Точность определения координат gps – погрешность найти айфон. GPS-координирование в геодезии

Поиск Лекций

Об утверждении требований к точности и методам определения координат характерных точек границ земельного участка, а также характерных точек контура здания, сооружения или объекта незавершенного строительства на земельном участке

Во исполнение части 7 статьи 38 и части 10 статьи 41 Федерального закона от 24 июля 2007 г. № 221-ФЗ «О государственном кадастре недвижимости» (Собрание законодательства Российской Федерации, 2007,
№ 31, ст. 4017; 2008, № 30, ст. 3597, ст. 3616; 2009, № 1, ст. 19; № 19, ст. 2283; № 29, ст. 3582; № 52, ст. 6410, ст. 6419) п р и к а з ы в а ю:

утвердить прилагаемые требования к точности и методам определения координат характерных точек границ земельного участка, а также характерных точек контура здания, сооружения или объекта незавершенного строительства на земельном участке.

Министр Э.С. Набиуллина

Утвержден

приказом Минэкономразвития России

от_____________ №___________

Требования к точности и методам определения координат характерных точек границ земельного участка, а также характерных точек контура здания, сооружения или объекта незавершенного строительства на земельном участке

1. Характерной точкой границы земельного участка является точка изменения описания границы земельного участка и деления ее на части.

Характерной точкой контура здания, сооружения или объекта незавершенного строительства на земельном участке является точка, в которой граница контура здания, сооружения или объекта незавершенного строительства изменяет свое направление.

2. Положение на местности характерных точек границы земельного участка описывается их плоскими прямоугольными координатами в проекции Гаусса-Крюгера, вычисленными в системе координат, принятой для ведения государственного кадастра недвижимости.

Местоположение здания, сооружения или объекта незавершенного строительства на земельном участке устанавливается посредством определения плоских прямоугольных координат в проекции Гаусса-Крюгера характерных точек контура такого здания, сооружения или объекта незавершенного строительства в системе координат, принятой для ведения государственного кадастра недвижимости.

3. Координаты характерных точек границ земельных участков и характерных точек границ контура здания, сооружения или объекта незавершенного строительства на земельном участке определяются следующими методами:

1) геодезическим методом (метод триангуляции, полигонометрии, трилатерации, метод прямых, обратных или комбинированных засечек и иные геодезические методы);

2) методом спутниковых геодезических измерений (определений);

3) фотограмметрическим методом;

4) картометрическим методом.

4. Закрепление характерных точек границы земельного участка на местности межевыми знаками осуществляется по желанию заказчика кадастровых работ. Конструкция межевого знака определяется договором подряда. В случае закрепления характерных точек границы земельного участка межевыми знаками их координаты относятся к фиксированным (обозначенным) центрам межевых знаков.

5. Метод работ по определению координат характерных точек устанавливается кадастровым инженером в зависимости от имеющихся исходных сведений и требований к точности определения координат характерных точек, принятых в настоящем документе.

6. Геодезической основой для определения плоских прямоугольных координат характерных точек границы земельного участка являются пункты государственной геодезической сети и пункты опорных межевых сетей.

Геодезической основой для определения плоских прямоугольных координат характерных точек контура здания, сооружения или объекта незавершенного строительства являются характерные точки границы земельного участка.

СКП местоположения характерной точки контура здания, сооружения или объекта незавершенного строительства определяется относительно ближайшей характерной точки границы земельного участка.

7. СКП местоположения характерной точки границы земельного участка не должна превышать нормативную точность определения координат характерных точек границ земельных участков (приложение №1).

8. СКП местоположения характерной точки контура здания, сооружения или объекта незавершенного строительства не должна превышать нормативную точность определения координат характерных точек контура здания, сооружения или объекта незавершенного строительства:

для земель населенных пунктов – 1м;

для иных земель – 5 м.

Если контур здания, сооружения или объекта незавершенного строительства совпадает с границей земельного участка, то координаты характерных точек контура здания, сооружения или объекта незавершенного строительства определяются с нормативной точностью определения координат характерных точек границ земельных участков.

