Солнечные батареи для частного дома и квартиры. Кпд солнечных батарей

Один из самых распространенных вопросов, который возникает при решении установить солнечные батареи для личных нужд, является вопрос о том, какие солнечные панели являются самыми эффективными? Однако, такая формулировка не совсем верна. Прежде всего, буквальный ответ на этот вопрос для рядового потребителя не имеет значения. Попробуем разобраться почему?

На самом деле, важный вопрос не в том, как выбрать самые эффективные солнечные батареи, а в том, какие из них имеют лучшее соотношение цены и качества. Если у вас на крыше есть место для установки десяти солнечных панелей и есть выбор между солнечными панелями с условным классом энергоэффективности "A", которые немного более эффективны, но в два раза дороже солнечных панелей класса "B", то, скорее всего, с точки зрения экономии целесообразней выбрать панели класса "B". Одним словом, главная задача состоит в том, чтобы выяснить, какие варианты доступны в конкретной ситуации и проанализировать экономический эффект от каждого из них.
В любом случае, если вы действительно хотите знать самые эффективные солнечные панели (или солнечные модули), то некоторые из них приведены ниже с указанием производителя и значения коэффициента полезного действия (КПД):

  • солнечные панели с эффективностью 44,4% от Sharp. Концентрирующие трехслойные солнечные модули от мирового лидера среди производителей солнечных батарей очень сложны и не используются в жилых или общественных зданиях потому, что они баснословно дороги. В основном, такие солнечные модули нашли применение в космической отрасли, где огромное значение имеет эффективность при сравнительно небольших размерах и массе;
  • солнечные модули с КПД 37,9% производства Sharp. Эти трехслойные солнечные панели являются более простым аналогом предыдущих с тем отличием, что в них не применяются специальные устройства для концентрации солнечного света на модуль. Соответственно, цена таких панелей ниже на стоимость этих устройств;
  • солнечные батареи с эффективностью 32,6% от испанского исследовательского института солнечной энергетики (IES) и университета (UPM). Представляют собой еще более простые двухслойные модули с концентратором солнечного света, однако их использование в жилых или общественных зданиях по-прежнему слишком дорого.

Существует около десятка или около того других видов солнечных панелей, которыми можно было продолжить этот список. Некоторые из них имеют очень высокий КПД, но их цена очень велика, в то время как другие достаточно дешевы, но имеют очень низкую эффективность. Конечно, некоторые из них неэффективны и дороги одновременно. Но, тем не менее, представляют определенный исследовательский интерес. Ключ, как отмечалось ранее, в том, чтобы найти оптимальный баланс между стоимостью и эффективностью.
Существует мнение, что сегодня гораздо меньше научных исследований посвящены солнечным батареям, нежели фотоэлементам, лежащим в основе технологии производства солнечных батарей – это то, за чем проводят время ученые многих мировых институтов и университетов. Никто даже не будет пробовать изготовить солнечную батарею, которая не будет продаваться по причине слабой товарной привлекательности ее компонентов – солнечных модулей. Сегодня на рынке существует множество различных типов солнечных батарей (точнее, солнечных модулей) самых разных производителей. Итак, давайте взглянем на лидеров в различных категориях:

