Применение информационных технологий и систем автоматизированного проектирования в машиностроении. Актуальность применения информационных технологий в машиностроении

ВВЕДЕНИЕ
Во второй половине двадцатого века роль информации как ресурса деятельности человека постоянно росла. Этот процесс наблюдается и в наши дни, что приводит к преобразованиям практически во всех сферах жизни общества. Уже можно говорить о том, что наша техногенная цивилизация вступила в новую стадию, основой которой являются быстро распространяющиеся и всепроникающие информационные технологии (ИТ).

Сегодня можно наблюдать процесс перехода как отдельных компаний, так и целых стран от традиционной рыночной системы, связанной с переработкой все больших объемов ресурсов при помощи промышленных технологий и индустриального способа массового производства товаров к системе, основанной на накопленных информационных ресурсах, позволяющих создавать высокотехнологичные товары и услуги. Наиболее показательным примером этого является перенос производства товаров и услуг крупнейшими корпорациями Европы, США, Японии в страны, отстающие в своем научном развитии. То есть, фактически, страны, лидирующие в своем развитии, продают накопленную информацию на выгодных для себя условиях государствам, не имеющим необходимых знаний и опыта, но располагающими значительными трудовыми ресурсами.

Традиционно, преимущество в конкуренции обеспечивала стратегия, осно-ванная на следующих факторах: стоимости (владения, использования, обучения, техподдержки и т. д.); времени (производственного цикла, разработки и т. д.); гибкости (изменения по желанию заказчика, дополнительные возможнос-ти, комплектация и т. д.); качестве (необходимости в переделке, исправлении брака и т.д.); инновации (т.е. нововведении в области техники, технологии, организации труда или управления, основанном на использовании достижений науки и передового опыта, обеспечивающем качественное повышение эффективности производственной системы или качество продукции).

Последние десятилетия все старались (и до сих пор стараются) выжать как можно больше из этих факторов ценности. Сейчас остался лишь один новый, мало использованный прежде, но весьма ценный ресурс для стратегии конкуренции: информация (может характеризоваться точностью, актуальностью, последовательностью, полнотой, ясностью, доступностью, безопасностью и т. д.).

На основании всего вышесказанного, можно говорить о том, что информация и информационные технологии могут быть основой развития как отдельных предприятий, так и всего общества в целом, а их внедрение и распространение способно дать многочисленные конкурентные преимущества в самых различных сферах человеческой деятельности.
^ 1. ИНФОРМАЦИОННЫЕ СИСТЕМЫ НА ПРЕДПРИЯТИИ
1.1 Структура информационной системы предприятия

Любое предприятие для анализа возникающих проблем, принятия решений, контроля опера-ций, создания новых продуктов или услуг нуждается в информации.

Под информацией понимаются осмысленные и переработанные данные, которые используются для решения управленческих задач. Данные отражают события, происходящие как в самой организации, так и за ее пределами.

Информационной системой предприятия можно назвать систему, показывающую точки входа и выхода информации, направления ее потоков и взаимосвязи между ними.

Упрощенная схема информационной системы предприятия показана на рисунке 1.1. .

Как видно даже из этой упрощенной схемы, число информационных потоков заметно больше, чем путей перемещения товаров. В современной экономике обработка и обмен информацией могут приносить больше прибыли, чем движение товаров от продавца к покупателю. Стоимость компаний все в большей степени определяется не ее материальными активами (здания, оборудование), а такими нематериальными активами, как люди, идеи, технологии, а также стратегией объединения и использования главных информационных ресурсов компании.

Значительная часть этих информационных потоков состоит из достаточно легко поддающихся автоматизации процедур, что открывает широкое поле возможностей для использования передачи и обработки информации.

Созданием, развитием и эксплуатацией информационных систем занимается отрасль информационных (компьютерных) технологий (ИТ, от англ. information technology, IT).

Рисунок 1.1. Схема информационной системы предприятия
^ 1.2. Этапы развития информационных систем и технологий на машиностроительных предприятиях
Можно выделить следующие основные этапы развития информационных технологий :

1960 годы - автоматизация выполнения простейших функций;

1970 годы - интеллектуальная направленность информацион-ных технологий, развитие информационного моделирования, прогнозирования и управления;

1980 годы - расширение областей применения информацион-ных технологий, создание локальных сетей и электронных баз данных. Привлечение к использованию информационных тех-нологий руководителей всех уровней управления;

1990 годы - стремление к объединению информационных ре-сурсов и кооперации при создании информационных техноло-гий; совместное использование информации; создание вирту-альных предприятий.

В настоящее время развитие существующих информационных систем и создание новых неразрывно связаны с понятием CALS-технологий. Кроме того, в некоторых случаях, термины « CALS -технологии» и «информационные технологии» употребляются как синонимы. Упрощенно, можно сказать, что CALS -технологии - это информационные технологии, построенные на определенных стандартах.

В России в качестве аналога понятия CALS иногда используется термин ИПИ (информационная поддержка процессов жизненного цикла изделий).

Впервые концепция CALS возникла в середине 70-х годов в оборонном комплексе США в связи с необходимостью повышения эффективности управления и сокращения затрат на информационное взаимодействие в процессах заказа, поставок и эксплуатации средств вооружения и военной техники. Причиной возникновения идеи была естественная потребность в организации «единого информационного пространства», обеспечивающего оперативный обмен данными между заказчиком (федеральными органами), производителями и потребителями военной техники. На первоначальном этапе аббревиатура CALS расшифровывалась как Computer Aided Logistic Support - компьютерная поддержка поставок. Предметом CALS являлась безбумажная технология взаимодействия между организациями, заказывающими, производящими и эксплуатирующими военную технику, а также формат представления соответствующих данных.

CALS базировалась на результатах программы интегрированной компьютеризации производства (ICAM), реализованной в Министерстве обороны США. Массовое применение информационных технологий в рамках этоц программы потребовало унификации и стандартизации методов описания и анализа организационных и производственных систем . На основе уже имевшихся технологий был разработан ряд федеральных стандартов IDEF, а метод функционального моделирования IDEF0 был принят в качестве стандарта CALS.

Это положило начало процесса углубленной стандартизации и унификации правил взаимодействия участников информационных систем, значительно повышающего возможности взаимодействия на всех уровнях деятельности человека.

CALS-технологии , доказав свою эффективность, перестали использоваться только у военных и начали активно применяться в промышленности, строительстве, транспорте и других отраслях экономики, расширяясь и охватывая все этапы жизненного цикла продукта. Новая концепция сохранила аббревиатуру CALS, но получила более широкую трактовку Continuous Acquisition and Life Cycle Support – непрерывная поддержка ЖЦ продукта (изделия). CALS быстро превратилась в глобальную бизнес-стратегию перехода на безбумажную электронную технологию работы, повышения эффективности бизнес-процессов, выполняемых в ходе ЖЦ продукта, за счет информационной интеграции и совместного использования информации на всех его этапах.

