Построение модели логической схемы 3 х переменных. Пример построения логических схем


Subculture People Historical

The UK has a four parts: England, Scotland, Wales and Northern Ireland. It `s a rich country one of the richest in the world. The population of the UK is over 58 million people. The main nationalities are the English, the Wels, the Scottish and the Irish. In this country you are never very far from the coast and there are lots of seaside resorts. Great Britain is a highly industrialized country. New industries have been developed in the last three decades.

I `d like to live in England and it ` s my choice .I want to find a place, where I will live with my friends. This place should be hospitable and quiet city. Great Britain has 22 million homes small and big. I want to live in a small house. Small houses are comfortable and it is a good place for my lifestyle. Here I can choose a place for my future life.

One reason is that the weather is so good. It has a mild climate. It is never very cold or very hot. There are a lot of places, for example forests and plains, where I can relax with my friends. Great Britain has beautiful sights. There are many rivers. The main river is the Thames. Almost all the mountains in the UK are in the north and in the west.

Traditionally English people have three meals a day. There are breakfast, lunch and dinner. British breakfast is bacon, eggs or sausages followed by toast. Lunch is a light meal. The main meal is a dinner. A typical evening meal is a meat dish with vegetables and dessert. Tea is the most popular drink in Britain. I like to drink a cap of tea very much.

The UK has many historical places: various museums, Stonehenge, Liverpool - “the city of ships” etc. The most of interesting place for me is THE BRITISH MUSEUM and MADAM TUSSAUD`s museums. The British museum is the largest and richest museum in the world. It Contains one of the world` s richest collection antiquities. Madam Tussaud` s Museum is an exhibition of hundreds of life-size wax models of famous people. Here you can meet Marilyn Monroe, Elton John, Picasso, the Royal Family, the Beatles and many others.

Another reason for my choice is calm and funny people. England is a hospitable and friendly country. The British are polite and patient. The British people love gardening, compromise and fashion to travel. A friendly smile is a common thing in the street. My favorite hobbies it is gardening too. I love a flower and growing vegetables. I am calm and cautiousness girl that`s why I would like to live in Great Britain.

The main reason is Subcultures. I want to say about a modern music culture. Subculture has many directions is a rap, rock, classic and pop music cultures. The most of popular in Russia it is pop music culture. But I write about England. I know that England is a capital and centre punk culture. The first rock-group was “Sex Pistols”. Sing in this group Yggy Pop. The largest colore punk cultures is pink and green.

Now to appear new cultures is a new romantic, industrial and alternative. The most of popular new wave is alternative. This wave it`s wave mobility and unpredictability. The main music fashion it’s psychedelic and acid rock. But I just love instrumental music by guitar.

E specially I like old music it is a rock`n`roll. I enjoy listening this music because it reflects moods and emotions. My favorite group is “The Beatles”. The Beatles it’s the famous group in the world. The capital Beatles is Liverpool the main port in Great Britain. England is the best of all Possible World’s.

1.Student Book

2.Dictionary

3.Additional Literature

School № 14 Nefteugansk Topic: “ The Best of all Possible Worlds “ &n

Почему необходимо уметь строить логические схемы?

Дело в том, что из вентилей составляют более сложные схемы, которые позволяют выполнить арифметические операции и хранить информацию. Причем схему, выполняющую определенные функции, можно построить из различных по сочетанию и количеству вентилей. Поэтому значение формального представления логической схемы чрезвычайно велико. Оно необходимо для того, чтобы разработчик имел возможность выбрать наиболее подходящий ему вариант построения схемы из вентилей. Процесс разработки общей логической схемы устройства (в том числе и компьютера в целом) таким образом становится иерархическим, причем на каждом следующем уровне в качестве «кирпичиков» используются логические схемы, созданные на предыдущем этапе.

Алгебра логики дала в руки конструкторам мощное средство разработки, анализа и совершенствования логических схем. В самом деле, гораздо проще, быстрее и дешевле изучать свойства и доказывать правильность работы схемы с помощью выражающей ее формулы, чем создавать реальное техническое устройство. Именно в этом состоит смысл любого математического моделирования.

Логические схемы необходимо строить из минимально возможного количества элементов, что в свою очередь, обеспечивает большую скорость работы и увеличивает надежность устройства.

Алгоритм построения логических схем :

1) Определить число логических переменных.

2) Определить количество базовых логических операций и их порядок.

3) Изобразить для каждой логической операции соответствующий ей вентиль.

4) Соединить вентили в порядке выполнения логических операций.

Пример 10

Составить логическую схему для логического выражения: F =¬ X v Y & X .

1) Две переменные – X и Y .

2) Две логические операции: 1 3 2

¬ X v Y & X .