  • солнечные модули с КПД 36% производства компании Amonix удерживают общий рекорд производительности. Тем не менее, они сделаны с применением концентрирующих устройств, и не используются для бытовых целей;
  • солнечные модули с эффективностью 21,5% от американской компании Sun Power установили коммерческий рекорд эффективности. Солнечные модули Sun Power SPR-327NE-WHT-D являются лидером по показателям эффективности по результатам полевых испытаний. Солнечные модули, занявшие второе и третье места в этом тесте, также являются разработкой компании Sun Power;
  • тонкопленочные солнечные модули с эффективностью 17,4% от компании Q-Cells удерживают рекорд в этой категории. Тонкопленочные солнечные батареи широко используются, но не в жилых зданиях. Q-Cells - немецкая компания, которая в 2012 году подала на банкротство, а затем была приобретена корейской компанией Hanwha;
  • тонкопленочные солнечные модули на основе кадмий-теллурового (CdTe) фотоэлектрического преобразования эффективностью 16,1% от First Solar являются лидерами в своей категории. Опять же, солнечные батареи на основе таких модулей, как правило, не используется для бытовых целей, но помогают компании удерживать высокие позиции среди производителей солнечных батарей . Американская компания FirstSolar являлась лидером по производству солнечных батарей на американском рынке и занимала второе место в мировом рейтинге в прошлом году. Несмотря на довольно небольшой КПД 16,1% в этой категории, относительно дешевые солнечные модули First Solar являются оптимальным выбором для многих отраслей;
  • последний пример для демонстрации того, что список самых эффективных солнечных панелей очень длинный и не ограничивается приведенными выше экземплярами, отметим гибкие солнечные модули эффективностью 15,5% от компании MiaSole, лидирующие в этой категории. Естественно, для некоторых целей необходимы не просто солнечные батареи, а гибкие солнечные панели. Но, вероятно, это не Ваш случай...

Подводя итоги, посоветуем при выборе солнечных батарей для своих нужд не делать акцент на гипотетических и не относящихся к делу превосходствах. Забудьте о том, чтобы стараться выбрать «самые эффективные солнечные батареи ». Ищите панели, четко отвечающие конкретным целям, а не пытайтесь найти солнечные батареи, которые были разработаны для спутников НАСА.
Диаграмма, составленная национальной лабораторией возобновляемой энергии США, наглядно демонстрирует большое разнообразие технологий производства солнечных батарей и достижения каждой из них в плане эффективности.

При постоянно растущих ценах на электроэнергию поневоле начнешь задумываться об использовании природных источников для электроснабжения. Одна из таких возможностей — солнечные батареи для дома или дачи. При желании они могут обеспечить полностью все потребности даже большого дома.

Устройство системы электропитания от солнечных батарей

Преобразовывать энергию солнца в электричество – эта идея длительное время не давала спать ученым. С открытием свойств полупроводников это стало возможным. В солнечных батареях используются кремниевые кристаллы. При попадании на них солнечного света в них образуется направленное движение электронов, которое называется электрическим током. При соединении достаточного количества таких кристаллов получаем вполне приличные по величине токи: одна панель площадью чуть больше метра (1,3-1,4 м2 при достаточном уровне освещенности может выдать до 270 Вт (напряжение 24 В).

Так как освещенность меняется в зависимости от погоды, времени суток, напрямую подключать устройства к солнечным батареям не получается. Нужна целая система. Кроме солнечных панелей требуется:

  • Аккумулятор. На протяжении светового дня под воздействием солнечных лучей солнечные батареи вырабатывают электрический ток для дома, дачи. Он не всегда используется в полном объеме, его излишки накапливаются в аккумуляторе. Накопленная энергия расходуется ненастную погоду.
  • Контролер. Не обязательная часть, но желательная (при достаточном количестве средств). Отслеживает уровень заряда аккумулятора, не допуская его чрезмерного разряда или превышения уровня максимального заряда. Оба этих состояния губительны для аккумулятора, так что наличие контролера продлевает срок эксплуатации аккумулятора. Также контролер обеспечивает оптимальный режим работы солнечных панелей.
  • Преобразователь постоянного тока в переменный (инвертор). Не все устройства рассчитаны на постоянный ток. Многие работают от переменного напряжения в 220 вольт. Преобразователь дает возможность получить напряжение 220-230 В.

Солнечные батареи для дома — только часть системы

Установив солнечные батареи для дома или дачи, можно стать совершенно независимым от официального поставщика. Но для этого надо иметь большое количество батарей, некоторое количество аккумуляторов. Комплект, который вырабатывает 1,5 кВт а сутки стоит около 1000$. Этого достаточно для обеспечения потребностей дачи или части электрооборудования в доме. Комплект солнечных батарей для производства 4 кВт в сутки стоит порядка 2200$, на 9 кВт в сутки — 6200$. Так как солнечные батареи для дома — модульная система, можно купить установку, которая будет обеспечивать часть потребностей, постепенно увеличивая ее производительность.