Работы по внедрению CALS-технологий велись в 2 этапа. ^ На первом этапе (рубеж 90-х годов) основное внимание уделялось представлению в электронном виде технической документации. На этом же этапе была определена технология представления технической и конструкторско - технологической документации в так называемом «нейтральном» электронном формате. На втором этапе (начало 90-х годов), в рамках всемирного консорциума 25 ве-дущих технических организаций США, было достигнуто согла-шение об использова-нии нового «нейтрального» стандарта описания данных ISO 10303 (STEP- Standart for the Exchange of Product Model Data). Сразу же после разработки стандарта STEP была начата разработка стандартов ISO 13584 (PLIB), ISO 15531 (MANDATЕ), предназначенных для описания и представления информации о компонентах и комплектующих изделия, производственно-эксплуатационной среды и обмена данными, которые имеют общую со STEP структуру и технологию построения. Эти стандарты заложили основу CALS-технологий.

В настоящее время в мире действует более 25 национальных организаций, координирующих вопросы развития CALS-технологий, в том числе в США, Канаде, Японии, Великобритании, Германии, Швеции, Норвегии, Австралии, а также в рамках НАТО.

В России, хотя и с некоторым отставанием во времени от передовых индустриальных стран, начиная с середины 90-х годов, началось внедрение CALS как в гражданской, так и в военной сфере.

В настоящий момент CALS понимается как глобальная стратегия повышения эффективности бизнес-процессов, выполняемых в ходе жизненного цикла продукта за счет информационной интеграции и преемственности информации, порождаемой на всех этапах жизненного цикла. Средствами реализации данной стратегии являются CALS-технологии, в основе которых лежит набор интегрированных информационных моделей: самого жизненного цикла и выполняемых в его ходе бизнес-процессов, продукта, производственной и эксплуатационной среды. Возможность совместного использования информации обеспечивается применением компьютерных сетей и стандартизацией форматов данных, обеспечивающей корректную интерпретацию информации .
^ 1.3. Современные ИТ и их значение для предприятия

Конечная цель любого предприятия - прибыль, эффективность бизнеса. Одной из характерных черт современного промышленного производства являются жесткие требования к конкурентоспособности продукции. Что, в свою очередь, требует и быстрых темпов разработки и запуска продукции в производство и налагает высокие требования на качество продукта, его соответствие рынку. Инженерным языком говоря, производство работает в меньших допусках относительно того, как это было двадцать-тридцать и даже десять лет назад. Это стало возможным во многом благодаря широкому внедрению сначала САПР, затем организации обмена данными между проектными и производственными системами и на современном этапе созданию систем, полностью описывающих жизненный цикл изделия от концепции до описания технологических процессов его изготовления и эксплуатации.

Возросшая сложность, изощренность технологий производства и необхо-димость увеличивать разнообразие выпускаемой продукции породили насущную проблему координации и уп-равления информацией. Деятельность, основанная на информации, теперь составляет значительную часть всей деятельности предприятия. Только организация, основанная на информации, может дать предприятию воз-можность выжить и успешно конкурировать на динамично изменяющемся мировом рынке. Только интегрированная, ультрасовременная информаци-онная система, может обеспечить необходимое сотрудничество в масштабе всего предприятия.

Построение ИС основывается на всеобъемлющей интеграции раз-личных модулей, принципе однократного ввода данных, взаимосвязанности хранимых данных, возможности создания отчетов, непосредственном доступе к информации, ориентации на конечного пользователя и т. д.

Внедрение современных ИТ позволяет


  • превратить предприятие в информационно-управ-ляемое. То есть, становится возможным управлять предприятием опираясь на информационный ресурс, который, в отличие от прочих (Стоимость, Время, Оперативность реакции, Гибкость. Качество, Инновация) могут быть многократно использован;

  • воспринимать предприятие как одно целое. То есть, если компания состоит из множества предприятий, ведущих бизнес в разных сферах, или расположенных удаленно друг от друга, руководство может эффективно управлять ими как одним целым, не беспокоясь о совместимости приложений в тех или иных подразделениях. Так же появляется возможность объединения информационных подсистем в одну, устраняя при этом дублирование процессов;

  • управлять предприятием в режиме реального времени. Наибольшую ценность представляет актуальная информация. ИТ позволяют дать моментальный доступ к ней всем участником процессов. Результатом является увеличение эффективности и пропуск-ной способности каналов информации, и возможность осуществлять процессы не только последовательно, но и параллельно;

  • становиться основой для бизнес-стратегии предприятия. ИТ в свое время давали и дают возможность быстро производить стретегические изменения на предприятии, облегчая внедрение новых систем. Примером может быть система «Производство на мировом уровне» (World Class Manufacturing, WCM), появившаяся в 80-х годах. Она включала в себя такие мощные методы, как «Точно в срок» (ЛТ), «Тоталь-ный контроль качества» (Total Quality Management, TQM), «Оценка эффективности» (Benchmarking), «Развитие человеческих ресурсов» (Human Resources Development), «Единичное производство» (Lean Manufacturing), а позднее, в 1990-х годах, еще и Реинжиниринг бизнес-процессов;

  • используя одну программную платформу, работать с учетом всех особенностей конкретного предприятия. Сегодня можно создать ИС эффективную для данного предприятия не создавая ее с нуля, без привлечения огромных человеческих и финансовых ресурсов. Можно взять готовый продукт и настроить его под нужды предприятия. При этом можно добавлять или убирать необходимые функции с течением времени, сохраняя работоспособность системы.

  • ориентироваться на массовых пользователей. Все пользователи, которым это необходимо, могут быть включены в единую ИС предприятия. При этом система обеспечивает максимально возможно «дружелюбный» интерфейс, помогая людям делать свою работу, а не мешая.
Требования к современным ИС:

  • масштабируемость;

  • надежность;

  • управляемость;

  • опора на стандарты.
У разных компаний этот список может варьиро-ваться и включать дополнительные пункты, но эти базовые принципы присутствуют в любом варианте списка. Рассмотрим их внимательнее.

Масштабируемость подразумевает возможность увеличить необходимую производительность сис-темы как по количеству операций, так и по числу пользователей.

Надежность - это устойчивость системы к сбоям. Уровень надежности определяется про-центом времени, которое система находится в рабо-чем состоянии. Так же очень важно обеспечивать сохранность информации, которая сегодня может стоить дороже, чем сама ИС.

Управляемость. Информационная система не должна отнимать слишком много ресурсов на свое обслуживание. Речь идет не только о деньгах, но и о времени. То есть надо выбирать: содержать штат сотрудников, поддерживающих работоспособность ИС (или пользоваться услугами специальных компаний) или дать возможность своим сотрудникам самим решать все проблемы, тратя на это рабочее время.