Если здание, сооружение или объект незавершенного строительства располагаются на нескольких земельных участках, для которых установлена различная нормативная точность, то координаты характерных точек контура здания, сооружения или объекта незавершенного строительства определяются с точностью, соответствующей точности определения координат характерных точек контура здания, сооружения или объекта незавершенного строительства с более высокой точностью.

9. Для определения СКП местоположения характерной точки, используются формулы, соответствующие методам определения координат характерных точек.

10. Геодезические методы.

Вычисление СКП местоположения характерных точек производится с использованием программного обеспечения, посредством которого ведется обработка полевых материалов. При этом к межевому плану прилагается ведомость (выписка) из программного обеспечения.

При обработке полевых материалов без применения программного обеспечения для определения СКП местоположения характерной точки используются формулы расчета СКП, соответствующие геодезическим методам определения координат характерных точек.

11. Метод спутниковых геодезических измерений.

Вычисление СКП местоположения характерных точек производится с использованием программного обеспечения, посредством которого выполняется обработка материалов спутниковых наблюдений. При этом к межевому плану прилагается ведомость (выписка) из программного обеспечения.

12. Картометрический и фотограмметрический методы.

При определении местоположения характерных точек, совмещенных с контурами географических объектов, изображенных на карте (плане) или аэрофотоснимке, СКП принимается равной Мt = К*М.

Где М – знаменатель масштаба карты или аэроснимка.

— для фотограмметрического метода К принимается равным графической точности (например, при определении местоположения характерных точек по фотоснимкам – 0,0001 м);

— для картометрического метода:

— для населенных пунктов К принимается равным 0,0005 м;

— для земель сельскохозяйственного и иного назначения
К принимается равным 0,0007 м.

13. При восстановлении на местности границы земельного участка на основе сведений государственного кадастра недвижимости, положение характерных точек границы земельного участка определяется с нормативной точностью, соответствующей данным, представленным в приложении № 1.

14. Если смежные земельные участки имеют различные категории, то общие характерные точки границ земельных участков определяются с точностью, соответствующей точности определения координат земельного участка с более высокой точностью.

15. По желанию заказчика договором подряда на выполнение кадастровых работ может быть предусмотрено определение местоположения характерных точек границ земельного участка и контуров зданий, сооружений или объектов незавершенного строительства с более высокой точностью, чем установлено настоящим порядком. В этом случае определение координат характерных точек границ земельного участка, контуров зданий, сооружений или объектов незавершенного производится с точностью, указанной в договоре подряда.

16. По вычисленным координатам характерных точек границы земельного участка составляется их каталог, на основе которого вычисляется площадь земельного участка.

17. Для расчета предельной погрешности определения площади земельного участка применяется формула:

∆Р — предельная погрешность определения площади земельного участка (кв.м);

M t — максимальное значение средней квадратической погрешности местоположения характерных точек границы земельного участка, рассчитанное с учетом технологии и точности выполнения работ (м);

Р — площадь земельного участка (кв.м);

k — коэффициент вытянутости земельного участка, т.е. отношение наибольшей длины участка к его наименьшей ширине.

Приложение № 1

Нормативная точность определения координат характерных точек границ земельных участков

№№ п.п. Категория земель, площадь земельных участков Средняя квадратическая ошибка, (м)
1. Земли сельскохозяйственного назначения
площадь земельных участков до 1 га 0,2
площадь земельных участков до 100 га
площадь земельных участков более 100 га 2,5
2. Земли населенных пунктов 0,2
3. Земли промышленности, энергетики, транспорта, связи, радиовещания, телевидения, информатики, земли обеспечения космической деятельности, земли обороны, безопасности и земли иного специального назначения 0,5
4. Земли особо охраняемых природных территорий и объектов, земли лесного фонда, земли водного фонда и земли запаса 5,0

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

Тестирование точности GPS-приемников у мобильных телефонов

В ходе работ по одному проекту нам понадобилось выяснить реальную (а не декларируемую) точность геопозиционирования у различных смартфонов.

Для этого был использован стационарный приемник фирмы Topcon, показания которого были взяты за эталон. В том же месте размещались тестируемые аппараты. После холодного старта дополнительно выдерживалось 2 минуты для более точного определения координат.