Виды солнечных батарей

С ростом цен на энергоносители идея использования энергии солнца для получения электроэнергии становится все более популярной. Тем более, что с развитием технологий солнечные преобразователи становятся эффективнее и, одновременно, дешевле. Так что, при желании, можно свои нужды обеспечить установив солнечные батареи. Но они бывают разных типов. Давайте разбираться.

Сама солнечная батарея — некоторое количество фотоэлементов, которые расположены в общем корпусе, защищенные прозрачной лицевой панелью. Для бытового использования фотоэлементы производят на основе кремния, так как он относительно недорог, и элементы на его основе имеют неплохой КПД (порядка 20-24%). На основе кремниевых кристаллов изготавливают монокристаллические, поликристаллические и тонкопленочные (гибкие) фотоэлементы. Некоторое количество этих фотоэлементов электрически соединены между собой (последовательно и/или параллельно) и выведены на клеммы, расположенные на корпусе.

Фотоэлементы установлены в закрытом корпусе. Корпус солнечной батареи делают из анодированного алюминия. Он легкий, не подвержен коррозии. Лицевую панель делают из прочного стекла, которое должно выдерживать снего-ветровые нагрузки. К тому же оно должно обладать определенными оптическими свойствами — иметь максимальную прозрачность, чтобы пропускать как можно больше лучей. Вообще, из-за отражения теряется значительное количество энергии, так что требования к качеству стекла высокие и еще оно покрывается антибликовым составом.

Виды фотоэлементов для солнечных батарей

Солнечные батареи для дома делают на основе кремневых элементов трех типов;


Если у вас скатная крыша и фасад развернут на юг или восток, слишком сильно думать о занимаемой площади не имеет смысла. Вполне могут устроить поликристаллические модули. При равном количестве производимой энергии они стоят немного дешевле.

Как правильно выбрать систему солнечных батарей для дома

Есть распространенные заблуждения, которые заставляют вас тратить лишние деньги на приобретение чересчур дорогого оборудования. Ниже приведем рекомендации того, как правильно выстроить систему электропитания от солнечных батарей и не потратить лишних денег.

Что надо купить

Далеко не все компоненты солнечной электростанции жизненно необходимы для работы. Без некоторых частей вполне можно обойтись. Они служат для повышения надежности, но без них система работоспособна. Первое, что стоит запомнить — приобретайте солнечные батареи в конце зимы, начале весны. Во-первых, погода в это время отличная, много солнечных дней, снег отражает солнце, увеличивая общую освещенность. Во-вторых, в это время традиционно объявляют скидки. Далее советы такие:


Если воспользоваться только этими советами, и подключить только технику, которая работает от постоянного напряжения, система солнечных батарей для дома обойдется в гораздо более скромную сумму чем самый дешевый комплект. Но это еще не все. Можно еще часть оборудования оставить «на потом» или вообще обойтись без него.

Без чего можно обойтись

Стоимость комплекта солнечных батарей на 1 кВт в сутки — более тысячи долларов. Немалые вложения. Поневоле задумаешься, а стоит ли оно того и каков же будет срок окупаемости. При нынешних тарифах ждать пока отобьются свои деньги придется не один год. Но можно затраты уменьшить. Не за счет качества, но за счет незначительного снижения комфортности эксплуатации системы и за счет разумного подхода к подбору ее компонентов.


Итак, если бюджет ограничен, можно обойтись несколькими солнечными панелями и аккумуляторными батареями, емкость которых на 20-25% выше максимального заряда солнечных панелей. Для мониторинга состояния купите автомобильные часы, которые еще измеряют напряжение. Это избавит вас от необходимости несколько раз в день измерять заряд на АКБ. Вместо этого вам надо будет время от времени смотреть на показания часов. Для старта это все. В дальнейшем можно докупать солнечные батареи для дома, увеличивать количество АКБ. При желании, можно купить инвертор.