Опора на стандарты. О необходимости стандартизации уже было сказано выше. Надо лишь добавить, что система, которая использует современные стандарты информационных технологий, весьма вероятно сможет эффективно работать и в будущем.
^ 1.4. Жизненный цикл изделия

CALS – это стратегия повышения эффективности, производительности и рентабельности процессов хозяйственной деятельности предприятий за счет внедрения современных методов информационного взаимодействия участников ЖЦ продукта.

Жизненный цикл продукта, как его определяют стандарты CALS, - это совокупность процессов, выполняемых от момента выявления потребностей общества в определенной продукции до момента удовлетворения этих потребностей и утилизации продукта. Основные стадии жизненного цикла показаны далее на рисунках.

Процесс - - это совокупность взаимосвязанных ресурсов и деятельности, которая преобразует входящие элементы в выходящие. Ресурсами являются персонал, средства обслуживания, оборудование, технология, методология.

ЖЦ продукта присуще большое разнообразие процессов. Наиболее известные: производственный процесс, процесс проектирования, процесс закупок. Каждый из этих процессов, в свою очередь, состоит из технологических процессов и организационно-деловых процессов . Под технологическим процессом понимается часть производственного (или другого процесса), содержащая целенаправленные действия по изменению и (или) последующему определению состояния предмета труда. Под организационно-деловыми процессами понимаются процессы, связанные с взаимодействием людей (подразделений, организаций). Все процессы ЖЦ взаимосвязаны (см. рис.1).

Для общей характеристики этих процессов используется понятие «бизнес-процесс».

Бизнес-процесс совокупность технологических и организационно-деловых процессов, выполняемая целенаправленно в рамках заранее заданной организационной структуры.

Бизнес-процессы могут быть разного масштаба : масштаба предприятия (в него вовлечены работники нескольких подразделений, например, снабжающих предприятие материалами и комплектующими), внутрицеховые, внутрилабораторные (например, изготовить деталь). Внутри одного бизнес-процесса часть составляющих его технологических и организационно-деловых процессов может быть организована в отдельный вложенный бизнес-процесс меньшего масштаба. Отдельные технологические и организационно-деловые процессы могут раскладываться на операции (законченные части процесса, выполняемые на одном рабочем месте – выписать накладную, составить договор), которые в свою очередь делятся на переходы (законченные части операции, выполняемые одними и теми же средствами – позвонить, записать, фрезеровать).

Бизнес-процессы также различаются по типу деятельности:


  • основные бизнес-процессы (определяют основное направление деятельности предприятия: производство продукции, сервисное обслуживание, оказание услуг и т. п.);

  • вспомогательные бизнес-процессы (процессы, связанные с решением внутренних задач предприятия по обслуживанию основных бизнес-процессов);

  • бизнес-процессы управления (планирование деятельности предприятия, организация производства, контроль);

  • бизнес-процессы сети (взаимодействие с поставщиками и потребителями).
Анализ бизнес-процессов позволяет по-новому взглянуть на работу предприятия, уточнить обязанности работников, оценить эффективность использования ресурсов, увидеть недостатки, скрытые в организационной структуре. С момента введения термина «бизнес-процесс» появилось понятие «реинжиниринг бизнес-процессов» (Business Process Reengineering, BPR), которое подразумевает фундаментальное переосмысление и перепроектирование бизнес-процессов предприятия с целью повышения эффективности его работы.

В общем случае ЖЦ необходимо рассматривать как совокупность ЖЦ конечного продукта и ЖЦ входящих в него компонентов, результатов деятельности субпоставщиков. С этой точки зрения ЖЦ представляет собой древовидную структуру (см. рис. 1.2) . Информационное взаимодействие субъектов, участвующих в поддержке ЖЦ, должно осуществляться в едином информационном пространстве (ЕИП). Для разрушения коммуникационных барьеров и реализации концепции CALS необходимо создать ЕИП для всех участников ЖЦ изделия (в том числе и для эксплуатационников).

Рис. 1.2. Жизненный цикл продукта и его компонентов
ЕИП должно:


  • аккумулировать всю информацию об изделии;

  • быть единственным источником данных о нем (прямой обмен данными между участниками ЖЦ исключен);

  • формироваться на основе международных, государственных и отраслевых стандартов.
Фундаментом CALS-технологии является система единых международных стандартов.

CALS-стандарты можно подразделить на три группы:

- функциональные стандарты, определяющие процессы и методы формализации;

- информационные стандарты по описанию дан-ных о продуктах, процессах и средах;

- стандарты технического обмена , контролиру-ющие носители информации и процессы обмена данными между передающими и принимающими системами.

Место и роль информационных технологий и международных стандартов, а также взаимосвязь между ними, приведены на рис. 1.3 . Суть этих технологий кратко изложена ниже.

Выходы, связанные с производством продукции как у поставщи-ка, так и у производителя можно представить при использовании стандартов MRP, MRP II, ERP, ISO 15531 ManDate.

Характеристики продукции и ее состояния как у поставщика, так и у производителя можно представить при использовании стандартов ISO10303 STEP, ISO 15531 ManDate.

Требования потребителя и производителя учитываются при ис-пользовании ФСА, ФФА, FMEA, QFD.

Обратная связь между потребителем и производителем, а также между производителем и субпоставщиком может быть организована на базе стандартов ISO 9000, MRP, MRP II, ERP, ISO 15531 ManDa-te, ISO 10303 STEP.

ISO 15531 ManDate - стандарты из системы стандартов CALS -технологий. Предназначен для обеспечения коллективного доступа поставщика и потребителя к информации о производственном про-цессе поставщика. Использует согласованные со стандартом ISO 10303 STEP форматы представления данных.

Рисунок 1.3. Взаимосвязь между стандартами и бизнес-процессами на предприятии
ISO 10303 STEP - основное семейство стандартов из системы стандартов CALS-технологий (в настоящее время включает около сотни стандартов и проектов). Предназначен для обеспечения кол-лективного доступа поставщика и потребителя к информации о:


  • конструкции изделия;

  • процедурам испытаний изделия;

  • эксплуатационной документации на изделие;

  • другой информации по всем стадиям жизненного цикла изделия.
Разработан в конце 1980-х годов МО США при участии Мини-стерства торговли США и предназначался первоначально для обеспе-чения поставок военной техники и технологий. В настоящее время все шире охватывает невоенные области, прежде всего машиностроение и промышленное строительство.

Важность управления данными об изделии, представленными в формате ISO 10303 STEP, связано со следующими обстоятельствами. Данные о конструкции изделия занимают значительную часть в об-щем объеме информации, используемой в ходе его жизненного цикла (ЖЦ). На основе этих данных решается ряд задач производства из-делия, материально-технического снабжения, сбыта, эксплуатации, ремонта и др. (рис. 1.4) .

