Установка TCP соединения. Чем отличается протокол TCP от UDP, простым языком

В основе работы глобальной сети Интернет лежит набор (стек) протоколов TCP/IP. Но эти термины лишь на первый взгляд кажутся сложными. На самом деле стек протоколов TCP/IP - это простой набор правил обмена информацией, и правила эти на самом деле вам хорошо известны, хоть вы, вероятно, об этом и не догадываетесь. Да, все именно так, по существу в принципах, лежащих в основе протоколов TCP/IP, нет ничего нового: все новое - это хорошо забытое старое.

Человек может учиться двумя путями:

  1. Через тупое формальное зазубривание шаблонных способов решения типовых задач (чему сейчас в основном и учат в школе). Такое обучение малоэффективно. Наверняка вам приходилось наблюдать панику и полную беспомощность бухгалтера при смене версии офисного софта - при малейшем изменении последовательности кликов мышки, требуемых для выполнения привычных действий. Или приходилось видеть человека, впадающего в ступор при изменении интерфейса рабочего стола?
  2. Через понимание сути проблем, явлений, закономерностей. Через понимание принципов построения той или иной системы. В этом случае обладание энциклопедическими знаниями не играет большой роли - недостающую информацию легко найти. Главное - знать, что искать. А для этого необходимо не формальное знание предмета, а понимание сути.

В этой статье я предлагаю пойти вторым путем, так как понимание принципов, лежащих в основе работы Интернета, даст вам возможность чувствовать себя в Интернете уверенно и свободно - быстро решать возникающие проблемы, грамотно формулировать проблемы и уверенно общаться с техподдержкой.

Итак, начнем.

Принципы работы интернет-протоколов TCP/IP по своей сути очень просты и сильно напоминают работу нашей советской почты.

Вспомните, как работает наша обычная почта. Сначала вы на листке пишете письмо, затем кладете его в конверт, заклеиваете, на обратной стороне конверта пишете адреса отправителя и получателя, а потом относите в ближайшее почтовое отделение. Далее письмо проходит через цепочку почтовых отделений до ближайшего почтового отделения получателя, откуда оно тетей-почтальоном доставляется до по указанному адресу получателя и опускается в его почтовый ящик (с номером его квартиры) или вручается лично. Все, письмо дошло до получателя. Когда получатель письма захочет вам ответить, то он в своем ответном письме поменяет местами адреса получателя и отправителя, и письмо отправиться к вам по той же цепочке, но в обратном направлении.

На конверте письма будет написано примерно следующее:

Адрес отправителя: От кого : Иванов Иван Иванович Откуда : Ивантеевка, ул. Большая, д. 8, кв. 25 Адрес получателя: Кому : Петров Петр Петрович Куда : Москва, Усачевский переулок, д. 105, кв. 110

Теперь мы готовы рассмотреть взаимодействие компьютеров и приложений в сети Интернет (да и в локальной сети тоже). Обратите внимание, что аналогия с обычной почтой будет почти полной.

Каждый компьютер (он же: узел, хост) в рамках сети Интернет тоже имеет уникальный адрес, который называется IP-адрес (Internet Protocol Address), например: 195.34.32.116. IP адрес состоит из четырех десятичных чисел (от 0 до 255), разделенных точкой. Но знать только IP адрес компьютера еще недостаточно, т.к. в конечном счете обмениваются информацией не компьютеры сами по себе, а приложения, работающие на них. А на компьютере может одновременно работать сразу несколько приложений (например почтовый сервер, веб-сервер и пр.). Для доставки обычного бумажного письма недостаточно знать только адрес дома - необходимо еще знать номер квартиры. Также и каждое программное приложение имеет подобный номер, именуемый номером порта. Большинство серверных приложений имеют стандартные номера, например: почтовый сервис привязан к порту с номером 25 (еще говорят: «слушает» порт, принимает на него сообщения), веб-сервис привязан к порту 80, FTP - к порту 21 и так далее.

Таким образом имеем следующую практически полную аналогию с нашим обычным почтовым адресом:

"адрес дома" = "IP компьютера" "номер квартиры" = "номер порта"

В компьютерных сетях, работающих по протоколам TCP/IP, аналогом бумажного письма в конверте является пакет , который содержит собственно передаваемые данные и адресную информацию - адрес отправителя и адрес получателя, например:

Адрес отправителя (Source address): IP: 82.146.49.55 Port: 2049 Адрес получателя (Destination address): IP: 195.34.32.116 Port: 53 Данные пакета: ...

Конечно же в пакетах также присутствует служебная информация, но для понимания сути это не важно.

Обратите внимание, комбинация: "IP адрес и номер порта" - называется "сокет" .

В нашем примере мы с сокета 82.146.49.55:2049 посылаем пакет на сокет 195.34.32.116:53, т.е. пакет пойдет на компьютер, имеющий IP адрес 195.34.32.116, на порт 53. А порту 53 соответствует сервер распознавания имен (DNS-сервер), который примет этот пакет. Зная адрес отправителя, этот сервер сможет после обработки нашего запроса сформировать ответный пакет, который пойдет в обратном направлении на сокет отправителя 82.146.49.55:2049, который для DNS сервера будет являться сокетом получателя.

