ".

Число магических квадратов быстро возрастает с увеличением размера квадрата. Существует только один магический квадрат размером 3x3 (если не учитывать его повороты). Количество магических квадратов 4x4 составляет уже 880, а количество магических квадратов 5x5 – около 250000.

Магические квадраты средних и больших размеров могли служить хорошей базой для обеспечения нужд шифрования того времени, поскольку практически нереально выполнить вручную перебор всех вариантов для такого шифра.

по разным путям геометрической фигуры.

Простейшим примером перестановки является перестановка с фиксированным периодом d . В этом методе сообщение делится на блоки по d символов и в каждом блоке производится одна и та же перестановка . Правило, по которому производится перестановка , является ключом и может быть задано некоторой перестановкой первых d натуральных чисел. В результате сами буквы сообщения не изменяются, но передаются в другом порядке.

Например, для d=6 в качестве ключа перестановки можно взять 436215 . Это означает, что в каждом блоке из 6 символов четвертый символ становится на первое место , третий – на второе, шестой – на третье и т.д. Пусть необходимо зашифровать такой текст:

Количество символов в исходном сообщении равно 24, следовательно, сообщение необходимо разбить на 4 блока. Результатом шифрования с помощью перестановки 436215 будет сообщение

ОЕТЭТ_ТЛСКДИШР_ЯФНАЯВОИ

Теоретически, если блок состоит из d символов, то число возможных перестановок d!=1*2*...*(d-1)*d . В последнем примере d=6 , следовательно, число перестановок равно 6!=1*2*3*4*5*6=720 . Таким образом, если противник перехватил зашифрованное сообщение из рассмотренного примера, ему понадобится не более 720 попыток для раскрытия исходного сообщения (при условии, что размер блока известен противнику).

Для повышения криптостойкости можно последовательно применить к шифруемому сообщению две или более перестановки с разными периодами.

Другим примером методов перестановки является перестановка по таблице . В этом методе производится запись исходного текста по строкам некоторой таблицы и чтение его по столбцам этой же таблицы. Последовательность заполнения строк и чтения столбцов может быть любой и задается ключом.

Рассмотрим пример. Пусть в таблице кодирования будет 4 столбца и 3 строки (размер блока равен 3*4=12 символов). Зашифруем такой текст:

Количество символов в исходном сообщении равно 24, следовательно, сообщение необходимо разбить на 2 блока. Запишем каждый блок в свою таблицу по строчкам ( таблица 2.9).

Таблица 2.9. Шифрование методом перестановки по таблице
1 блок
Э Т О
Т Е К С
Т Д Л
2 блок
Я Ш И
Ф Р О В
А Н И Я

Затем будем считывать из таблицы каждый блок последовательно по столбцам:

ЭТТТЕ ОКД СЛЯФА РНШОИИВЯ

Можно считывать столбцы не последовательно, а, например, так: третий, второй, первый, четвертый:

ОКДТЕ ЭТТ СЛШОИ РНЯФАИВЯ

В этом случае порядок считывания столбцов и будет ключом.

В случае, если размер сообщения не кратен размеру блока, можно дополнить сообщение какими-либо символами, не влияющими на смысл, например, пробелами. Однако это делать не рекомендуется, так как это дает противнику в случае перехвата криптограммы информацию о размере используемой таблицы перестановок (длине блока). После определения длины блока противник может найти длину ключа (количество столбцов таблицы) среди делителей длины блока.

Посмотрим, как зашифровать и расшифровать сообщение, имеющее длину, не кратной размеру таблицы перестановки. Зашифруем слово

ПЕРЕМЕНКА

Количество символов в исходном сообщении равно 9. Запишем сообщение в таблицу по строкам ( таблица 2.10), а последние три ячейки оставим пустыми.

Затем будем считывать из таблицы последовательно по столбцам:

ПМАЕЕРНЕК

Для расшифрования вначале определяют число полных столбцов, то есть количество символов в последней строке. Для этого делят размер сообщения (в нашем примере – 9) на количество столбцов или размер ключа (в примере – 4). Остаток от деления будет числом полных столбцов: 9 mod 4 = 1 . Следовательно, в нашем примере был 1 полный столбец и три коротких. Теперь можно поставить буквы сообщения на свои места и расшифровать сообщение. Так как ключом при шифровании было число 1234 (столбцы считывались последовательно), то при расшифровании первые три символа (ПМА ) записываются в первый столбец таблицы перестановки, следующие два (ЕЕ ) – во второй столбец, следующие два (РН ) – в третий, и последние два (ЕК ) – в четвертый. После заполнения таблицы считываем строки и получаем исходное сообщение ПЕРЕМЕНКА .