Определяемся с размерами и количеством фотоэлементов

В хороших солнечных батареях на 12 вольт должно быть 36 элементов, на 24 вольта — 72 фотоэлемента. Это количество оптимально. При меньшем числе фотоэлементов вы никогда не получите заявленный ток. И это — лучший из вариантов.

Не стоит покупать сдвоенные солнечные панели — по 72 и 144 элемента соответственно. Во-первых, они очень большие, что неудобно при перевозке. Во-вторых, при аномально низких температурах, которые у нас периодически случаются, они первыми выходят из строя. Дело в том, что ламинирующая пленка при морозах сильно уменьшается в размерах. На больших панелях из-за большого натяжения она отслаивается или даже рвется. Теряется прозрачность, катастрофически падает производительность. Панель идет в ремонт.

Второй фактор. На больших по размерам панелях должна быть больше толщина корпуса и стекла. Ведь увеличивается парусность и снеговые нагрузки. Но далеко не всегда это делают, так как значительно возрастает цена. Если вы видите сдвоенную панель, а цена на нее ниже, чем на две «обычных», лучше ищите что-то другое.

Еще раз: лучший выбор — солнечная панель для дома на 12 вольт, состоящая из 36 фотоэлементов. Это оптимальный вариант, проверенный практикой.

Технические характеристики: на что обратить внимание

В сертифицированных солнечных батареях всегда указывается рабочий ток и напряжение, а также напряжение холостого хода и ток КЗ. При этом стоит учесть, что все параметры обычно указываются для температуры +25°C. В солнечный день на крыше батарея разогревается до температур, значительно превышающих эту цифру. Это объясняет наличие большего рабочего напряжения.

Также обратите внимание на напряжение холостого хода. В нормальных батареях оно порядка 22 В. И все бы ничего, но если проводить работы на оборудовании не отключив солнечные батареи, напряжение холостого ходы выведет из строя инвертор или другую подключенную технику, не рассчитанную на подобный вольтаж. Потому при любых работах — переключении проводов, подключении/отключении аккумуляторов и т.д. и т.п — первое что вы должны сделать — отключить солнечные батареи (снять клеммы). Перебрав схему, их подключаете последними. Такой порядок действий сохранит вам много нервов (и денег).

Корпус и стекло

Солнечные батареи для дома имеют алюминиевый корпус. Этот металл не корродирует, при достаточной прочности имеет небольшую массу. Нормальный корпус должен быть собран из профиля, в котором присутствуют, как минимум, два ребра жесткости. К тому же стекло должно быть вставлено в специальный паз, а не закреплено сверху. Все это — признаки нормального качества.

Еще при выборе солнечной батареи обратите внимание на стекло. В нормальных батареях оно не гладкое, а текстурированное. На ощупь — шершавое, если провести ногтями, слышен шорох. К тому же должно иметь качественное покрытие, которое сводит к минимуму блики. Это означает что в нем не должно ничего отражаться. Если хоть под каким-то углом видны отражения окружающих предметов, лучше найдите другую панель.

Выбор сечения кабеля и тонкости электрического подключения

Подключать солнечные батареи для дома необходимо медным одножильным кабелем. Сечение жилы кабеля зависит от расстояния между модулем и АКБ:

  • расстояние менее 10 метров:
    • 1,5 мм2 на одну солнечную батарею мощностью 100 Вт;
    • на две батареи — 2,5 мм2;
    • три батареи — 4,0 мм2;
  • расстояние больше 10 метров:
    • для подключения одной панели берем 2,5 мм2;
    • двух — 4,0 мм2;
    • трех — 6,0 мм2.

Можно брать сечение больше, но не меньше (будут большие потери, а оно нам не надо). При покупке проводов, обратите внимание на фактическое сечение, так как сегодня заявленные размеры очень часто не соответствуют действительным. Для проверки придется измерять диаметр и считать сечение (как это делать, прочесть можно ).