Кроме стандартов, которые относятся к CALS, существуют и другие, часто используемые в бизнес-процессах.

ISO 9000 - семейство стандартов на системы качества предприя-тия. Система качества - часть системы управления предприятия , ох-ватывающая основные бизнес процессы (в настоящее время более 20 процессов). Разработана в середине 1980-х годов как обобщение пе-редового опыта по обеспечению качества и воплощение Глобальной Европейской концепции в области качества. Предназначена для ре-шения следующих основных задач:


  • обеспечения климата доверия в экономике;

  • предоставления потребителю объективных доказательств спо-собности поставщика к производству товаров и услуг опреде-ленного уровня качества;

  • повышения конкурентоспособности предприятий.


Рис. 1.4. Использование конструкторских данных в ходе ЖЦ изделия
Система качества является наиболее распространенным стандар-том за всю историю ISO, их используют несколько сот тысяч пред-приятий практически во всех странах мира. Соблюдение требований стандарта в настоящее время рассматривается как пропуск на между-народный рынок товаров и услуг. В России с 1998 г. соблюдение тре-бований ISO 9000 - обязательное условие для получения госзаказа (постановление Правительства РФ №113 от 02.02.1998 г.).

MRP - стандарт на планирование материальных ресурсов (Ma-terial Requirements Planing), первый из серии стандартов на плани-рование материальных ресурсов, разработан в 1960-х годах, обеспе-чивает согласование действий снабженческих, производственных и сбытовых подразделений по формированию заказов в реальном мас-штабе времени и материального учета. Не поддерживает нулевых производственных запасов и потому не обеспечивает поставок в ре-жиме just in time (точно в срок).

Одним из наиболее распространенных методов управления про-изводством в мире является стандарт MRP II (Manufacturing Resour-se Planning), разработанный в США и поддерживаемый американ-ским обществом по контролю за производством и запасами - Ameri-can Production and Inventory Control Society (APICS). MRP II - это набор проверенных на практике разумных принципов, моделей и процедур управления и контроля, служащих повышению показате-лей экономической деятельности предприятия.

С середины 1990-х годов стандарт MRP II применяется для пла-нирования потребностей в распределении и ресурсах на уровне пред-приятия - Enterprise Resourse Planning, а интегрированные програм-мные продукты, обеспечивающие такое планирование, называются ERP-системами (например, SAP R3, BAAN, MGF/PRO, Oracle Ap-plication).

Как известно, система класса MRP II имеет целью электронное моделирование всех основных процессов, реализуемых предприятием, таких как снабжение, запасы, производство, продажа и дистрибуция, планирование, контроль за выполнением плана, за-траты, финансы, основные средства и т.д. Следует отметить, что Международный стандарт по управлению качеством процессов ISO 9000 обязывает иметь на предприятии указанные модели, хотя и не требует их электронной реализации.

ERP - дальнейшее развитие стандарта на организацию производ-ства и материально-технического снабжения (Enterprise Resource Planing) - разработан в 1990-х годах. Поддерживает концепцию CIM (компьютеризованного интегрированного производства) и оптималь-ного управления логистическими потоками в реальном масштабе вре-мени, поставки в режиме just in time (точно в срок).

В настоящее время развивается в концепции DRP (Dynamical Resource Planing) - организации производства динамической конфи-гурации, в которой бизнес процессы могут оптимально изменяться, в зависимости от изменения задач. Поддерживает концепции глобали-зации бизнеса, работы в режиме 24x365 и т.д. .

ФСА - функционально-стоимостной анализ - технология разра-ботки и анализа продуктов, позволяющая сократить себестоимость про-дуктов на основе выравнивания соотношения «важность - стоимость» элементов продукции. Разработай в США в конце 1940-х годов, принят как стандарт большинством развитых стран в конце 1960-х.

ФФА - функционально-физический анализ - технология разра-ботки и анализа технических систем, позволяющая разрабатывать продукты, реализующие эффективные принципы действия. Разрабо-тан в СССР в конце 1970-х - начале 1980-х годов, в настоящее время достаточно широко внедряется в развитых странах бывшими совет-скими специалистами.

FMEA - анализ (Failure mode and effect analysis) - анализ при-чин и последствий дефектов для потребителей - метод анализа про-дуктов и процессов, позволяющий выявить элементы конструкции (анализ продуктов) или операции процессов (анализ процессов), имеющие повышенный потенциальный риск для потребителя и разработать предупреждающие мероприятия, снижающие риск до приемлемых величин. Разработан рядом авиакосмических фирм США в рамках программы полета к Луне НАС А в середине 1960-х го-дов. В настоящее время является фактическим стандартом в боль-шинстве развитых стран.

QFD (quality function deployment) - развертывание функций качества - технология разработки и подготовки производства про-дуктов, позволяющая эффективно преобразовывать запросы потре-бителя в технические требования. Использует ряд последовательно перестраиваемых таблиц - «домиков качества» - для всех стадий раз-работки и подготовки производства изделий. Разработана в 1970-х годах в Японии. В настоящее время широко применяется в большин-стве развитых стран, где рассматривается как эффективное оружие в конкурентной борьбе .

^ 2. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ НА ПРЕДПРИЯТИИ
2.1. Обеспечение информационных систем

на предприятии

В современных условиях участниками жизненного цикла конк-ретного изделия могут быть юридически и территориально не связан-ные друг с другом предприятия. CALS-технологии призваны слу-жить средством, интегрирующим существующие па предприятиях ав-томатизированные системы обработки информации в единую функ-циональную систему. Главная задача создания и внедрения CALS-технологий - обеспечение единообразных описаний и смысло-вой интерпретации данных независимо от места и времени их получе-ния в общей информационной системе. CALS-технологий не отвергают существующие автоматизированные системы обработки информации (САПР, АСТПП, АСУ, АСУП и др.), а служат средством их интеграции и эффективного взаимодей-ствия. При этом внедряется и поддерживается стандартизация проектной, технологической и эксплуата-ционной документации, понятийного аппарата и языков представления данных.

По аналогии с системами автоматизированного проектирования в составе CALS различают лингвистическое, информационное, матема-тическое, программное, методическое и техническое обеспечение системы.

К лингвистическому обеспечению CALS относятся языки и фор-маты данных о промышленных изделиях и процессах, используемые для представления и обмена информацией на всех этапах жизненного цикла изделий.

^ Информационное обеспечение составляют базы данных, содер-жащие сведения о промышленных изделиях. Эти данные используются различ-ными системами в процессе проектирования, производства, эксплуа-тации и утилизации изделий. В состав информационного обеспечения входят также серии международных и национальных CALS-стандартов и спецификаций.