Существуют и другие способы перестановки, которые можно реализовать программным и аппаратным путем. Например, при передаче данных, записанных в двоичном виде, удобно использовать аппаратный блок, который перемешивает определенным образом с помощью соответствующего электрического монтажа биты исходного n-разрядного сообщения. Так, если принять размер блока равным восьми битам, можно, к примеру, использовать такой блок перестановки, как на

Шифр перестановки «скитала». В V в. до н.э. правители греческого государства Спарты имели хорошо отработанную систему секретной военной связи и шифровали свои послания с помощью скитала, первого простейшего криптографического устройства, реализующего метод простой перестановки (рис. 1.6).

Рис. 1.6.

Шифрование выполнялось следующим образом. На стержень цилиндрической формы, который назывался скитала, наматывали спиралью (виток к витку) полоску кожи и писали на ней вдоль стержня несколько строк текста сообщения. Затем снимали со стержня полоску - буквы на ней оказывались расположенными вразнобой.

Вестник обычно прятал сообщение, используя кожаную полосу как пояс, т.е. кроме шифрования применяли также и стеганографию. Чтобы получить исходное сообщение, полоску кожи надо намотать вокруг скиталы того же диаметра. Ключом этого шифра является диаметр стержн я - с к итал ы. Зная только вид шифра, но не имея ключа, расшифровать сообщение непросто. Шифр «скитала» многократно совершенствовался в последующие времена.

Способ взлома этого шифра предложен Аристотелем. Надо изготовить длинный конус и, начиная с основания, обертывать его лентой с шифрованным сообщением, постепенно сдвигая к вершине. В какой-то момент начнут просматриваться куски сообщения. Диаметр конуса в этом месте соответствует диаметру скиталы.

Шифрующие таблицы. Одним из самых примитивных табличных шифров перестановки является простая перестановка, для которой ключом служит размер таблицы. Этот метод шифрования в простейшем варианте сходен с шифром «скитала». Например, текст сообщение записывается в таблицу определенного размера в столбик, а считывается но строкам.

Запишем фразу «Терминатор прибывает седьмого в полночь» в таблицу размером 5x7 (рис. 1.7) но столбцам. Выписав текст из таблицы построчно, получим шифр: «тннвеглеарадонртиеьвомобтмнчирысооь».

Рис. 1.7.

Отправитель и получатель сообщения должны заранее условиться об общем ключе в виде размера таблицы. При расшифровке действия выполняют в обратном порядке (построчная запись, чтение по столбцам).

Этот шифр может быть несколько усложнен: например, столбцы могут быть переставлены в некоторой последовательности, определяемой ключом. Возможна двойная перестановка - столбцов и строк.

Решетка Кардано. Решетка Кардано (поворотная решетка) - это прямоугольная или квадратная карточка с четным числом строк и столбцов 2k X 2т. В ней проделаны отверстия таким образом, что при последовательном отражении или поворачивании и заполнении открытых клеток карточки постепенно будут заполнены все клетки листа.

Карточку сначала отражают относительно вертикальной оси симметрии, затем - относительно горизонтальной оси, и снова - относительно вертикальной (рис. 1.8).

Если решетка Кардано - квадратная, то возможен и другой вариант ее преобразований - поворот на 90° (рис. 1.9).

Рис. 1.8.

Рис. 1.9.

При записи обычным способом (слева направо и сверху вниз) словосочетания «шифрование текста» (без пробелов) в свободные клетки поворотной решетки, изображенной на рис. 1.9, получим текст в виде таблицы (рис. 1.10), или, записав текст в одну строку, - «кшииоесвтафатрен».

Рис. 1.10.

Получатель должен знать трафарет и наложить его в той же последовательности, что и при шифровании. Ключом является выбранный тип перемещения решетки (отражение или поворот) и трафарет - расположение отверстий, которые для квадратной решетки размером х могут быть выбраны 4""* способами (с учетом начальной ориентации трафарета). В этом случае среди трафаретов, считающихся различными, будут встречаться такие, которые являются зеркальным отражением или поворотами других трафаретов, т.е. трафареты, различающиеся только начальным расположением (ориентацией). Если пренебречь начальным расположением трафарета, то, очевидно, различных трафаретов будет в 4 раза меньше - 4""*"

Например, для решеток размером 4X4 существует 256 возможных вариантов трафарета (с учетом начальной ориентации) или всего 64 различных трафаретов.

Несмотря на то, что число трафаретов для больших решеток достаточно велико (порядка 4 млн (4- 10 е)), оно все же существенно меньше, чем случайных перестановок элементов таблицы, число которых равно (2т? 2k).

Например, для таблицы размером 4x4 число случайных перестановок составляет порядка 2 ? 10 13 , а для таблиц размером 8x8 - около 10 89 .

Решетки Кардано, так же как и шифрующие таблицы, являются частными случаями шифра маршрутной перестановки.

История

Точное время появления шифра перестановки не известно. Вполне возможно, что писцы в древности переставляли буквы в имени своего царя ради того, чтобы скрыть его подлинное имя или в ритуальных целях.