При сборе системы можно плюсы солнечных батарей провести используя многожильный кабель подходящего сечения, а для минуса использовать один толстый. Перед подключением к аккумуляторам все «плюсы» пропускаем через диоды или диодные сборки с общим катодом. Это предотвращает возможность замыкания аккумулятора (может вызвать возгорание) при замыкании или обрыве проводов между батареями и аккумулятором.

Диоды используют типа SBL2040CT, PBYR040CT. Если такие на нашли, можно снять со старых блоков питания персональных компьютеров. Там обычно стоят SBL3040 или подобные. Пропускать через диоды желательно. Не забудьте что они сильно греются, так что монтировать их надо на радиаторе (можно на едином).

Еще в системе необходим блок предохранителей. По одному на каждого потребителя. Всю нагрузку подключаем через этот блок. Во-первых, система так безопаснее. Во-вторых, при возникновении проблем, проще определить ее источник (по сгоревшему предохранителю).

Кристаллическая решетка перовскита CH3NH3PbI3

Wikimedia Commons

Американские исследователи показали, что в солнечных элементах на основе перовскитов носители заряда, обладающие избыточной энергией, способны преодолевать значительное расстояние, прежде чем рассеют ее в виде тепла. Это означает, что реализовать фотоэлектрические элементы на горячих носителях, для которых теоретический предел КПД вдвое выше, чем у обычных кремниевых, на практике вполне возможно. Исследование опубликовано в журнале Science .

В самых распространенных на сегодняшний день солнечных элементах, использующих в качестве полупроводника кремний, теоретически возможный коэффициент полезного действия едва превышает 30 процентов. Это связано с тем, что кремниевые элементы способны использовать спектр солнечного света только частично. Фотоны, обладающие энергией ниже пороговой, просто не поглощаются, а обладающие слишком высокой приводят к образованию в фотоэлементе так называемых горячих носителей заряда (например, электронов). Время жизни последних составляет около пикосекунды (10 -12 секунды), потом они «остывают», то есть рассеивают избыточную энергию в виде тепла. Если бы горячие носители удавалось собирать, это повысило бы теоретический предел КПД до 66 процентов, то есть вдвое. Несмотря на то что в некоторых экспериментах небольшое сохранение энергии удавалось наблюдать , элементы на горячих носителях пока остаются скорее гипотетическими.

Ученые из Университета Пердью и Национальной лаборатории возобновляемой энергетики (США) внесли вклад в изучение нового перспективного класса фотоэлектрических элементов на основе перовскитов и продемонстрировали, что в таких элементах горячие носители не только обладают повышенным временем жизни (до 100 пикосекунд), но и способны «пробегать» значительные дистанции в несколько сотен нанометров (что сопоставимо с толщиной слоя полупроводника).

Металлорганические перовскиты получили свое название благодаря кристаллической структуре. Она по сути повторяет структуру природного минерала - перовскита, или титаната кальция. Химически они представляют собой смешанные галогениды свинца и органических катионов. Авторы работы использовали распространенный перовскит на основе иодида свинца и метиламмония. Исходя из того, что в перовскитах время жизни горячих носителей существенно увеличено по сравнению с другими полупроводниками, авторы решили выяснить, на какое расстояние могут переноситься горячие носители за время их остывания. С использованием ультраскоростной микроскопии исследователям удалось непосредственно пронаблюдать транспорт горячих носителей в тонких пленках перовскита с высоким пространственным и временным разрешением.


Транспорт горячих носителей в полупроводнике в течение первой пикосекунды после возбуждения

Guo et al / Science 2017

Оказалось, что медленное остывание в перовскитах сопряжено с дальностью пробега, которая составила до 600 нанометров. Это означает, что носители заряда с избыточной энергией теоретически способны преодолевать слой полупроводника и достигать электрода, то есть их возможно собирать (правда, как это реализовать технически, авторы работы не обсуждают). Таким образом, солнечные элементы на горячих носителях, возможно, удастся воплотить в жизнь, взяв за основу перовскиты.