Как правило взаимодействие осуществляется по схеме «клиент-сервер»: "клиент" запрашивает какую-либо информацию (например страницу сайта), сервер принимает запрос, обрабатывает его и посылает результат. Номера портов серверных приложений общеизвестны, например: почтовый SMTP сервер «слушает» 25-й порт, POP3 сервер, обеспечивающий чтение почты из ваших почтовых ящиков «слушает» 110-порт, веб-сервер - 80-й порт и пр.

Большинство программ на домашнем компьютере являются клиентами - например почтовый клиент Outlook, веб-обозреватели IE, FireFox и пр.

Номера портов на клиенте не фиксированные как у сервера, а назначаются операционной системой динамически. Фиксированные серверные порты как правило имеют номера до 1024 (но есть исключения), а клиентские начинаются после 1024.

Повторение - мать учения: IP - это адрес компьютера (узла, хоста) в сети, а порт - номер конкретного приложения, работающего на этом компьютере.

Однако человеку запоминать цифровые IP адреса трудно - куда удобнее работать с буквенными именами. Ведь намного легче запомнить слово, чем набор цифр. Так и сделано - любой цифровой IP адрес можно связать с буквенно-цифровым именем. В результате например вместо 82.146.49.55 можно использовать имя А преобразованием доменного имени в цифровой IP адрес занимается сервис доменных имен - DNS (Domain Name System).

Рассмотрим подробнее, как это работает. Ваш провайдер явно (на бумажке, для ручной настройки соединения) или неявно (через автоматическую настройку соединения) предоставляет вам IP адрес сервера имен (DNS). На компьютере с этим IP адресом работает приложение (сервер имен), которое знает все доменные имена в Интернете и соответствующие им цифровые IP адреса. DNS-сервер «слушает» 53-й порт, принимает на него запросы и выдает ответы, например:

Запрос от нашего компьютера: "Какой IP адрес соответствует имени www.сайт?" Ответ сервера: "82.146.49.55."

Теперь рассмотрим, что происходит, когда в своем браузере вы набираете доменное имя (URL) этого сайта () и, нажав , в ответ от веб-сервера получаете страницу этого сайта.

Например:

IP адрес нашего компьютера: 91.76.65.216 Браузер: Internet Explorer (IE), DNS сервер (стрима): 195.34.32.116 (у вас может быть другой), Страница, которую мы хотим открыть: www.сайт.

Набираем в адресной строке браузера доменное имя и жмем . Далее операционная система производит примерно следующие действия:

Отправляется запрос (точнее пакет с запросом) DNS серверу на сокет 195.34.32.116:53. Как было рассмотренно выше, порт 53 соответствует DNS-серверу - приложению, занимающемуся распознаванием имен. А DNS-сервер, обработав наш запрос, возвращает IP-адрес, который соответствует введенному имени.

Диалог примерно следующий:

Какой IP адрес соответствует имени www.сайт ? - 82.146.49.55 .

Далее наш компьютер устанавливает соединение с портом 80 компьютера 82.146.49.55 и посылает запрос (пакет с запросом) на получение страницы . 80-й порт соответствует веб-серверу. В адресной строке браузера 80-й порт как правило не пишется, т.к. используется по умолчанию, но его можно и явно указать после двоеточия - .

Приняв от нас запрос, веб-сервер обрабатывает его и в нескольких пакетах посылает нам страницу в на языке HTML - языке разметки текста, который понимает браузер.

Наш браузер, получив страницу, отображает ее. В результате мы видим на экране главную страницу этого сайта.

Зачем эти принципы надо понимать?

Например, вы заметили странное поведение своего компьютера - непонятная сетевая активность, тормоза и пр. Что делать? Открываем консоль (нажимаем кнопку «Пуск» - «Выполнить» - набираем cmd - «Ок»). В консоли набираем команду netstat -an и жмем . Эта утилита отобразит список установленных соединений между сокетами нашего компьютера и сокетами удаленных узлов. Если мы видим в колонке «Внешний адрес» какие-то чужие IP адреса, а через двоеточие 25-й порт, что это может означать? (Помните, что 25-й порт соответствует почтовому серверу?) Это означает то, что ваш компьютер установил соединение с каким-то почтовым сервером (серверами) и шлет через него какие-то письма. И если ваш почтовый клиент (Outlook например) в это время не запущен, да если еще таких соединений на 25-й порт много, то, вероятно, в вашем компьютере завелся вирус, который рассылает от вашего имени спам или пересылает номера ваших кредитных карточек вкупе с паролями злоумышленникам.

Также понимание принципов работы Интернета необходимо для правильной настройки файерволла (проще говоря брандмауэра:)). Эта программа (которая часто поставляется вместе с антивирусом), предназначенна для фильтрации пакетов - "своих" и "вражеских". Своих пропускать, чужих не пущать. Например, если ваш фаерволл сообщает вам, что некто хочет установить соединение с каким-либо портом вашего компьютера. Разрешить или запретить?

Ну и самое главное - эти знания крайне полезны при общении с техподдержкой .