В тестировании принимали участие следующие аппараты:

  • Fly IQ447 (80$);
  • Nokia Lumia 625 (100$);
  • Samsung Galaxy Tab 2;
  • Промышленный смартфон Motorola TC-55 – (1500$);
  • Промышленный смартфон Coppernic C-One (1500$);

Выглядело это следующим образом:


В итоге результаты (расхождение координат смартфонов с координатами стационарного приемника) оказались следующими:

  • Fly IQ447 (GPS) – 1-3 метра;
  • Coppernic C-One (GPS + ГЛОНАСС) – 2 метра;
  • Motorola TC-55 (GPS + ГЛОНАСС) – 6 метров;
  • Samsung Galaxy Tab 2 (GPS) – 8 метров;
  • Nokia Lumia 625 (GPS) – 30 метров.

Немного разочаровала Motorola – за ее цену результаты ожидались более высокими.

Но больше всего удивил телефон Fly. За свою цену в 3000 рублей он оказался наиболее точным; при том, что у него отсутствует приемник Глонасс. Мы несколько раз перепроверяли результаты, но они неизменно оказывались на высоте.

К слову, данный телефон – единственный, кто всегда и везде в самолете с холодного старта находит спутники и вычисляет координаты. Несмотря на кажущиеся хорошие условия приема, большинство других телефонов далеко не всегда в полете находят сигнал с достаточного числа спутников – порой можно ждать по 20 минут, но так и не добиться определения координат.

Кстати, мы изначально не хотели брать за эталон координаты точки на карте (например, Яндекса). Нам известно о возможном расхождении карт с реальными координатами. В нашей точке у Яндекса величина этого расхождения составила около 5 метров.

Спутниковые системы позиционирования и навигации, изначально разрабатывавшиеся для военных нужд, в последнее время находят широкое применение в гражданской сфере. GPS/ГЛОНАСС мониторинг транспорта, наблюдение за нуждающимися в опеке людьми, контроль перемещений сотрудников, слежение за животными, отслеживание багажа , геодезия и картография – это основные направления использования спутниковых технологий.

В настоящее время существует две глобальных системы спутникового позиционирования, созданных в США и РФ, и две региональных, охватывающих Китай, страны Евросоюза и еще ряд стран Европы и Азии. В России доступен ГЛОНАСС мониторинг и GPS мониторинг.

Системы GPS и ГЛОНАСС

GPS (Global Position System, Глобальная система позиционирования) – это спутниковая система, разработка которой началась в Америке с 1977 года. К 1993 программу развернули, а к июлю 1995 – добились полной готовности системы. В настоящее время космическая сеть GPS состоит из 32 спутников: 24 основных, 6 резервных. Они вращаются вокруг Земли по средневысокой орбите (20 180 км) в шести плоскостях, по четыре основных спутника в каждой.

На земле расположена главная контрольная станция и десять станций слежения, три из которых передают спутникам последнего поколения корректировочные данные, а те распределяют их на всю сеть.

Разработка системы ГЛОНАСС (Глобальной навигационной спутниковой системы) начата еще в СССР в 1982 году. О завершении работ заявили в декабре 2015 года. Для работы ГЛОНАСС требуется 24 спутника, для покрытия территории и РФ достаточно 18, а общее число спутников, находящихся в данный момент на орбите (включая резервные) – 27. Они также движутся по средневысокой орбите, но на меньшей высоте (19 140 км), в трех плоскостях, по восемь основных спутников в каждой.

Наземные станции ГЛОНАСС расположены в России (14), Антарктиде и Бразилии (по одной), намечается развертывание ряда дополнительных станций.

Предшественником системы GPS была система Transit, разработанная в 1964 году для управления запуском ракет с подводных лодок. Она могла определить местонахождение исключительно неподвижных объектов с точностью до 50 м, а единственный спутник находился в поле видимости всего один час в сутки. Программа GPS ранее носила названия DNSS и NAVSTAR. В СССР создание навигационной спутниковой системы велось с 1967 года в рамках программы «Циклон».