К настоящему времени максимальный КПД, доходящий до 46%, был зарегистрирован для многослойных многокомпонентных фотоэлектрических элементов, в состав которых входит арсенид галлия, индий, германий со включениями фосфора. Такие полупроводники используют свет более эффективно, поглощая различные части спектра. Производство их очень дорого, поэтому такие элементы используются только в космической промышленности. Ранее мы писали также про элементы на основе теллурида кадмия, которые можно производить в виде гибких и тонких пленок. Несмотря на то, что общий вклад в производство электроэнергии солнечной энергетики пока не превышает 1%, темпы роста можно назвать взрывными. Особенно заинтересованы в использовании возобновляемой энергии солнца такие страны как Индия и Китай. Компания Google в конце 2016 года заявила, что в этом году собирается полностью перейти на возобновляемую энергетику.

В настоящее время в быту используются в основном кремниевые фотоэлементы, реальный КПД которых составляет 10–20 процентов. Элементы на основе перовскитов появились менее 10 лет назад и сразу вызвали к себе заслуженный интерес (о них мы уже писали ). КПД таких элементов быстро увеличивается и практически доведен до 25 процентов, что сопоставимо с лучшими образцами кремниевых фотоэлементов. К тому же они очень просты в производстве. Несмотря на технологический успех, физические принципы работы перовскитовых элементов относительно мало изучены, поэтому обсуждаемая работа ученых из США вносит важный вклад в фундаментальные основы фотовольтаики и, конечно, влечет за собой перспективу дальнейшего увеличения КПД солнечных элементов.

Дарья Спасская

Солнечные батареи - уникальный преобразователь энергии световых лучей в электричество с неограниченным внешним источником. Постоянно растущий спрос на данную продукцию обусловлен доступностью и экологичностью энергоснабжения без расхода теплоносителя, а также экономической окупаемостью за 2 года при минимальном сроке службы панелей в 25 лет.

Основой служат полупроводники или пленочные полимеры, пластина из слоев разной полярности преобразует свет в направленное движение электронов - это физическое явление неизменно для всех солнечных батарей. Вместе с тем такое исполнение ограничивает эффективность фотопреобразователей, часть энергии фотонов неизбежно теряется при прохождении границы p-n перехода. На практике на коэффициент полезного действия батарей влияют многие факторы: материал, площадь, расположение, интенсивность светового потока, что учитывается при покупке и эксплуатации.

Зависимость КПД от вида фотопреобразователей

Данный показатель определяется как процентное отношение вырабатываемой электрической энергии к мощности падающего солнечного света. На величину влияет чистота пластины и ее структура: пленочная, поли- или монокристаллическая. Последние виды относятся к самым дорогим и долго окупаемым, доступные солнечные батареи с высоким КПД для дома пока что производят только из слоев кремния разной полярности. Менее эффективными являются панели из террурида кадмия и CIGS, выпускаемые на основе пленочной технологии. КПД кадмиевых батарей составляет всего 11 %, но они дешевы и достаточно надежны в эксплуатации. Чуть выше показатель у пленки с нанесенными частицами галлия, меди, индия и селена, фотоэлементы CIGS эффективны на 15 %.

Для сравнения: КПД кремниевых преобразователей монокристаллического типа - 25 %, а у тонкопленочных или аморфных субмодулей из того же материала - максимум 10, устройства на основе органических полимеров имеют минимальное значение - 5 %. Многое зависит от площади панели, одиночные фотоэлементы ограничены в генерировании электричества.

Величина КПД маленьких солнечных батарей не позволяет использовать их для полноценного энергоснабжения, но их достаточно для запуска некоторых видов электроники. В любом случае, повышение эффективности устройств и минимизация их себестоимости является приоритетной задачей современной энергетики.

Факторы, влияющие на эффективность солнечных батарей

Коэффициент полезного действия зависит не только от применяемого материала и технологии, но и от целого комплекса внешних условий:

1. Интенсивности светового потока. В свою очередь этот показатель связан с географическими координатами расположенной батареи, в частности - с широтой.