Напоследок приведу список портов, с которыми вам, вероятно, придется столкнуться:

135-139 - эти порты используются Windows для доступа к общим ресурсам компьютера - папкам, принтерам. Не открывайте эти порты наружу, т.е. в районную локальную сеть и Интернет. Их следует закрыть фаерволлом. Также если в локальной сети вы не видите ничего в сетевом окружении или вас не видят, то вероятно это связано с тем, что фаерволл заблокировал эти порты. Таким образом для локальной сети эти порты должны быть открыты, а для Интернета закрыты. 21 - порт FTP сервера. 25 - порт почтового SMTP сервера. Через него ваш почтовый клиент отправляет письма. IP адрес SMTP сервера и его порт (25-й) следует указать в настройках вашего почтового клиента. 110 - порт POP3 сервера. Через него ваш почтовый клиент забирает письма из вашего почтового ящика. IP адрес POP3 сервера и его порт (110-й) также следует указать в настройках вашего почтового клиента. 80 - порт WEB -сервера. 3128, 8080 - прокси-серверы (настраиваются в параметрах браузера).

Несколько специальных IP адресов:

127.0.0.1 - это localhost, адрес локальной системы, т.е. локальный адрес вашего компьютера. 0.0.0.0 - так обозначаются все IP-адреса. 192.168.xxx.xxx - адреса, которые можно произвольно использовать в локальных сетях, в глобальной сети Интернет они не используются. Они уникальны только в рамках локальной сети. Адреса из этого диапазона вы можете использовать по своему усмотрению, например, для построения домашней или офисной сети.

Что такое маска подсети и шлюз по умолчанию (роутер, маршрутизатор)?

(Эти параметры задаются в настройках сетевых подключений).

Все просто. Компьютеры объединяются в локальные сети. В локальной сети компьютеры напрямую «видят» только друг друга. Локальные сети соединяются друг с другом через шлюзы (роутеры, маршрутизаторы). Маска подсети предназначена для определения - принадлежит ли компьютер-получатель к этой же локальной сети или нет. Если компьютер-получатель принадлежит этой же сети, что и компьютер-отправитель, то пакет передается ему напрямую, в противном случае пакет отправляется на шлюз по умолчанию, который далее, по известным ему маршрутам, передает пакет в другую сеть, т.е. в другое почтовое отделение (по аналогии с советской почтой).

Напоследок рассмотрим что же означают непонятные термины:

TCP/IP - это название набора сетевых протоколов. На самом деле передаваемый пакет проходит несколько уровней. (Как на почте: сначала вы пишете писмо, потом помещаете в конверт с адресом, затем на почте на нем ставится штамп и т.д.).

IP протокол - это протокол так называемого сетевого уровня. Задача этого уровня - доставка ip-пакетов от компьютера отправителя к компьютеру получателю. По-мимо собственно данных, пакеты этого уровня имеют ip-адрес отправителя и ip-адрес получателя. Номера портов на сетевом уровне не используются. Какому порту, т.е. приложению адресован этот пакет, был ли этот пакет доставлен или был потерян, на этом уровне неизвестно - это не его задача, это задача транспортного уровня.

TCP и UDP - это протоколы так называемого транспортного уровня. Транспортный уровень находится над сетевым. На этом уровне к пакету добавляется порт отправителя и порт получателя.

TCP - это протокол с установлением соединения и с гарантированной доставкой пакетов. Сначала производится обмен специальными пакетами для установления соединения, происходит что-то вроде рукопожатия (-Привет. -Привет. -Поболтаем? -Давай.). Далее по этому соединению туда и обратно посылаются пакеты (идет беседа), причем с проверкой, дошел ли пакет до получателя. Если пакет не дошел, то он посылается повторно («повтори, не расслышал»).

UDP - это протокол без установления соединения и с негарантированной доставкой пакетов. (Типа: крикнул что-нибудь, а услышат тебя или нет - неважно).

Над транспортным уровнем находится прикладной уровень. На этом уровне работают такие протоколы, как http , ftp и пр. Например HTTP и FTP - используют надежный протокол TCP, а DNS-сервер работает через ненадежный протокол UDP.

Как посмотреть текущие соединения?

Текущие соединения можно посмотреть с помощью команды

Netstat -an

(параметр n указывает выводить IP адреса вместо доменных имен).

Запускается эта команда следующим образом:

«Пуск» - «Выполнить» - набираем cmd - «Ок». В появившейся консоли (черное окно) набираем команду netstat -an и жмем . Результатом будет список установленных соединений между сокетами нашего компьютера и удаленных узлов.

Например получаем:

Активные подключения

Имя Локальный адрес Внешний адрес Состояние
TCP 0.0.0.0:135 0.0.0.0:0 LISTENING
TCP 91.76.65.216:139 0.0.0.0:0 LISTENING
TCP 91.76.65.216:1719 212.58.226.20:80 ESTABLISHED
TCP 91.76.65.216:1720 212.58.226.20:80 ESTABLISHED
TCP 91.76.65.216:1723 212.58.227.138:80 CLOSE_WAIT
TCP 91.76.65.216:1724 212.58.226.8:80 ESTABLISHED
...

В этом примере 0.0.0.0:135 - означает, что наш компьютер на всех своих IP адресах слушает (LISTENING) 135-й порт и готов принимать на него соединения от кого угодно (0.0.0.0:0) по протоколу TCP.

91.76.65.216:139 - наш компьютер слушает 139-й порт на своем IP-адресе 91.76.65.216.

Третья строка означает, что сейчас установлено (ESTABLISHED) соединение между нашей машиной (91.76.65.216:1719) и удаленной (212.58.226.20:80). Порт 80 означает, что наша машина обратилась с запросом к веб-серверу (у меня, действительно, открыты страницы в браузере).