Основные отличия системs мониторинга ГЛОНАСС от GPS:

  • американские спутники движутся синхронно с Землей, а российские – асинхронно;
  • разная высота и количество орбит;
  • разный угол их наклона (около 55° для GPS, 64,8° для ГЛОНАСС);
  • разный формат сигналов и рабочие частоты.
  • Преимущества системы GPS

  • GPS – старейшая из существующих систем позиционирования, приведена в полную готовность раньше российской.
  • Надежность обусловлена использованием большего числа резервных спутников.
  • Позиционирование происходит с меньшей погрешностью, чем у ГЛОНАСС (в среднем 4 м, а для спутников последнего поколения – 60–90 см).
  • Множество устройств поддерживает систему.


Преимущества системы ГЛОНАСС

  • Положение асинхронных спутников на орбите более стабильное, что облегчает управление ими. Регулярное внесение корректив не требуется. Данное преимущество важно для специалистов, а не потребителей.
  • Система создана в России, поэтому обеспечивает уверенный прием сигнала и точность позиционирования в северных широтах. Это достигается за счет большего угла наклона спутниковых орбит.
  • ГЛОНАСС – это отечественная система, и останется доступной для россиян в случае отключения GPS.
  • Недостатки системы GPS

  • Спутники вращаются синхронно вращению Земли, поэтому для точного позиционирования требуется работа корректирующих станций.
  • Низкий угол наклона не обеспечивает хорошего сигнала и точного позиционирования в полярных областях и высоких широтах.
  • Право управления системой принадлежит военным, а они могут искажать сигнал или вообще отключить GPS для гражданских лиц или для других стран в случае конфликта с ними. Поэтому хотя GPS для транспорта точнее и удобнее, а ГЛОНАСС – надежнее.
  • Недостатки системы ГЛОНАСС

  • Разработка системы началась позже и до недавнего времени велась со значительным отставанием от американцев (кризис, финансовые злоупотребления, хищения).
  • Неполный комплект спутников. Продолжительность службы российских спутников ниже, чем американских, они чаще нуждаются в ремонте, поэтому точность навигации в ряде областей снижается.
  • Спутниковый мониторинг транспорта ГЛОНАСС дороже, чем GPS из-за высокой стоимости устройств, адаптированных к работе с отечественной системой позиционирования.
  • Недостаток программного обеспечения для смартфонов, КПК. Модули ГЛОНАСС проектировали для навигаторов. Для компактных портативных устройств на сегодняшний день более распространенный и доступный вариант – это поддержка GPS-ГЛОНАСС или только GPS.


Резюме

Системы GPS и ГЛОНАСС являются взаимодополняемыми. Оптимальное решение – это спутниковый GPS-ГЛОНАСС мониторинг. Устройства с двумя системами, например, GPS-маркеры с ГЛОНАСС-модулем «М-Плата» обеспечивают высокую точность позиционирования и уверенную работу. Если для позиционирования исключительно по ГЛОНАСС погрешность в среднем составляет 6 м, а для GPS – 4 м, то при использовании двух систем одновременно она снижается до 1,5 м. Но такие приборы с двумя микрочипами стоят дороже.

ГЛОНАСС разработана специально для российских широт и потенциально способна обеспечить высокую точность, из-за ее недоукомплектованности спутниками реальное преимущество пока на стороне GPS. Плюсы американской системы – это доступность и широкий выбор устройств с поддержкой GPS.

Спутниковые приемники прочно укрепились в списках обязательного оборудования для геодезических изысканий и кадастровых работ, поэтому стоит разобраться в их предназначении и особенностях. В этой статье мы объясним принцип действия GPS приемников (система ГЛОНАС работает аналогично), как они помогают в геодезических работах, а также отличия от обычных GPS модулей на телефонах и навигаторах.

Что из себя представляет GPS?

Аббревиатура GPS расшифровывается как Global Positioning System, что означает «Система глобального позиционирования». Изначально эта система разрабатывалась военными армии США. Но со временем «ушла в народ», где нашлось для неё множество мирных применений.

GPS состоит из 24-х искусственных спутников Земли семейства NAVSTAR, первый из которых отправился на орбиту ещё в 1978 году. Именно такое количество спутников нужно для обеспечения работоспособности системы навигации. На борту каждого из них находится работающий на частоте 1575,42 МГц и 1227,6 МГц передатчик мощностью 50 Вт передающий пучок данных на Землю и атомные часы, обеспечивающие постоянную абсолютную координацию всей группы.