Одно из древнейших известных нам шифровальные устройство - Скитала. Бесспорно известно, что скитала использовалась в войне Спарты против Афин в конце V века до н. э.

Прародителем анаграммы считают поэта и грамматика Ликофрона, который жил в Древней Греции в III веке до н. э. Как сообщал византийский автор Иоанн Цец, из имени царя Птоломея он составил первую из известных нам анаграмм: Ptolemaios - Аро Melitos, что в переводе означает «из мёда», а из имени царицы Арсинои - как «Ion Eras » (фиалка Геры).

Шифры простой перестановки

Как правило, при шифровании и дешифровании шифра простой перестановки используется таблица перестановок:

1 {\displaystyle 1} 2 {\displaystyle 2} 3 {\displaystyle 3} ... n {\displaystyle n}
I 1 {\displaystyle I_{1}} I 2 {\displaystyle I_{2}} I 3 {\displaystyle I_{3}} ... I n {\displaystyle I_{n}}

Первая строка - позиция символа в открытом тексте, вторая строка - позиция в шифрограмме. Таким образом, при длине сообщения n {\displaystyle n} символов существует ровно n ! {\displaystyle n!\ } ключей.

Шифры маршрутной перестановки

Широкое распространение получили так называемые маршрутные перестановки, использующие некоторую геометрическую фигуру (плоскую или объемную). Преобразования состоят в том, что отрезок открытого текста записывается в такую фигуру по некоторой траектории, а выписывается по другой траектории. Пример данного шифра - шифр Скиталы.

Шифр табличной маршрутной перестановки

Наибольшее распространение получили маршрутные шифры перестановки, основанные на прямоугольниках (таблицах). Например, можно записать сообщение в прямоугольную таблицу по маршруту: по горизонтали, начиная с верхнего левого угла, поочередно слева направо. Сообщение будем списывать по маршруту: по вертикалям, начиная с верхнего правого угла, поочередно сверху вниз.

п р и м е
р м а р ш
р у т н о
й п е р е
с т а н о
в к и

КРИПТОГРАММА: ешоеомрнрниатеаирмупткпррйсв

Обращение описанных шагов не представит труда при расшифровании.

Шифр вертикальной перестановки

Широкое распространение получила разновидность маршрутной перестановки - вертикальная перестановка. В этом шифре также используется прямоугольная таблица, в которую сообщение записывается по строкам слева направо. Выписывается шифрограмма по вертикалям, при этом столбцы выбираются в порядке, определяемом ключом.

ОТКРЫТЫЙ ТЕКСТ: пример маршрутной перестановки

КЛЮЧ: (3, 1, 4, 2, 5)

п р и м е
р м а р ш
р у т н о
й п е р е
с т а н о
в к и

КРИПТОГРАММА: рмупткмрнрнпррйсвиатеаиешоео

Заполнять последнюю строку таблицы «нерабочими» буквами нецелесообразно, так как криптоаналитик, получивший данную криптограмму, получает сведения о длине числового ключа.

Шифр «поворотная решётка

В 1550 году итальянский математик Джероламо Кардано (1501-1576) в книге «О тонкостях» предложил новую технику шифрования сообщений - решётку.

Изначально решётка Кардано представляла собой трафарет с отверстиями, в которые записывали буквы, слоги или слова сообщения. Затем трафарет убирали, а свободное место заполняли более или менее осмысленным текстом. Такой метод сокрытия информации относится к стеганографии.

Позднее был предложен шифр «поворотная решётка» - первый транспозиционный (геометрический) шифр. Несмотря на то, что существует большая разница между изначальным предложением Кардано и шифром «поворотная решётка», методы шифрования, основанные на трафаретах, принято называть «решётками Кардано».

Для шифрования и дешифрования с помощью данного шифра изготовляется трафарет с вырезанными ячейками. При наложении трафарета на таблицу того же размера четырьмя возможными способами, его вырезы полностью должны покрывать все клетки таблицы ровно по одному разу.

При шифровании трафарет накладывают на таблицу. В видимые ячейки по определённому маршруту вписывают буквы открытого текста. Далее трафарет переворачивают три раза, каждый раз проделывая операцию заполнения.

Шифрограмму выписывают из получившейся таблицы по определённому маршруту. Ключом являются трафарет, маршрут вписывания и порядок поворотов.

Данный метод шифрования использовался для передачи секретной информации нидерландскими правителями в 1740-х годах. Во время Первой мировой войны армия кайзера Вильгельма использовала шифр «поворотная решётка». Немцы использовали решётки разных размеров, однако очень недолго (четыре месяца), к огромному разочарованию французских криптоаналитиков, которые только-только начали подбирать к ним ключи. Для решёток разных размеров французы придумали собственные кодовые имена: Анна (25 букв), Берта (36 букв), Дора (64 буквы) и Эмиль (81 буква).