В следующих статьях мы рассмотрим, как применять эти знания, например

Когда два хоста осуществляют коммуникацию посредством TCP, соединение установливается прежде, чем может начаться обмен данными. После того, как коммуникация закончена, сессии закрываются, а соединение завершается. Механизмы соединения и сессий делают возможной функцию надежности TCP.

Смотрите рисунок, чтобы проследить шаги создания и завершения TCP соединения.

Хост отслеживает каждый сегмент данных в пределах сессии и обменивается информацией о том, какие данные получены каждым узлом, используя информацию в заголовке TCP .

Каждое соединение включает односторонние коммуникационные потоки, или сессии, чтобы установить и закончить TCP процесс между конечными устройствами. Чтобы установить соединение, хосты выполняют трехэтапное квитирование . Контрольные биты в заголовке TCP указывают на прогресс и состояние соединения. Трехэтапное квитирование:

  • Устанавливает, что устройство назначения присутствует в сети
  • Проверяет, что устройство назначения имеет активную службу и принимает запросы на номер порта назначения, который намеревается использовать клиент для сессии
  • Сообщает устройству назначения, что клиент источника намеревается установить коммуникационную сессию на этот номер порта

В TCP соединениях, хост, выступающий в роли клиента, начинает сеанс с сервером. Чтобы понять, как работает трехэтапное квитирование, используемое процессе TCP соединения, следует рассмотреть различные значения, которыми обмениваются оба узла. Три шага в создании TCP соединения - это:

1. Клиент-инициатор посылает сегмент, содержащий начальный номер последовательности, который служит запросом к серверу, чтобы начать коммуникационную сессию.

2. Сервер отвечает сегментом, содержащим значение подтверждения, равное полученному номеру последовательности плюс 1, а также свое собственное значение последовательности синхронизации. Это значение на единицу больше чем номер последовательности, потому что ACK (подтверждение) всегда является следующим ожидаемым Байтом или Октетом. Это значение подтверждения позволяет клиенту привязать ответ обратно к исходному сегменту, который посылается на сервер.

3. Клиент-инициатор отвечает значением подтверждения, равным номеру последовательности, который он получил, плюс один. Это шаг завершает процесс установления соединения.

Внутри заголовка сегмента TCP есть шесть 1-битовых полей, которые содержат контрольную информацию, используемую, чтобы управлять процессами TCP. Это поля:

URG - Поле "Указатель важности" задействовано

ACK - Поле "Номер подтверждение" задействовано

PSH - Функция Push (протолкнуть данные, накопившиеся в буфере, в приложение пользователя)

RST - Сброс соединения

FIN - Больше нет данных от отправителя, завершение соединения

Эти поля называют флагами, поскольку каждое из этих полей занимает только один бит и поэтому может принимать только два значения: 1 или 0. Когда значение бита установлено в 1, оно указывает на то, какая контрольная информация в сегменте.

Завершение TCP соединения происходит в четыре шага, в результате обмена соответствующими значениями этих флагов.

С предварительной установкой соединения, осуществляет повторный запрос данных в случае потери данных и устраняет дублирование при получении двух копий одного пакета, гарантируя тем самым, в отличие от UDP , целостность передаваемых данных и уведомление отправителя о результатах передачи.

Реализации TCP обычно встроены в ядра ОС . Существуют реализации TCP, работающие в пространстве пользователя .

Когда осуществляется передача от компьютера к компьютеру через Интернет, TCP работает на верхнем уровне между двумя конечными системами, например, браузером и веб-сервером. TCP осуществляет надёжную передачу потока байтов от одного процесса к другому. TCP реализует управление потоком, управление перегрузкой, рукопожатие, надежную передачу.

Заголовок сегмента TCP

Структура заголовка
Бит 0 - 3 4 - 9 10 - 15 16 - 31
0 Порт источника, Source Port Порт назначения, Destination Port
32 Порядковый номер, Sequence Number (SN)
64 Номер подтверждения,
96 Длина заголовка Зарезервировано Флаги Размер Окна
128 Контрольная сумма Указатель важности
160 Опции (необязательное, но используется практически всегда)
160/192+ Данные

Порт источника, Порт назначения

Эти 16-битные поля содержат номера портов - числа, которые определяются по специальному списку .

Порт источника идентифицирует приложение клиента, с которого отправлены пакеты. Ответные данные передаются клиенту на основании этого номера.

Порт назначения идентифицирует порт, на который отправлен пакет.

Порядковый номер

Порядковый номер выполняет две задачи:

  1. Если установлен флаг SYN, то это изначальный порядковый номер - ISN (Initial Sequence Number), и первый байт данных, которые будут переданы в следующем пакете, будет иметь номер, равный ISN + 1.
  2. В противном случае, если SYN не установлен, первый байт данных, передаваемый в данном пакете, имеет этот порядковый номер

Поскольку поток TCP в общем случае может быть длиннее, чем число различных состояний этого поля, то все операции с порядковым номером должны выполняться по модулю 2 32 . Это накладывает практическое ограничение на использование TCP. Если скорость передачи коммуникационной системы такова, чтобы в течение MSL (максимального времени жизни сегмента) произошло переполнение порядкового номера, то в сети может появиться два сегмента с одинаковым номером, относящихся к разным частям потока, и приёмник получит некорректные данные.