3) Строим схему, соединяя вентили в порядке выполнения логических операций:

Пример 11

Постройте логическую схему, соответствующую логическому выражению F = X & Y v¬ (Y v X ).

Вычислить значения выражения для X =1, Y =0.

1) Переменных две: X и Y .

2) Логических операций четыре: конъюнкция, две дизъюнкции и отрицание. Определяем порядок выполнения операций:

1 4 3 2

X & Y v ¬ (Y v X ).

3) Схему строим слева направо в соответствии с порядком выполнения логических операций:


4) Вычислим значение выражения: F =1&0 v¬ (0 v 1)=0.

Упражнение 15

Постройте логическую схему, соответствующую логическому выражению, и найдите значение логического выражения:

1) F=A v B& ¬ C, если A=1, B=1, C=1 .

2) F = ¬ (A v B&C), если A=0, B=1, C=1 .

Лабораторная работа № 4 .

Схемотехническая реализация логических элементов. Построение логических схем.

Теоретическая часть.

В основе обработки компьютером информации лежит алгебра логики, разработанная Дж. Булем. Было доказано, что все электронные схемы ЭВМ могут быть реализованы с помощью логических элементов И, ИЛИ, НЕ.

Элемент НЕ

При подаче на вход схемы сигнала низкого уровня (0) транзистор будет заперт, т.е. ток через него проходить не будет, и на выходе будет сигнал высокого уровня (1). Если же на вход схемы подать сигнал высокого уровня (1), то транзистор “откроется”, начнет пропускать электрический ток. На выходе за счет падения напряжения установится напряжение низкого уровня. Таким образом, схема преобразует сигналы одного уровня в другой, выполняя логическую функцию.

Элемент ИЛИ

Функция “ИЛИ” - логическое сложение (дизъюнкция), ее результат равен 1, если хотя бы 1 из аргументов равен 1. Здесь транзисторы включены параллельно друг другу. Если оба закрыты, то их общее сопротивление велико и на выходе будет сигнал низкого уровня (логический “0”). Достаточно подать сигнал высокого уровня (“1”) на один из транзисторов, как схема начнет пропускать ток, и на сопротивлении нагрузки установится также сигнал высокого уровня (логическая “1”).

Элемент И

Если на входы Вх1 и Вх2 поданы сигналы низкого уровня (логические “0”), то оба транзистора закрыты, ток через них не проходит, выходное напряжение на R н близко к нулю. Пусть на один из входов подано высокое напряжение (“1”). Тогда соответствующий транзистор откроется, однако другой останется закрытым, и ток через транзисторы и сопротивление проходить не будет. Следовательно, при подаче напряжения высокого уровня лишь на один из транзисторов, схема не переключается и на выходе остается напряжение низкого уровня. И лишь при одновременной подаче на входы сигналов высокого уровня (“1”) на выходе мы также получим сигнал высокого уровня.

Таким образом, каждой базовой логической функции – «И», «ИЛИ», «НЕ» - соответствует особым образом сконструированная схема, называемая логическим элементом. Комбинируя сигналы, обозначающие логические переменные, и выходы, соответствующие логическим функциям, с помощью логических элементов, пользуясь таблицей истинности или представлением логической функции в виде КНФ и ДНФ, можно составить структурную или функциональную схему (см. примеры ниже), являющуюся основой для аппаратной реализации схемы.

Анализируя функциональную схему, можно понять, как работает логическое устройство, т.е. дать ответ на вопрос: какую функцию она выполняет. Не менее важной формой описания логических устройств является структурная формула. Покажем на примере как выписывают формулу по заданной функциональной схеме (1 схема). Ясно, что элемент “И” осуществляет логическое умножение значений и В. Над результатом в элементе “НЕ” осуществляется операция отрицания, т.е. вычисляется значение выражения: Формула и есть структурная формула логического устройства.

Итак, основные логические функции обозначаются

Инверсия

Конъюнкция

Дизъюнкция

Пример: дана логическая схема:

Она построена на основании булева выражения - Y = Ē /\ I \/ Ē /\ A \/ Ā /\ E

Практическая часть.

Задание 1. Для каждой из функциональных схем выписать соответствующую структурную формулу.

2) Для КНФ и ДНФ из лабораторной работы 5 построить функциональные схемы.

средняя общеобразовательная школа №22 г. Владикавказа

Конспект урока по информатике

на тему:

«Основы логики:

построение логических схем»

учитель информатики

Гресева Т.В.

2015 г.

Конспект урока на тему: «Основы логики: построение логических схем».

Данный урок четвёртый в рамках темы «Основы логики». Предполагается, что обучающиеся уже знакомы с основными определениями и логическими операциями, умеют строить таблицы истинности для простых и сложных логических выражений.