В систему входят и спутниковые приемники. Их может быть бессчетное множество. Как самых простых, установленных в навигаторах, так и технически сложных, находящихся в геодезическом и другом высокоточном оборудовании. Задача приемников уловить и записать данные, принимаемые от спутниковых передатчиков.

Задача GPS измерений

Основная задача, которая в геодезии решается с помощью GPS, - это . Используется система и в крупномасштабных , при , в кадастровых работах ( , ) для обеспечения привязки геодезических измерений относительно пунктов геодезической государственной сети (ГГС).

Важным вопросом является выбор пунктов ГГС, к которым будет привязываться опорная геодезическая сеть. Исследования показали, что стоит отдавать предпочтение пунктам более высокого класса, расположенным на расстоянии 5–15 км от промышленных объектов, чтобы исключить влияние техногенных факторов.

Принцип работы GPS приемников

Имея в своём распоряжении GPS-приемник, любой его пользователь на Земле может получить орбитальные координаты за сутки всех спутников, время с точностью до наносекунды, текущие дату и точное время отправки сообщения. Такую информацию отправляет каждый спутник. GPS-приемник рассчитывает расстояние до него, а при получении информации от нескольких спутников - взаимное их расположение, а также собственные координаты.

Чтобы определить просто положение на местности (широту и долготу), потребуется поймать сигнал минимум трёх спутников, а если нужна ещё и высота над уровнем моря - минимум четырёх. Это относится к ЛЮБЫМ спутниковым приемникам. Конечно, чем больше сигналов ловит приемник-тем точнее и быстрее определяется его местоположение.

Принцип определения координат приемника достаточно прост. Они получаются методом обратных засечек от передатчиков спутников. Обо всем по порядку. Передатчик и приемник имеют высокоточные часы. В спутнике они атомные с погрешностью 10¯9 секунды/год. В приемниках часы попроще, но тоже гораздо точнее наручных. Передатчик высылает кодированный сигнал с данными о времени передачи, своей орбите и координатах и многое другое. Сигнал со скоростью света достигает приемника и обрабатывается им. Время передачи и приема различается на незначительную величину, но именно по этим данным можно определить расстояние до спутника. Поэтому и часы должны быть очень точными. Расстояние есть скорость помноженная на время. Перемножив скорость света и время прохождения сигнала и определяется пространственная засечка. И так происходит со всеми спутниковыми сигналами.

Получается, что в каждый момент времени приемник получает одновременно сигналы от нескольких спутников и определяет свое местоположение относительно их. Понятно, что спутники постоянно движутся по разным орбитам, и приемник не стоит на месте. Учет этих и других факторов ложится на вычислительную мощь приемника и наземных центров управления системой.

Разница в GPS приемниках геодезических и обычных

Сначала необходимо немного рассказать о сигналах, которые передают спутники. На самом деле сигналы передаются в закодированном виде на двух модулированных частотах, названных выше. Навигационные приемники, не имеющие специальных дешифраторов (платных), могут обработать только «грубый» открытый код, посылаемый передатчиками. В него преднамеренно введена случайная незначительная ошибка. И именно она обуславливает столь невысокую точность обычных навигаторов. Сделано это из коммерческих соображений- «неиспорченную частоту» нужно покупать. И цена на данный момент каждой частоты превышает 100 тыс. рублей. Бытовым навигаторам достаточно точности открытого кода, поэтому они не так дороги, как геодезические приемники.

Второе различие- приемники в навигаторах работают в одиночку и определяют свое абсолютное местоположение. То есть без дополнительных уравниваний и других приемников. Они самодостаточны. Точность определения может достигать 20 и более метров. А геодезические приемники работают минимум в паре. Один находится на пункте с известными координатами (база), а второй- на определяемом пункте (ровер). Они находятся в относительной близости друг от друга (до 50 км) и должны получать сигналы от одинаковых спутников. Получается, что координаты определяемого пункта вычисляются не относительно летающих спутников, а относительно известного пункта. За счет этого точность определения положения приемника достигает 1-2 сантиметра.