Номер подтверждения

Acknowledgment Number (ACK SN) (32 бита) - если установлен флаг ACK, то это поле содержит порядковый номер октета, который отправитель данного сегмента желает получить. Это означает, что все предыдущие октеты (с номерами от ISN+1 до ACK-1 включительно) были успешно получены.

Длина заголовка (смещение данных)

Длина заголовка (Data offset) занимает 4 бита и указывает значение длины заголовка, измеренное в 32-битовых словах. Минимальный размер составляет 20 байт (пять 32-битовых слов), а максимальный - 60 байт (пятнадцать 32-битовых слов). Длина заголовка определяет смещение полезных данных относительно начала сегмента. Например, Data offset равное 1111 говорит о том, что заголовок занимает пятнадцать 32-битных слова (15 строк*32 бита в каждой строке/8 бит = 60 байт).

Зарезервировано

Зарезервировано (6 бит) для будущего использования и должно устанавливаться в ноль. Из них два (5-й и 6-й) уже определены:

  • CWR (Congestion Window Reduced) - Поле «Окно перегрузки уменьшено» - флаг установлен отправителем, чтобы указать, что получен пакет с установленным флагом ECE (RFC 3168)
  • ECE (ECN-Echo) - Поле «Эхо ECN» - указывает, что данный узел способен на ECN (явное уведомление перегрузки) и для указания отправителю о перегрузках в сети (RFC 3168)

Флаги (управляющие биты)

Это поле содержит 6 битовых флагов:

  • URG - поле «Указатель важности» задействовано (англ. Urgent pointer field is significant )
  • ACK - поле «Номер подтверждения» задействовано (англ. Acknowledgement field is significant )
  • PSH - (англ. Push function ) инструктирует получателя протолкнуть данные, накопившиеся в приёмном буфере, в приложение пользователя
  • RST - оборвать соединения, сбросить буфер (очистка буфера) (англ. Reset the connection )
  • SYN - синхронизация номеров последовательности (англ. Synchronize sequence numbers )
  • FIN (англ. final , бит) - флаг, будучи установлен, указывает на завершение соединения (англ. FIN bit used for connection termination ).

Размер окна

Количество байт данных начиная с последнего номера подтверждения, которые может принять получатель данного пакета. Иначе говоря, получатель пакета располагает для приёма данных буфером длиной "размер окна" байт.

Контрольная сумма

Поле контрольной суммы - это 16-битное дополнение к сумме всех 16-битных слов заголовка (включая псевдозаголовок) и данных. Если сегмент, по которому вычисляется контрольная сумма, имеет длину не кратную 16-ти битам, то длина сегмента увеличивается до кратной 16-ти, за счёт дополнения к нему справа нулевых битов заполнения. Биты заполнения (0) не передаются в сообщении и служат только для расчёта контрольной суммы. При расчёте контрольной суммы значение самого поля контрольной суммы принимается равным 0.

Указатель важности

16-битовое значение положительного смещения от порядкового номера в данном сегменте. Это поле указывает порядковый номер октета, которым заканчиваются важные (urgent) данные. Поле принимается во внимание только для пакетов с установленным флагом URG. Используется для внеполосных данных .

Опции

Могут применяться в некоторых случаях для расширения протокола. Иногда используются для тестирования. На данный момент в опции практически всегда включают 2 байта NOP (в данном случае 0x01) и 10 байт, задающих timestamps . Вычислить длину поля опции можно через значение поля смещения.

Механизм действия протокола

В отличие от традиционной альтернативы - UDP, который может сразу же начать передачу пакетов, TCP устанавливает соединения, которые должны быть созданы перед передачей данных. TCP соединение можно разделить на 3 стадии:

  • Установка соединения
  • Передача данных
  • Завершение соединения

Состояния сеанса TCP

Состояния сеанса TCP
CLOSED Начальное состояние узла. Фактически фиктивное
LISTEN Сервер ожидает запросов установления соединения от клиента
SYN-SENT Клиент отправил запрос серверу на установление соединения и ожидает ответа
SYN-RECEIVED Сервер получил запрос на соединение, отправил ответный запрос и ожидает подтверждения
ESTABLISHED Соединение установлено, идёт передача данных
FIN-WAIT-1 Одна из сторон (назовём её узел-1) завершает соединение, отправив сегмент с флагом FIN
CLOSE-WAIT Другая сторона (узел-2) переходит в это состояние, отправив, в свою очередь сегмент ACK и продолжает одностороннюю передачу
FIN-WAIT-2 Узел-1 получает ACK, продолжает чтение и ждёт получения сегмента с флагом FIN
LAST-ACK Узел-2 заканчивает передачу и отправляет сегмент с флагом FIN
TIME-WAIT Узел-1 получил сегмент с флагом FIN, отправил сегмент с флагом ACK и ждёт 2*MSL секунд, перед окончательным закрытием соединения
CLOSING Обе стороны инициировали закрытие соединения одновременно: после отправки сегмента с флагом FIN узел-1 также получает сегмент FIN, отправляет ACK и находится в ожидании сегмента ACK (подтверждения на свой запрос о разъединении)

Установка соединения

Процесс начала сеанса TCP (также называемый «рукопожатие» (англ. handshake )), состоит из трёх шагов.