^ Математическое обеспечение CALS включает, модели и алго-ритмы взаимодействия различных систем и их компонентов в CALS-технологиях. К этим моделям относятся методы структурного и имитационного моделирования, методы планирования и управле-ния процессами, распределения ресурсов и т.п.

^ Программное обеспечение CALS представлено программными комплексами, предназначенными для поддержки единого информа-ционного пространства на всех этапах жизненного цикла изделий. Это системы управления документами и документооборотом, управ-ления проектными данными, обеспечения взаимодействия предприятий в элект-ронном бизнесе, подготовки интерактивных электронных техниче-ских руководств и некоторые другие.

^ Методическое обеспечение CALS представлено методиками осуществления таких процессов, как структурирование сложных объек-тов, их функциональное и информационное моделирование, парал-лельное (совмещенное) проектирование и производство, объект-но-ориентированное проектирование, создание онтологии приложе-ний.

К техническому обеспечению CALS относят аппаратные средст-ва получения, храпения, обработки и визуализации данных при ин-формационном сопровождении изделий. Взаимодействие частей вир-туальных предприятий, систем, поддерживающих разные этапы жиз-ненного цикла изделий, происходит через линии передачи данных и сетевое коммутирующее оборудование.

На рисунке 2.1 представлены виды программного обеспечения информационных систем и их место в жизненном цикле изделия.

Рис. 2.1. Этапы жизненного цикла промышленных изделий и системы их автоматизации
Ниже представлена расшифровка названий автоматизированных систем:


  • CAE - Computer Aided Engineering (автоматизированные рас-четы и анализ);

  • CAD - Computer Aided Design (автоматизированное проекти-рование);

  • САМ - Computer Aided Manufacturing (автоматизированная технологическая подготовка производства);

  • CAPP - система проектирования технологических процессов (ТП), которая позволяет с различной степенью автоматизации проектировать единичные, групповые и типовые технологические процессы по многим направлениям: механообработка, гальваника, сварка, сборка, термообработка и т.д.;

  • PDM - Product Data Management (управление проектными данными);

  • ERP - Enterprise Resource Planning (планирование и управле-ние предприятием);

  • MRP-2 - Manufacturing (Material) Requirement Planning (планирование производства);

  • MES - Manufacturing Execution System (производственная ис-полнительная система);

  • SCM - Supply Chain Management (управление цепочками по-ставок);

  • CRM - Customer Relationship Management (управление взаи-моотношениями с заказчиками);

  • SCADA - Supervisory Control And Data Acquisition (диспет-черское управление производственными процессами);

  • CNC - Computer Numerical Control (компьютерное числовое управление);

  • SFA - это Sales Force Automation (Автоматизация деятель-ности по продажам);

  • IETM - Interactive Electronic Technical Manuals (интерактивные электронные технические руководства )

  • СРС - Collaborative Product Commerce (совместный электрон-ный бизнес). [Соломенцев]

  • PLM - Product Lifecycle Management (Управление данными жизненного цикла изделий).

Пособие является практико-ориентированным. Последовательно изучая материал каждой темы, можно самостоятельно обучиться работе в таких программах, как AutoCAD, MS Word, MS Exel, MathCAD, освоить язык гипертекстовой разметки HTML. Кроме теоретического материала и практических заданий, учебное пособие содержит контрольные вопросы по каждой теме и примеры контрольных работ.
Предназначено для изучения курса «Информационные технологии» по группе специальностей «Машиностроительное оборудование и технологии» в учреждениях среднего специального образования. Отдельные разделы могут быть использованы для изучения учебной дисциплины «Информационные технологии» по специальностям «Техническая эксплуатация автомобилей», «Автосервис» и др. Многие темы окажутся интересными и полезными учащимся колледжей, техникумов, вузов, мастерам и преподавателям различных учебных заведений, а также специалистам в области машиностроительного производства и информационных технологий.

Системы автоматизированного проектирования.
В стране и за рубежом широко разрабатываются и внедряются системы автоматизированного проектирования (САПР). САПР представляет собой комплекс технических средств программного и математического обеспечения, предназначенный для выполнения в автоматическом режиме инженерных расчетов, графических работ, выбора вариантов технических и организационных решений.

Термин САПР (англ. CAD) появился в конце 50-х годов XX в. Первые CAD-системы появились 10 лет спустя. Со временем CAD-системы, как системы геометрического моделирования, были значительно усовершенствованы: появились средства 3D-моделирования, параметрического конструирования, был улучшен интерфейс программ.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Информационные технологии в машиностроении, Скроб О.В., 2012 - fileskachat.com, быстрое и бесплатное скачивание.

  • Сбои и ошибки компьютера, Простой и понятный самоучитель, Леонов В.С., 2015
  • Мультимедиатехнологии в образовании, Учебное пособие, Суханова Н.Т., Балунова С.А., 2018

Следующие учебники и книги.

Информационная система (ИС) представляет собой совокупность организационных, технических, программных и информационных средств, объединенных в единую систему с целью сбора, хранения, обработки и выдачи необходимой информации предназначенной для выполнения функций управления.

Все ИС можно классифицировать:

По степени автоматизации

обрабатываемой информации:

По сфере применений:

Системы поддержки принятия решений.

Системы автоматизированного проектирования.

Автоматизированные.

Системы организационного управления.

Автоматические.

Системы управления техническими процессами.

Любая ИС состоит из 3х основных компонентов:

- функционального , - системы обработки данных , - организационного .

Система обработки данных (СОД) предназначена для информационного обслуживания специалистов разных органов управления предприятиями, принимающих управленческие решения.

Основная функция СОД – реализующая типовые операции обработки данных.

Операции обработки данных :

    Сбор, регистрация и перенос информации на машинные носители.

    Передача информации в места её хранения и обработки.

    Ввод информации в ЭВМ, контроль ввода и её компоновка в памяти компьютера.

    Создание и ведение внутри-машинной информационной базы.

    Обработка информации на ЭВМ (наполнение, сортировка, корректировка, выборка, арифметическая и логическая обработка) для решения функциональных задач системы (подсистемы), управление объектом.

    Вывод информации в виде видео грамм, сигналов для прямого управления техническими процессами, информация для связи с другими системами.

    Организация, управление (администрирование) вычислительным процессом (планирование, учет, контроль, анализ, реализация кода вычислений) в локальных и глобальных вычислительных сетях.

СОД могут работать в трех основных режимах :

    Пакетном.

    Интерактивном.

    В реальном масштабе времени.

СОД вкл. в себя информационное, программное, техническое, правовое и лингвистическое обеспечения.

Информационное обеспечение – это совокупность методов и средств по размещению и организации информации, включающих в себя системы классификации и кодирования, унифицированные системы документации, рационализации документооборота и форм документов, методов создания внутримашинной информационной базы ИС.