Цели урока:

    создание условий для формирования знаний по построению логических схем для сложных выражений;

Задачи:

    изучить принципы построения логических схем для сложных выражений;

    способствовать развитию логического мышления;

    сформировать у учащихся представления об устройствах элементной базы компьютера.

Тип урока:

    урок совершенствования знаний, умений и навыков;

    целевого применения усвоенного.

Вид урока: комбинированный.

Используемое оборудование:

    компьютер;

    приложение Microsoft Office PowerPoint 2003 ивыше;

    мультимедиа проектор;

    интерактивная доска (по возможности).

План урока:

    Организационный момент (1 мин)

    Опрос по материалу прошлого урока (4 мин)

    Представление нового материала (20 мин)

    Выполнение практического задания (12 мин)

    Подведение итогов урока. Задание на дом (3 мин)

Ход урока:

    1. Организационный момент.

Приветствие учащихся. Проверка присутствующих. Настрой на урок.

    1. Опрос по материалу прошлого урока.

На прошлом уроке мы с вами познакомились с основными логическими операциями. Обучающимся предлагается ответить на следующие вопросы:

    1. Представление нового материала.

Над возможностями применения логики в технике ученые и инженеры задумывались уже давно. Например, голландский физик Пауль Эренфест (1880 - 1933) говорил «...Пусть имеется проект схемы проводов автоматической телефонной станции. Надо определить: 1) будет ли она правильно функционировать при любой комбинации, могущей встретиться в ходе деятельности станции; 2) не содержит ли она излишних усложнений. Каждая такая комбинация является посылкой, каждый маленький коммутатор есть логическое «или-или», воплощенное в эбоните и латуни; все вместе – система чисто качественных... «посылок», ничего не оставляющая желать в отношении сложности и запутанности... правда ли, что, несмотря на существование алгебры логики, своего рода «алгебра распределительных схем» должна считаться утопией?». Созданная позднее М. А. Гавриловым (1903 – 1979) теория релейно-контактных схем показала, что это вовсе не утопия.

Посмотрим на микросхему.

На первый взгляд ничего того, что нас удивило бы, мы не видим. Но если рассматривать ее при сильном увеличении она поразит нас своей стройной архитектурой.

Чтобы понять, как она работает, вспомним, что компьютер работает на электричестве, то есть любая информация представлена в компьютере в виде электрических импульсов. Поговорим о них.

С точки зрения логики электрический ток либо течет, либо не течет; электрический импульс есть или его нет; электрическое напряжение есть или его нет... В связи с этим поговорим о различных вариантах управления включением и выключением обыкновенной лампочки (лампочка также работает на электричестве). Для этого рассмотрим электрические контактные схемы, реализующие логические операции.

Виды логических элементов (вентилей):

1. Конъюнктор (И):

2. Дизъюнктор (ИЛИ):

3. Инвертор НЕ:

Недостатками контактных схем являлись их низкая надежность и быстродействие, большие размеры и потребление энергии. Поэтому попытка использовать такие схемы в ЭВМ не оправдала себя. Появление вакуумных и полупроводниковых приборов позволило создавать логические элементы с быстродействием от 1 миллиона переключений в секунду. Именно такие электронные схемы нашли свое применение к качестве элементной базы ЭВМ. Вся теория, изложенная для контактных схем, была перенесена на электронные схемы.

Логический элемент (вентиль) - это электронное устройство, реализующее одну из логических функций.

Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

Логическая схема - это электронное устройство, которое реализует любую логическую функцию, описывающую работу устройств компьютера.

Физически каждый логический элемент представляет собой электронную схему, в которой на вход подаются некоторые сигналы, кодирующие 0 либо 1, а с выхода снимается также сигнал, соответствующий 0 или 1 в зависимости от типа логического элемента.

Обработка любой информации на компьютере сводится к выполнению процессором различных арифметических и логических операций. Для этого в состав процессора входит так называемое арифметико-логическое устройство . Оно состоит из ряда устройств, построенных на рассмотренных выше логических элементах.

Важнейшими из таких устройств являются регистры и сумматоры .

Регистр представляет собой электронный узел, предназначенный для хранения многоразрядного двоичного числового кода. Упрощенно можно представить регистр как совокупность ячеек, в каждой из которых может быть записано одно из двух значений: 0 или 1, то есть один разряд двоичного числа. Такая ячейка, называемая триггером , представляет собой некоторую логическую схему, составленную из рассмотренных выше логических элементов.

Под воздействием сигналов, поступающих на вход триггера, он переходит в одно из двух возможных устойчивых состояний, при которых на выходе будет выдаваться сигнал, кодирующий значение 0 или 1. Для хранения в регистре одного байта информации необходимо 8 триггеров.