1. Клиент, который намеревается установить соединение, посылает серверу сегмент с номером последовательности и флагом SYN.

  • Сервер получает сегмент, запоминает номер последовательности и пытается создать сокет (буферы и управляющие структуры памяти) для обслуживания нового клиента.
    • В случае успеха сервер посылает клиенту сегмент с номером последовательности и флагами SYN и ACK, и переходит в состояние SYN-RECEIVED.
    • В случае неудачи сервер посылает клиенту сегмент с флагом RST.

2. Если клиент получает сегмент с флагом SYN, то он запоминает номер последовательности и посылает сегмент с флагом ACK.

  • Если клиент одновременно получает и флаг ACK (что обычно и происходит), то он переходит в состояние ESTABLISHED.
  • Если клиент получает сегмент с флагом RST, то он прекращает попытки соединиться.
  • Если клиент не получает ответа в течение 10 секунд, то он повторяет процесс соединения заново.

3. Если сервер в состоянии SYN-RECEIVED получает сегмент с флагом ACK, то он переходит в состояние ESTABLISHED.

  • В противном случае после тайм-аута он закрывает сокет и переходит в состояние CLOSED.

Процесс называется «трёхэтапным согласованием» (англ. three way handshake ), так как несмотря на то что возможен процесс установления соединения с использованием четырёх сегментов (SYN в сторону сервера, ACK в сторону клиента, SYN в сторону клиента, ACK в сторону сервера), на практике для экономии времени используется три сегмента.

Пример базового 3-этапного согласования:

TCP A TCP B 1. CLOSED LISTEN 2. SYN-SENT --> --> SYN-RECEIVED 3. ESTABLISHED <-- <-- SYN-RECEIVED 4. ESTABLISHED --> --> ESTABLISHED 5. ESTABLISHED <-- <-- ESTABLISHED

В строке 2 TCP A начинает передачу сегмента SYN, говорящего об использовании номеров последовательности, начиная со 100. В строке 3 TCP B передаёт SYN и подтверждение для принятого SYN в адрес TCP A. Надо отметить, что поле подтверждения показывает ожидание TCP B приёма номера последовательности 101, подтверждающего SYN с номером 100.

В строке 4 TCP A отвечает пустым сегментом с подтверждением ACK для сегмента SYN от TCP B; в строке 5 TCP B передаёт некоторые данные. Отметим, что номер подтверждения сегмента в строке 5 (ACK=101) совпадает с номером последовательности в строке 4 (SEQ=101), поскольку ACK не занимает пространства номеров последовательности (если это сделать, придётся подтверждать подтверждения - ACK для ACK).

Передача данных

При обмене данными приёмник использует номер последовательности, содержащийся в получаемых сегментах, для восстановления их исходного порядка. Приёмник уведомляет передающую сторону о номере последовательности, до которой он успешно получил данные, включая его в поле «номер подтверждения». Все получаемые данные, относящиеся к промежутку подтверждённых последовательностей, игнорируются. Если полученный сегмент содержит номер последовательности больший, чем ожидаемый, то данные из сегмента буферизируются, но номер подтверждённой последовательности не изменяется. Если впоследствии будет принят сегмент, относящийся к ожидаемому номеру последовательности, то порядок данных будет автоматически восстановлен исходя из номеров последовательностей в сегментах.

Для того, чтобы передающая сторона не отправляла данные интенсивнее, чем их может обработать приёмник, TCP содержит средства управления потоком. Для этого используется поле «окно». В сегментах, направляемых от приёмника передающей стороне, в поле «окно» указывается текущий размер приёмного буфера. Передающая сторона сохраняет размер окна и отправляет данных не более, чем указал приёмник. Если приёмник указал нулевой размер окна, то передача данных в направлении этого узла не происходит, пока приёмник не сообщит о большем размере окна.

В некоторых случаях передающее приложение может явно затребовать протолкнуть данные до некоторой последовательности принимающему приложению, не буферизируя их. Для этого используется флаг PSH. Если в полученном сегменте обнаруживается флаг PSH, то реализация TCP отдаёт все буферизированные на текущий момент данные принимающему приложению. «Проталкивание» используется, например, в интерактивных приложениях. В сетевых терминалах нет смысла ожидать ввода пользователя после того, как он закончил набирать команду. Поэтому последний сегмент, содержащий команду, обязан содержать флаг PSH, чтобы приложение на принимающей стороне смогло начать её выполнение.

Завершение соединения

Завершение соединения можно рассмотреть в три этапа:

  1. Посылка серверу от клиента флага FIN на завершение соединения.
  2. Сервер посылает клиенту флаги ответа ACK , FIN, что соединение закрыто.
  3. После получения этих флагов клиент закрывает соединение и в подтверждение отправляет серверу ACK , что соединение закрыто.

Известные проблемы

Максимальный размер сегмента

TCP требует явного указания максимального размера сегмента (MSS) в случае, если виртуальное соединение осуществляется через сегмент сети, где максимальный размер блока (MTU) менее, чем стандартный MTU Ethernet (1500 байт).