Программное обеспечение – совокупность программных средств для создания и эксплуатации СОД средствами вычислительной техники. В состав ПО входят базовые и прикладные программные продукты.

Техническое обеспечение представляет собой комплекс технических средств, применяемых для функционирования системы обработки данных, и включает в себя устройства, реализующие типовые операции обработки данных как во вне ЭВМ (периферийные тех. средства сбора, регистрации – сканер, устройства передачи данных…), так и на ЭВМ различных классов.

Правовое обеспечение представляет собой совокупность правовых норм, регламентирующих создание и функционирование ИС. Правовое обеспечение включает нормативные акты договорных взаимоотношений между заказчиком и разработчиком ИС, правовое регулирование отклонений.

Правовое обеспечение функционирования СОД включает:

    Условия придания юридической силы документам, полученным с применением вычислительной техники.

    Права, обязанности и ответственность персонала, в том числе за своевременность и точность обработки информации.

    Правила пользования информацией и порядок разрешения споров по поводу её достоверности

Лингвистическое обеспечение представляет собой совокупность языковых средств обработки данных, используемых на различных стадиях создания и эксплуатации СОД для повышения эффективности разработки и обеспечения общения человека и ЭВМ (трансляторы, яз. Программирования…).

Машиностроение – одна из тех отраслей, где ИТ внедряются полным ходом на большей части предприятий. ИТ участвует во всех областях промышленности: планирование, учет материальных и товарных ценностей, непосредственное управление производством и многие другие внутренние процессы, характерные для машиностроительных предприятий. Применение информационных технологий и автоматизация производственных процессов, столь высокие в этой отрасли по сравнению с другими, объясняется в первую очередь высокой конкуренцией. Совершенствование и автоматизация способов и методов производства и является гарантией успешности предприятия.

Конечная цель ИТ-проектов автоматизации производства очевидна и связана с необходимостью не только получать на любом уровне оперативную и актуальную информацию для принятия эффективных и своевременных решений, но и заботиться о снижении себестоимости и улучшении качества продукции, а также об оптимизации производства. Прежде многие ИТ-задачи решались собственными силами, при этом квалифицированных кадров, способных разобраться с пробелами автоматизации в целом, не хватало - в результате автоматизация проводилась локально, то есть компьютеризировались лишь отдельные рабочие места, остальные же сотрудники действовали по старинке. Сегодня же для решения комплексных задач автоматизации машиностроительных предприятий применяются такие продукты, как "1С", "Компас", "Парус", SiteLine, "Галактика ERP", IFS Applications, а также бизнес-решения Microsoft, SAP и Oracle.

Решения для проектирования и дизайна, используемые в различных отраслях промышленности, включая машиностроительную, электромеханическую, автомобильную производство промышленного оборудования и потребительских товаров. Многие продукты основаны на технологии цифровых прототипов. К решениям этого сегмента относятся: Autodesk Inventor, продукты семейства Autodesk Alias, AutoCAD Electrical, AutoCAD Mechanical, Autodesk Vault и др.

Autodesk Inventor - базовое решение на основе параметрического 3D моделирования для промышленности. Программа позволяет проектировать, визуализировать и моделировать различные трехмерные объекты в цифровой среде. В результате получается так называемый «цифровой прототип», свойства которого полностью соответствуют свойствам будущего физического прототипа вплоть до характеристик материалов.

AutoCAD Mechanical и AutoCAD Electrical - cпециализированные решения для промышленности на основе AutoCAD, предназначенные для проектирования механических и электрических систем соответственно. Содержат дополнительные инструменты и библиотеки компонентов, ориентированные именно на использование в машиностроительных отраслях.



Autodesk Showcase - продукт, предназначенный для создания трехмерных визуализаций на основе данных САПР.

Аutodesk SketchBook Pro - приложение для рисования и черчения, разработанное специально для использования с цифровыми планшетами и планшетными ПК.

Autodesk Alias - семейство программ (Alias Sketch, Alias Design, Alias Surface и Alias Automotive), предназначенных для моделирования поверхностей и дизайна внешнего облика промышленных изделий сложной формы.

Autodesk Algor Simulation и Autodesk Moldflow - инструменты для расчета и моделирования деталей и сборок конструкций на основе цифрового прототипа, а также процесса их литья.

Autodesk Vault - семейство программ (Vault Manufacturing и Vault Workgroup) на основе технологии цифровых прототипов для управления проектами в рабочей группе.

Autodesk Inventor Publisher - решение, предназначенное для создания технических инструкций и документации на продукцию на основе того же цифрового прототипа, что был использован в ходе проектирования.

ИТ используют не только при проектировании изделия и разработках тпп, но и в управленческой структуре, бухгалтерии и управление персоналом. Так широко используют отраслевые ERP (планирование ресурсов предприятия ), семейство программ "1С: Предприятие", с помощью которых автоматизируются складские операции, продукты SAP, которая занимается разработкой автоматизированных систем управления такими внутренними процессами предприятия, как: бухгалтерский учет, торговля, производство, финансы, управление персоналом, управление складами, и т. д. Поэтому ИТ в машиностроении являются основополагающими, которые упрощают весь процесс промышленности.

2. Жизненный цикл изделия (продукции) - это совокупность процессов, выполняемых от момента выявления потребностей общества в определенной продукции до момента удовлетворения этих потребностей и утилизации продукта.

Этот цикл проходит последовательно этапы, которые могут называться по разному, но содержание этапов остается одинаковым. ЖЦИ образуется в соответствии с принципом нисходящего проектирования и носит итерационный характер. Реализованные этапы, начиная с самых ранних, могут циклически повторяться что, из-за изменения требований и/или внешних условий, введения дополнительных ограничений и т.п. приводит к изменениям в проектных решениях, выработанных на более ранних этапах. Применяется по отношению к продукции с высокими потребительскими свойствами и к сложной наукоёмкой продукции высокотехнологичных предприятий.

Если раньше каждый пользователь должен был сам программировать алгоритмы в своей профессиональной деятельности, то сегодня "кустарное" программирование стало ненужным. Его заменяет знание и умение пользоваться существующими информационными технологиями в каждой профессиональной области. И это в первую очередь касается специалистов в области машиностроения и металлообработки. В ней созданы системы автоматического проектирования, такие, как AutoCAD, КОМПАС-3D, системы автоматизированного проектирования технологических процессов (CAM), технологии обеспечения жизненного цикла изделия от маркетинга до утилизации отслужившего свой срок изделия или детали (CALS).