2. Угла наклона конструкции. В идеале следует установить солнечные батареи, меняющие его, исходя из градиента падения лучей. Такая система стоит дороже, но она позволяет аккумулировать внушительное количество электричества (до 40–60 %) и меньше зависеть от сезона и времени суток.

3. Температуры окружающей среды. Нагрев плохо влияет на фотоэффект, вентилируемые батареи имеют очень высокий КПД. Как ни парадоксально, но в морозную ясную погоду они вырабатывают больше энергии, чем в жару (хотя общий кумулятивный эффект снижается из-за короткого светового дня).

4. Времени года. На практике КПД солнечных панелей зимой уменьшается в 2–8 раз, но это не связано с выпадением снега: на темной поверхности он быстро тает, кроме того - фотопреобразователи отлично воспринимают рассеянный свет.

5. Запыленности. Чем чище внешняя часть солнечных батарей, тем большее количество фотонов будет преобразовано, поэтому для повышения КПД рабочие поверхности рекомендуется протирать как минимум раз в два года.

6. Тени. Не секрет, что коэффициент полезного действия для солнечных батарей в пасмурную погоду значительно снижается, в туманных и дождливых районах их нет смысла ставить, то же относится и к затененным участкам. Панели нежелательно монтировать в тени высоких деревьев или соседних домов, при выборе месторасположения приоритет отдается южной стороне.

Достигнуть впечатляющих для сегмента фотоэлектрических элементов успехов удалось стартапу Инновационного парка EPFL в Германии.

Согласно опубликованной пресс-службой учебного заведения информации, команде студентов Института Фраунгофера во главе с руководителем проекта Лораном Кулотом удалось модернизировать применяемые в космической сфере технологии, существенно удешевив производство и повысив эффективность солнечных батарей. Показатели КПД прототипа будущей массовой фотоэлектрической панели, которую создатели рассчитывают превратить в серийный продукт после разрешения технологических вопросов и поиска инвесторов, вдвое превышают стандартные для отрасли. Напомним, что КПД имеющихся в продаже солнечных батарей в большинстве случаев достигает 15-20%, что является пределом для применяемых сегодня технологий «улавливания» солнечных лучей с последующим преобразованием этой энергии в электрическую. Полученные в ходе тестирования панели-прототипа результаты показали эффективность выработки электроэнергии на уровне 36,4%, что в случае перехода на массовый выпуск источников преобразования энергии Солнца в электричество позволит достичь выдающегося показателя — 30-32%.

Создатели принципиально нового и сверхэффективного типа солнечной батареи рассказали о примененной ими методике повышения КПД батареи, для чего специалисты EPFL воспользовались оптическими линзами. Применяемые в космосе панели для преобразования солнечной энергии в электрическую изготавливаются с применением сверхдорогих материалов, помогающих улучшить свойства «улавливания» лучей Солнца в специальных мини-ячейках. Немецкие специалисты из независимой лаборатории Института Фраунгофера применили этот же принцип, максимально уменьшив площадь очень дорогого слоя высокопроизводительных ячеек. Вместо «растянутого» на всю площадь панели слоя фотоэлементов из дорогостоящих материалов разработчики взяли маленький кусочек высокопроизводительных ячеек, сконцентрировав на нем весь поступающий на поверхность элемента солнечный свет. Верхний слой поверхности батареи состоит из микроскопических линз, установленных на механической основе, при помощи маленьких сервомоторов смещающей фокусируемый свет точно на фотоподложку в зависимости от расположения земного светила.