В протоколах туннелирования, таких как GRE , IPIP , а также PPPoE MTU туннель меньше, чем стандартный, поэтому сегмент TCP максимального размера имеет длину пакета больше, чем MTU. Это приводит к фрагментации и уменьшению скорости передачи полезных данных. Если на каком-либо узле фрагментация запрещена, то со стороны пользователя это выглядит как «зависание» соединений. При этом «зависание» может происходить в произвольные моменты времени, а именно тогда, когда отправитель использовал сегменты длиннее допустимого размера. Для решения этой проблемы на маршрутизаторах применяются правила Firewall-а, добавляющие параметр MSS во все пакеты, инициирующие соединения, чтобы отправитель использовал сегменты допустимого размера.

MSS может также управляться параметрами операционной системы.

Обнаружение ошибок при передаче данных

Хотя протокол осуществляет проверку контрольной суммы по каждому сегменту, используемый алгоритм считается слабым . Так, в 2008 году ошибка в передаче одного бита, не обнаруженная сетевыми средствами, привела к остановке серверов системы Amazon Web Services .

В общем случае распределенным сетевым приложениям рекомендуется использовать дополнительные программные средства для гарантирования целостности передаваемой информации .

Атаки на протокол

Недостатки протокола проявляются в успешных теоретических и практических атаках, при которых злоумышленник может получить доступ к передаваемым данным, выдать себя за другую сторону или привести систему в нерабочее состояние.

Транспортный уровень

Задача транспортного уровня - это передача данных между различными приложениями, выполняемых на всех узлах сети. После того, как пакет доставляется с помощью IP-протокола на принимающий компьютер, данные должны быть отправлены специальному процессу-получателю. Каждый компьютер может выполнять несколько процессов, кроме того, приложение может иметь несколько точек входа, действуя в качестве адреса назначения для пакетов данных.

Пакеты, приходящие на транспортный уровень операционной системы организованы в множества очередей к точкам входа различных приложений. В терминологии TCP/IP такие точки входа называются портами.

Transmission Control Protocol

Transmission Control Protocol (TCP) (протокол управления передачей) - является обязательным протоколом стандарт TCP/IP , определенный в стандарте RFC 793, "Transmission Control Protocol (TCP)".

TCP - это протокол транспортного уровня, предоставляющий транспортировку (передачу) потока данных, с необходимостью предварительного установления соединения, благодаря чему гарантирует уверенность в целостности получаемых данных, также выполняет повторный запрос данных в случае потери данных или искажения. Помимо этого протокол TCP отслеживает дублирование пакетов и в случае обнаружения - уничтожает дублирующиеся пакеты.

В отличие от протокола UDP гарантирует целостность передаваемых данных и подтверждения отправителя о результатах передачи. Используется при передаче файлов, где потеря одного пакета может привести к искажению всего файла.

TCP обеспечивает свою надежность благодаря следующему:

  • Данные от приложения разбиваются на блоки определенного размера, которые будут отправлены.
  • Когда TCP посылает сегмент, он устанавливает таймер, ожидая, что с удаленного конца придет подтверждение на этот сегмент. Если подтверждение не получено по истечении времени, сегмент передается повторно.
  • Когда TCP принимает данные от удаленной стороны соединения, он отправляет подтверждение. Это подтверждение не отправляется немедленно, а обычно задерживается на доли секунды
  • TCP осуществляет расчет контрольной суммы для своего заголовка и данных. Это контрольная сумма, рассчитываемая на концах соединения, целью которой является выявить любое изменение данных в процессе передачи. Если сегмент прибывает с неверной контрольной суммой, TCP отбрасывает его и подтверждение не генерируется. (Ожидается, что отправитель отработает тайм-аут и осуществит повторную передачу.)
  • Так как TCP сегменты передаются в виде IP датаграмм, а IP датаграммы могут прибывать беспорядочно, также беспорядочно могут прибывать и TCP сегменты. После получения данных TCP может по необходимости изменить их последовательность, в результате приложение получает данные в правильном порядке.
  • Так как IP датаграмма может быть продублирована, принимающий TCP должен отбрасывать продублированные данные.
  • TCP осуществляет контроль потока данных. Каждая сторона TCP соединения имеет определенное пространство буфера. TCP на принимающей стороне позволяет удаленной стороне посылать данные только в том случае, если получатель может поместить их в буфер. Это предотвращает от переполнения буферов медленных хостов быстрыми хостами.

  • Порядковый номер выполняет две задачи:
    • Если установлен флаг SYN, то это начальное значение номера последовательности - ISN (Initial Sequence Number), и первый байт данных, которые будут переданы в следующем пакете, будет иметь номер последовательности, равный ISN + 1.
    • В противном случае, если SYN не установлен, первый байт данных, передаваемый в данном пакете, имеет этот номер последовательности.
  • Номер подтверждения - если установлен флаг ACK, то это поле содержит номер последовательности, ожидаемый получателем в следующий раз. Помечает этот сегмент как подтверждение получения.
  • Длина заголовка - задается словами по 32бита.
  • Размер окна - количество байт, которые готов принять получатель без подтверждения.
  • Контрольная сумма - включает псевдо заголовок, заголовок и данные.
  • Указатель срочности - указывает последний байт срочных данных, на которые надо немедленно реагировать.
  • URG - флаг срочности, включает поле "Указатель срочности", если =0 то поле игнорируется.
  • ACK - флаг подтверждение, включает поле "Номер подтверждения, если =0 то поле игнорируется.
  • PSH - флаг требует выполнения операции push, модуль TCP должен срочно передать пакет программе.
  • RST - флаг прерывания соединения, используется для отказа в соединении
  • SYN - флаг синхронизация порядковых номеров, используется при установлении соединения.
  • FIN - флаг окончание передачи со стороны отправителя

Рассмотрим структуру заголовка TCP с помощью сетевого анализатора Wireshark:


TCP порты

Так как на одном и том же компьютере могут быть запущены несколько программ, то для доставки TCP-пакета конкретной программе, используется уникальный идентификатор каждой программы или номер порта.