До изобретения компьютеров все проектирование новых изделий велось по так называемой бумажной технологии. Любое конструкторское бюро представляло собой зал с рядами чертежных столов - кульманов, за которыми конструкторы разрабатывали чертежи нового изделия на бумаге. Далее эти чертежи копировали на кальку и затем размножали их. Вся документация хранилась на бумаге. Все инженерные расчеты производились с помощью арифмометров и логарифмических линеек. При изготовлении опытных образцов изделий и их серийном производстве наладка станков производилась вручную. Далее производились натурные испытания изготовленных опытных образцов. По их результатам вносились необходимые изменения в конструкцию, корректировались чертежи и начиналась подготовка к серийному выпуску изделия.

С изобретением компьютеров многие этапы создания новых изделий подверглись коренным изменениям. Стало возможным перейти на безбумажную технологию. Компьютер, оснащенный соответствующими программами, совместно с принтером, плоттером и графическим планшетом (дигитайзером) заменил собой кульман, бумагу, карандаш, арифмометр и логарифмическую линейку. При этом компьютер позволил автоматизировать и значительно ускорить инженерные расчеты.

Примером может служить автоматизированный расчет зубчатой передачи с помощью программы Microsoft Excel. Исходными данными служат передаточное число и модуль данной передачи. Формулы расчета вводятся в соответствующую строку таблицы Excel. Введя в формулы значения передаточного числа и модуля, получаем полный расчет всех параметров зубчатой передачи любого типа.

Другим, гораздо более сложным примером может служить расчет лопаток паровой турбины, требующий привлечения компьютеров большой производительности.

Использование современных компьютерных технологий позволяет существенно сократить длительность проектно-конструкторских работ, по-новому реализовать проектные процедуры и в результате получить более эффективные технические решения.

Аппаратное обеспечение автоматизированных рабочих мест (АРМ) для работников самых различных профессий мало отличается друг от друга. Его основой является профессиональный компьютер. Главное различие состоит в их программном обеспечении, которое и отличает, например, АРМ инженера-проектировщика от АРМ инженера-технолога.

Новейшие компьютерные технологии позволяют организовать автоматизированное рабочее место конструктора-проектировщика. Базовыми программными продуктами АРМ конструктора-проектировщика являются операционная система Microsoft Windows и универсальная графическая платформа AutoCAD 2004 фирмы Autodesk.

Системы автоматизированного проектирования (САПР), называемые в английском переводе CAD-системами (Computer Aided Design), применяются для решения разнообразных инженерных и конструкторских задач. К наиболее популярным следует отнести мощную систему машинного проектирования AutoCAD фирмы Autodesk, используемую для создания чертежей.

Применение САПР-технологий позволяет сократить время на выполнение проекта и выпуск изделий, уменьшить возможные ошибки, повысить качество конструкторской документации, а при использовании программно-управляемого оборудования - готовить необходимые для этого данные в нужном формате. Полный спектр задач, решаемых с помощью САПР, чрезвычайно богат, и программ, предназначенных для этого, разработано достаточно много.

Для эффективной работы с программами САПР лучше применять монитор с большим размером экрана. Для получения твердой копии результатов работы (чертежи, схемы) обычно используются плоттеры, позволяющие работать с большими форматами бумаги.

AutoCAD - это графическое ядро систем автоматизированного проектирования (САПР). Богатые функциональные возможности, широкие возможности программирования, связь с базами данных, большой выбор совместимых периферийных графических устройств фактически сделали графический пакет AutoCAD мировым промышленным стандартом в своей области. Выпускаются версии программы для различных платформ и под различные операционные системы. Программа совместима со всеми выпускаемыми видами принтеров и плоттеров.

При создании новых инженерных конструкций может применяться математическое моделирование (машинный эксперимент) - моделирование реально существующих объектов, осуществляемое средствами языка математики и логики с помощью компьютера.

Математическое моделирование основано на создании и исследовании на компьютере математической модели реальной системы - совокупности математических соотношений (уравнений), описывающих эту систему. Уравнения (математическая модель) вместе с программой их решения вводят в компьютер и, имитируя различные значения входных (по отношению к исследуемой системе) сигналов и условий работы системы, определяют величины, характеризующие поведение системы.

Математическое моделирование, в отличие от материального (экспериментального, предметного), является теоретическим, происходящим только в компьютере, а не в реальности. Оно позволяет обойтись без сложного, дорогого или опасного эксперимента, например при создании автомобилей, самолетов, локомотивов.

Математическое моделирование процесса или явления не может дать полного знания о нем. Это особенно существенно в том случае, когда предметом математического моделирования являются сложные системы, поведение которых зависит от значительного числа взаимосвязанных факторов различной природы. Поэтому иногда математическое моделирование дополняют созданием натуральной модели.

Система трехмерного твердотельного моделирования КОМПАС-3D предназначена для создания трехмерных ассоциативных моделей отдельных деталей и сборочных единиц, содержащих как оригинальные, так и стандартизованные конструктивные элементы. Параметрическая технология позволяет быстро получать модели типовых изделий на основе однажды спроектированного прототипа. Многочисленные сервисные функции облегчают решение вспомогательных задач проектирования и обслуживания производства. Задача, решаемая системой, - моделирование изделий с целью существенного сокращения периода проектирования и скорейшего их запуска в производство. Чертежный редактор "КОМПАС-График" предоставляет широчайшие возможности автоматизации проектно-конструкторских работ в различных отраслях промышленности. Он успешно используется в машиностроительном проектировании, при проектно-строительных работах, составлении различных планов и схем.

На смену информационной поддержке отдельных этапов создания инженерных конструкций в конце 20-го века пришла идеология ведения бизнеса CALS (Continuous Acquisition and Life-Cycle Support) или, в более современном изложении, PLM (Product Lifecycle Management). За термином "жизненный цикл" ("Lifecycle") стоят два понятия - "маркетинговый жизненный цикл" (МЖЦ) и "функциональный жизненный цикл" (ФЖЦ). МЖЦ имеет отношение к поведению определенного вида продукции на рынке и завершается моральным износом и снятием с производства, а ФЖЦ связан с функциональным предназначением изделия и завершается физическим износом и утилизацией. Примером могут служить персональные компьютеры. Маркетинговый жизненный цикл систем на базе Pentium II закончился, но физически их успешно продолжают эксплуатировать во многих организациях.

Понятие "жизненный цикл" включает в себя следующие этапы: маркетинг, проектирование, производство, продажи, поставки и эксплуатацию. Примером применения понятия "жизненного цикла" в нашей стране может служить его использование в крупнейшем авиастроительном комплексе "Сухой". Он охватывает четыре основных этапа: проектирование, производство, послепродажное обслуживание и утилизация.


Рис. 12.11.

Сегодня производство сложных машинотехнических изделий стало невозможным без обеспечения информационной поддержки на всех стадиях их жизненного цикла. Информационная поддержка - это целый комплекс вопросов, включающий автоматизацию процессов проектирования, обеспечение технологических процессов производства, автоматизацию управленческой деятельности предприятий, создание электронной эксплуатационной документации, внедрение автоматизированных систем заказа запасных частей и т. д.