Такая методика обеспечивает максимальную эффективность преобразования энергии на протяжении всего светового дня при сохранении низкой стоимости производства. Цена выпуска вдвое более эффективных солнечных элементов после налаживания серийного производства основанных на разработанных специалистами EPFL принципах батарей превысит себестоимость имеющихся на рынке только панелей на 10-15% при стопроцентном наращивании показателя КПД. Говорить о сроках выпуска перспективной разработки в массовых масштабах создатели очень дешевого в сравнении с выпускающимися для применения в космосе образцами решения говорят пока неохотно, ссылаясь на необходимости отработки технологического базиса для налаживания крупносерийного выпуска недорогих в изготовлении, но крайне эффективных солнечных панелей с КПД 36%. Ожидается, что первые мелкосерийные образцы таких элементов появятся не раньше, чем через 2-3 года, когда себестоимость выпуска фотоэлектрических панелей сможет установить новый ценовой рекорд. Сегодня приобретение и установка подобных батарей на загородных участках для вырабатывания электрической энергии «из воздуха» обходится многократно дороже подключения к электросетям — окупать дорогостоящую покупку приходится в буквальном смысле десятилетия.

По этой причине активно продвигаемые на Западе «солнечные плантации» из сотен и тысяч отдельных фотоэлементов продолжают субсидироваться за счет государственных программ стимулирования сферы альтернативной энергетики. Только за счет вложения миллиардов долларов и евро в развитие этой области Европе и США удалось добиться внушительных и внушающих оптимизм экономических показателей, на бумаге выглядящих настоящим прорывом в сфере получения экологически чистой электроэнергии. На деле каждый выработанный из Солнца Киловатт обходится значительно дороже, чем разведка, добыча и последующее извлечение из недр земли углеводородов, продолжающих составлять основу общемировой энергетики. Единственной альтернативой «бесплатной» электроэнергии остается атомная энергетика, категорически вычеркнутая Евросоюзом и большинством других мировых держав из списка доступных источников электричества. Причиной становится опасность повторения трагических событий 1986-го и 2011 годов в советском Чернобыле и японской Фукусиме, когда на эксплуатируемых СССР и Японией соответственно атомных электростанциях фиксировались радиационные аварии предельного по Международной шкале ядерных событий седьмого уровня.

Именно поэтому Запад продолжает рассматривать солнечную энергетику в качестве самого перспективного направления при формировании базы для создания «энергетического задела» будущим поколениям, которым очень скоро придется столкнуться с полным отсутствием легкоизвлекаемых запасов углеводородов — нефти, газа и угля. Уже сегодня запасы расположенных на доступной для современных буровых установок глубине энергетических ресурсов эксперты называют «близкими к истощению», что вынуждает ученых и исследователей энергично перебирать новые варианты для сохранения текущего уровня потребления электричества мировой промышленностью. Потенциально выгодными с технологической точки зрения пока остаются только два направления — ядерная энергетика и фотоэлементы, преобразующие «добирающийся» по поверхности планеты свет галактического светила в нужную для жизнедеятельности человека электрическую энергию. Искусственный отказ от атома оставляет западным державам, в первую очередь Евросоюзу и Соединенным Штатам Америки, только один путь для дальнейшего развития и модернизации собственной энергетики.

По мнению главного операционного директора стартапа EPFL Флориана Герлиха, созданные немецкими специалистами батареи позволят снизить цену за вырабатываемый Киловатт-час электроэнергии для потребителей до приемлемого уровня, когда покупка дорогой солнечной панели даже без привлечения государственных субсидий окупится после непродолжительной эксплуатации. Увеличение КПД до 36% — многообещающий прорыв, способный «встряхнуть» мировую энергетическую систему в рамках общемирового проекта по поиску наиболее выгодных с финансовой точки зрения и показателей экологичности способов получения электричества. На последнее, например, активно «переезжают» выпускаемые крупнейшими автоконцернами автомобили, доля которых с установленными под капотом электродвигателями к 2030-2035 годам достигнет, по предварительным подсчетам экспертов, серьезных 10-12% в масштабе всего автопарка на планете. Активное содействие этому окажут и разработки ученых, на протяжении последних десятилетий продолжающих биться за каждый процент эффективности выработки электроэнергии, добиваясь достижения предельно допустимых значений в гонке за «бесплатными» киловаттами.