Из отличий можно отметить цену (многократная разница), мощность, внутренняя начинка, размер (геодезические значительно больше).

Методы геодезических измерений GPS приемниками

Один из приемников должен находится на базе (с известным местоположением). Второй перемещается по определяемым пунктам. Есть несколько вариантов его передвижения. В этом и заключаются методологические отличия.

Статический метод- самый точный- 5мм + 1мм/км. На пункте необходимо наблюдать не менее 1 часа. Применяется для создания и развития опорных геодезических сетей.

Быстростатический метод- точность сопоставима с кинематическим, но менее достоверен. Длительность наблюдений 15-20 минут. Применяется для создания сетей сгущения.

Кинематический метод Stop-and-Go- около 1-2см + 2мм/км. Продолжительность на пункте около 30 сек. Часто применяется в топосъемке на открытой местности с небольшим количеством контуров.

Непрерывный кинематический метод- точность порядка 10-15см. Приемник движется непрерывно. Используется для трассирования линейных объектов (дороги, ЛЭП, подземные коммуникации и т.д)

С развитием GSM технологий появился самый «продвинутый метод»- RTK. Точность сопоставима с быстростатическим методом, но измерения проводятся несколько сукунд. В Москве и ближайшем Подмосковье в связи с большим количеством непрерывно работающих базовых станций этот метод считается предпочтительным (если, конечно, оборудование позволяет).

Как видно- методы отличаются временем непрерывного нахождения приемника на определяемом пункте. Чем дольше-тем точнее.

Стоимость работ с использованием GPS приемников

GPS измерения включаются в состав большинства инженерно-изыскательских и кадастровых работ, поэтому и стоимость измерений прописывается в смете на данный вид работ. То есть эти измерения являются одним из этапов проведения топографической съемки, межевания и т.д.

Как отдельный вид- GPS определение координат пунктов проводится для создания опорных сетей для разных строительных и не только нужд. Стоимость этих работ можно узнать, пройдя по синей ссылке справа. Стоимость GPS определений в составе других видов работ сопоставима с представленной.

Процесс определения координат при нахождении на одном месте или при перемещении сводится к получению сигналов со спутников системы GPS, их анализу и вычислению данных о местоположении приемника. Результаты вычисления отображаются в виде координат на дисплее приемника.

У приемника GPS есть способность вычислять скорость и направление движения, могут обеспечить привязку к загружаемой в приемник или в портативный компьютер карте местности или карте крупного города. Это свойство представляет большую ценность, так как позволяет ориентироваться в местности, которую не знаешь, наблюдая свое перемещение на экране монитора.

У приемников GPS имеются накопитель данных, предназначенный для хранения измеренных координат, а программное обеспечение контролирует установки интервала измерений и количества хранимых GPS-данных. Накопитель, в зависимости от назначения приемника, может быть либо выполнен в виде отдельного устройства, либо интегрирован с приемником в одном корпусе.

Навигационные сигналы gps

Каждый спутник GPS излучает на двух частотах - L1 и L2 - специальный навигационный сигнал в виде псевдослучайной фазоманипулированной последовательности, в котором зашифрованы два вида кода - код С/А (coarse/acquisition или clear/acquisition), или «грубый» код, доступный широкому кругу гражданских потребителей и позволяющий получать лишь приблизительную оценку местоположения, и код P (precision code), обеспечивающий более точное вычисление координат. Первоначально пользование кодом P было ограничено, но 1 мая 2000 г. эти ограничения распоряжением президента США были сняты, что позволило значительно увеличить точность этих приемников без необходимости их модернизации. Код С/А передается на частоте L1 с использованием фазовой манипуляции псевдослучайной последовательности длиной 1023 символа с защитой от ошибок. Период повторения С/А-кода - 1 мс. Тактовая частота - 1,023 МГц. Код P передается на частоте L2 с применением сверхдлинной псевдослучайной последовательности с периодом повторения 267 дней. Тактовая частота - 10,23 МГц. Кроме этих кодов в сигнале GPS может присутствовать и код Y, представляющий собой шифрованную версию кода P.