Сумматор - это электронная схема, предназначенная для выполнения операции суммирования двоичных числовых кодов.

Правила построения логических схем:

1) Определить число логических переменных.

2) Определить количество базовых логических операций и их порядок.
3) Изобразить для каждой логической операции соответствующий ей логический элемент.
4) Соединить логические элементы в порядке выполнения логических операций.

Построим логическую схему для логического выражения:


Для этого нам потребуется 3 логических элемента:


    1. Выполнение практического задания.

Задание №1

Построить логическую схему для логического выражения и выяснить, при каких входных сигналах на выходе схемы не будет напряжения?

Задание №2

По построенной логической схеме составить логическое выражение

    1. Подведение итогов урока. Задание на дом.

Ответы на вопросы учащихся. Подведение итога урока. Выставление оценок.

Домашнее задание (слайд 18).

Знания из области математической логики можно использовать для конструирования электронных устройств. Нам известно, что 0 и 1 в логике не просто цифры, а обозначение состояний какого-то предмета нашего мира, условно называемых "ложь" и "истина". Таким предметом, имеющим два фиксированных состояния, может быть электрический ток. Устройства, фиксирующие два устойчивых состояния, называются бистабильными (например, выключатель, реле). Если вы помните, первые вычислительные машины были релейными. Позднее были созданы новые устройства управления электричеством - электронные схемы, состоящие из набора полупроводниковых элементов. Такие электронные схемы, которые преобразовывают сигналы только двух фиксированных напряжений электрического тока (бистабильные), стали называть логическими элементами .

На элементарном уровне конъюнкцию можно представить себе в виде последовательно соединенных выключателей, а дизъюнкцию - в виде параллельно соединенных выключателей:

Логические элементы имеют один или несколько входов и один выход, через которые проходят электрические сигналы, обозначаемые условно 0, если "отсутствует" электрический сигнал, и 1, если "имеется" электрический сигнал. Простейшим логическим элементом является инвертор , выполняющий функцию отрицания. Если на вход поступает сигнал, соответствующий 1, то на выходе будет 0. И наоборот. У этого элемента один вход и один выход. На функциональных схемах он обозначается:

Логический элемент, выполняющий логическое сложение, называется дизъюнктор . Он имеет, как минимум, два входа. На функциональных схемах он обозначается:

Логический элемент, выполняющий логическое умножение, называется конъюнктор. Он имеет, как минимум, два входа. На функциональных схемах он обозначается:

Специальных логических элементов для импликации и эквивалентности нет, т.к. А => В можно заменить на А V В; А <=> В можно заменить на (A & B)V(A & B).

Другие логические элементы построены из этих трех простейших и выполняют более сложные логические преобразования информации. Сигнал, выработанный одним логическим элементом, можно подавать на вход другого элемента, это дает возможность образовывать цепочки из отдельных логических элементов. Например:

Эта схема соответствует сложной логической функции F(A,B)= (А V В).

Попробуйте проследить изменения электрического сигнала в этой схеме. Например, какое значение электрического сигнала (0 или 1) будет на выходе, если на входе: А=1 и В=0.

Такие цепи из логических элементов называются логическими устройствами . Логические устройства же, соединяясь, в свою очередь образуют функциональные схемы (их еще называют структурными или логическими схемами ). По заданной функциональной схеме можно определить логическую формулу, по которой эта схема работает, и наоборот.


Пример 1. Логическая схема для функции будет выглядеть следующим образом:

Правила составления электронных логических схем по заданным таблицам истинности остаются такими же, как для контактных схем.


Пример 2. Составить логическую схему для тайного голосования трех персон A, B, C, условия которого определяются следующей таблицей истинности:

A
B
C
F

Решение

По таблице построим СДНФ логической функции и упростим ее:

Правильность полученной формулы можно проверить, составив для нее таблицу истинности:

Значение полученной функции совпадает с исходным, что можно заметить, сравнивая таблицы.

Логическая схема полученной функции имеет вид:

Рассмотрим еще два логических элемента, которые играют роль базовых при создании более сложных элементов и схем.

Логический элемент И-НЕ состоит из конъюнктора и инвертора:

Логический элемент ИЛИ-НЕ состоит из дизъюнктора и инвертора:

Выходная функция выражается формулой .

Вопросы для самоконтроля

1. Основные логические операции: конъюнкция, дизъюнкия (оба вида), отрицание, импликация, эквивалентность. Примеры логических выражений.

2. Таблица истинности. Примеры. A and not A; A or not A

3. Основные законы математической логики: перестановочное, сочетательное и распределительное

4. Законы де Моргана (закон отрицания).

5. (Совершенная) дизъюнктивная нормальная форма. Пример