Важную роль в жизненном цикле играет маркетинг (англ. marketing, от market - рынок) - система управления, основанная на комплексном анализе производственно-сбытовой деятельности и воздействия на нее с целью получения прибыли.

Маркетинг возник как вид управленческой деятельности во второй половине XX века. Но если вначале он применялся исключительно в целях сбыта произведенной продукции, то со второй половины 1970-х гг. он становится элементом стратегического управления фирмой, философией бизнеса. Отсюда новая концепция маркетинг-менеджмента, то есть построения всей управленческой деятельности фирмы.

Маркетинг включает товарную, ценовую политику, а также политику продвижения товара и продаж.

Основными принципами современного маркетинга являются: производство продукции, основанное на точном знании потребностей покупателя, рыночной ситуации и реальных возможностей фирмы; эффективное решение проблем потребителя; нацеленность фирмы на долгосрочный коммерческий успех; активное воздействие на формирование потребностей на рынке.

Проектирование и производство неразрывно связаны между собой. Конструктор разрабатывает геометрию изделия, устанавливает технические требования и оформляет конструкторскую документацию, а технолог обеспечивает изготовление изделия с учетом специфики производства, технических процессов и оборудования.

Электронное описание изделия дает исчерпывающее описание спроектированного изделия и фактически заменяет бумажную конструкторскую документацию. На его основе появляется возможность автоматизировать планирование технологических процессов. Таким образом, выполняется еще один принцип CALS - принцип безбумажного представления информации.

В фирме "Сухой" ОКБ "Сухой" находится в Москве, а основные заводы-производители в Комсомольске-на-Амуре, Иркутске и Новосибирске. При такой географической удаленности друг от друга их согласованная работа обеспечивается средствами сети Интернет и защиты информации.

Организация технологического процесса изготовления опытных образцов и серийного производства изделий осуществляется с помощью систем автоматизированного проектирования технологических процессов, так называемых САМ-систем (Computer Aided Manufacturing). Они обеспечивают наиболее рациональный выбор станочного оборудования, инструментов и режимов обработки деталей.

Комплексные решения при этом базируются на передовых технологиях гибридного моделирования, интегрированных средствах электронного документооборота, а также на широком спектре специализированных модулей, среди которых важное место занимают программы для виртуального моделирования процессов механической и электроэррозионной обработки с выходом на станки с числовым программным управлением (ЧПУ).

Современные металлообрабатывающие станки и многооперационные обрабатывающие центры оснащены числовым программным управлением (ЧПУ). Это управление обработкой заготовки на станке по программе, заданной в цифровой форме. Устройство ЧПУ выдает управляющие воздействия на исполнительные органы станка в соответствии с программой и информацией о состоянии управляемого объекта. Станки с ЧПУ сочетают высокую производительность, присущую станкам-автоматам, с гибкостью, быстротой переналаживания на другие режимы работы, что характерно для универсальных станков. Обрабатывающий центр оснащен инструментальным магазином большой емкости и устройствами для автоматической смены инструмента. Станок позволяет вести комплексную механическую обработку большого числа поверхностей заготовки различными способами - точением, фрезерованием, сверлением и др.

В современном машиностроении и приборостроении происходит усложнение выпускаемой продукции, номенклатура ее увеличивается, а серийность производства уменьшается. Это ведет к значительному увеличению объемов и сроков выполнения работ в сфере конструкторско-технологической подготовки производства. Требования рыночной экономики заставляют предприятия постоянно улучшать потребительские свойства и качество изделий, а сроки их выпуска максимально сокращать.

Это вызвало к жизни концепцию сквозного цикла проектирования и производства "от идеи до металла". Суть ее состоит в том, что компьютерные системы и оборудование должны рассматриваться как единый информационный технологический процесс на всем протяжении от проектирования до изготовления изделий. Сквозной цикл состоит из блоков САD/САМ/САЕ/PDM. САМ-системы являются частью этой более общей концепции.

Кроме трехмерных (виртуальных) моделей на экране монитора компьютера современные информационные и лазерные технологии дают возможность создавать "твердые" модели отдельных деталей из светочувствительного пластика. Эта технология носит название "лазерная стереолитография". Она основана на использовании фотополимеризации лазерным излучением.

Сначала по проекту конструктора создается компьютерная (виртуальная) модель, которая через минимальное время может быть воплощена в виде реальной модели. Производятся все детали для сборки. Собранную модель можно покрасить, проверить возможность установки и размещения электронных компонентов, оптики, эргономику, предъявить для утвержения дизайна заказчиком и т.д.

Пластиковая модель легко поддается обработке, покраске, металлизации. Модель может быть использована для проверки идей конструктора, использоваться на презентациях, в маркетинговых акциях и т.п.

Области применения лазерной стереолитографии:

  • изготовление оснастки для разных видов литья;
  • точное литье по сплошным выжигаемым моделям.

Лазерная стереолитография позволяет создавать детали самой сложной формы с максимальными размерами 250x250x250 мм.

Сначала объемный виртуальный образ делят на набор послойных изображений тонких сечений (0,1-0,2 мм). В ванну, наполненную фотополимеризующейся жидкостью, помещают плоскую подставку, на которой впоследствии появится объект, так, чтобы она была погружена на толщину формируемого слоя (те самые 0,1-0,2 мм). Затем поверхность жидкости обрабатывают лучом лазера, и в тех местах, которые он облучает, образуются твердые участки. Так возникает нижний слой модели. Платформу чуть притапливают и формируют второй слой. Операцию повторяют до тех пор, пока модель не будет целиком готова.

Важную роль в машиностроении играет логистика (от англ. logistics - материально-техническое снабжение) - контроль за всеми видами деятельности, связанными с закупкой ресурсов для производства и доставкой готовой продукции покупателю, включая необходимое информационное обеспечение этих процессов. Логистика также координирует взаимоотношения всех членов системы снабжения и распределения. К непосредственным функциям логистики относятся: транспортировка, складирование, сбор заказов, распределение продукции, упаковка, сервисное обслуживание.

Система логистики включает логистику на входе и логистику на выходе. Первая управляет всеми операциями с сырьем и материалами, начиная с выбора поставщика и заканчивая возвратом некачественного сырья; вторая контролирует распределение готовой продукции, включая ее доставку конечному потребителю.

Логистика используется участниками каналов товародвижения для снижения издержек, повышения качества обслуживания покупателей и поддержания объема запасов на складе на минимальном необходимом уровне.

Так информационные технологии в машиностроении и металлообработке из важного, но вспомогательного средства сегодня превратились в главную организующую силу - реальную сквозную автоматизацию производственных процессов.