Кроме кодов С/А и P спутник GPS регулярно передает специальное сообщение, содержащее дополнительные сведения. Пользователь получает информацию о системном времени, эфемеридах (наборах параметров, точно описывающих орбиту движения спутника), прогнозе ионосферной задержки, показателях работоспособности. Передача навигационного сообщения длиной 1500 бит осуществляется со скоростью 50 бит/с на частотах L1 и/или L2.

Точность определения координат в системах gps

Координаты подвижного абонента определяются с помощью стандартного приемника сигналов GPS. Он может использовать пассивную или активную антенну и автономно вычисляет географические координаты и Всемирное время (UTC) по навигационным сигналам. Такие приемники обеспечивают высокую точность определения координат.

Приемники GPS могут различаться по количеству каналов приема, скорости обновления данных, времени вычислений, точности и надежности определения координат. Они могут быть оснащены несколькими приемниками, позволяющими отслеживать практически все навигационные спутники, находящиеся в зоне радио-видимости. Количество каналов приема обычно приводится в технических данных приемника. Если число каналов приема меньше количества наблюдаемых спутников, автоматически выбирается наиболее оптимальное сочетание последних. Навигационные данные обновляются каждую секунду. Время определения координат зависит от числа одновременно наблюдаемых спутников и режима определения местоположения.

Определение координат может производиться в двух режимах - 2D (двухмерном) и 3D (трехмерном или пространственном). В режиме 2D определяются широта и долгота, высота считается известной. Для работы в этом режиме достаточно присутствия в зоне радио-видимости трех спутников, и время определения координат не превышает 2 мин.

Определение пространственных координат абонента в режиме 3D требует, чтобы в зоне радио-видимости находилось не менее четырех спутников. Время определения координат при этом составляет не более 3 - 4 мин. Использование приемника только системы GPS или только системы ГЛОНАСС (об этом чуть ниже) обеспечит погрешность менее 100 м. А если использовать комбинированный двух стандартный GPS/ГЛОНАСС приемник, точность определения координат будет значительно выше, и погрешность составит всего 15–20 м.

При выполнении некоторых работ, например, геодезической съемки, требуется высокая точность определения координат. Ее обеспечивает дифференциальный метод, когда данные о координатах объекта, измеренные приемником GPS, уточняются привязкой их к размещенным на местности стационарным постам, которые оснащены приемниками GPS, координаты которых точно известны. Точность измерения координат при этом составляет от нескольких дециметров до 5 м.

На величину ошибки при определении координат влияет ряд факторов. Для уменьшения величины погрешности в каждом конкретном случае используются специальные меры, поэтому просто перечислим причины возникновения погрешностей.

1. Погрешности, обусловленные режимом селективного доступа (Selective availability или S/A). В настоящее время этот режим отменен, но провайдер услуг GPS (Министерство обороны США) может его ввести в особых случаях. Величина среднеквадратической ошибки при этом составит примерно 30 м.

2. Погрешности, связанные с распространением радиоволн в ионосфере, происходят из-за задержки распространения сигналов при их прохождении через ионосферу, состояние которой зависти от многих факторов (время суток, года, уровень солнечной активности), и приводят к ошибкам порядка 20–30 м днем и 3–6 м ночью.

3. Погрешности, обусловленные распространением радиоволн в тропосфере (нижнем слое атмосферы). Погрешность при использовании сигналов с С/А-кодом не превышает 30 м.

4. Эфемеридная погрешность, обусловленная расхождением между фактическим и расчетным положением спутника GPS, которое устанавливается по данным навигационного сигнала, передаваемого с его борта. Значение погрешности не превышает 3 м.

5.Погрешность ухода шкалы времени спутника обусловлена расхождением шкал времени различных спутников.

6. Погрешность определения расстояния до спутника. Это статистический показатель, который вычисляется для конкретного спутника и заданного интервала времени. Величина ошибки обычно не превышает 10 м. Навигационный приемник сигналов для системы GPS состоит из приемного модуля и малогабаритной антенны с малошумящим усилителем. Приемный модуль выпускается как в виде автономного устройства со встроенными источниками питания, так и в виде отдельной платы, встраиваемой в абонентский терминал.