Номер порта - это условное 16-битное число от 1 до 65535, указывающее, какой программе предназначается пакет.

TCP порты используют определенный порт программы для доставки данных, передаваемых с помощью протокола управления передачей (TCP). TCP порты являются более сложными и работают иначе, чем порты UDP. В то время как порт UDP работает как одиночная очередь сообщений и как точка входа для UDP-соединения, окончательной точкой входа для всех соединений TCP является уникальное соединение. Каждое соединение TCP однозначно идентифицируется двумя точками входа.

Каждый отдельный порт сервера TCP может предложить общий доступ к нескольким соединениям, потому что все TCP соединения идентифицируются двумя значениями: IP-адресом и TCP портом (сокет).

Все номера портов TCP, которые меньше чем 1024 - зарезервированы и зарегистрированы в Internet Assigned Numbers Authority (IANA).

Номера портов UDP и TCP не пересекаются.

TCP программы используют зарезервированные или хорошо известные номера портов, как показано на следующем рисунке.

Установление соединения TCP

Давайте теперь посмотрим, как устанавливается TCP-соединения. Предположим, что процесс, работающий на одном хосте, хочет установить соединение с другим процессом на другом хосте. Напомним, что хост, который инициирует соединение называется «клиентом», в то время как другой узел называется «сервером».

Перед началом передачи каких-либо данных, согласно протоколу TCP, стороны должны установить соединение. Соединение устанавливается в три этапа (процесс «трёхкратного рукопожатия» TCP).

  • Запрашивающая сторона (которая, как правило, называется клиент) отправляет SYN сегмент, указывая номер порта сервера, к которому клиент хочет подсоединиться, и исходный номер последовательности клиента (ISN).
  • Сервер отвечает своим сегментом SYN, содержащим исходный номер последовательности сервера. Сервер также подтверждает приход SYN клиента с использованием ACK (ISN + 1). На SYN используется один номер последовательности.
  • Клиент должен подтвердить приход SYN от сервера своим сегментов SYN, содержащий исходный номер последовательности клиента (ISN+1) и с использованием ACK (ISN+1). Бит SYN установлен в 0, так как соединение установлено.

После установления соединения TCP, эти два хоста могут передавать данные друг другу, так как TCP-соединение является полнодуплексным, они могут передавать данные одновременно.

Взаимодействие между компьютерами в интернете осуществляется посредством сетевых протоколов, представляющих собой согласованный набор определенных правил, в соответствии с которыми разные устройства передачи данных обмениваются информацией. Существуют протоколы для форматов для контроля ошибок и другие виды протоколов. В глобальном межсетевом взаимодействии чаще всего используется протокол TCP-IP.

Что же это за технология? Название TCP-IP произошло от двух сетевых протоколов: TCP и IP. Конечно, этими двумя протоколами построение сетей не ограничивается, но они являются базовыми в том, что касается именно организации передачи данных. Фактически, TCP-IP есть набор протоколов, позволяющих индивидуальным сетям объединяться для образования

Протокол TCP-IP, описание которого невозможно обозначить только определениями IP и TCP, включает в себя также протоколы UDP, SMTP, ICMP, FTP, telnet, и не только. Эти и другие протоколы TCP-IP обеспечивают наиболее полноценную работу сети Интернет.

Ниже приведем развернутую характеристику каждому протоколу, входящему в общее понятие TCP-IP.

. Интернет-протокол (IP) отвечает за непосредственную передачу информации в сети. Информация делится на части (другими словами, пакеты) и передается получателю от отправителя. Для точной адресации нужно задать точный адрес или координаты получателя. Такие адреса состоят из четырех байт, которые отделены друг от друга точками. Адрес каждого компьютера уникален.

Однако использования одного лишь IP-протокола может быть недостаточно для корректной передачи данных, так как объем большей части пересылаемой информации более 1500 символов, что уже не вписывается в один пакет, а некоторые пакеты могут быть потеряны в процессе передачи или присланы не в том порядке, что требуется.

. Протокол управления передачей (TCP) используется на более высоком уровне, чем предыдущий. Основываясь на способности IP-протокола переносить информацию от одного узла другому, TCP-протокол позволяет пересылать большие объемы информации. TCP отвечает также за разделение передаваемой информации на отдельные части - пакеты - и правильное восстановление данных из пакетов, полученных после передачи. При этом данный протокол автоматически повторяет передачу пакетов, которые содержат ошибки.

Управление организацией передачи данных в больших объемах может осуществляться с помощью ряда протоколов, имеющих специальное функциональное назначение. В частности, существуют следующие виды TCP-протоколов.

1. FTP (File Transfer Protocol) организует перенос файлов и используется для передачи информации между двумя узлами Internet с использованием TCP-соединений в виде бинарного или же простого текстового файла, как поименованной области в памяти компьютера. При этом не имеет никакого значения, где данные узлы расположены и как соединяются между собой.

2. Протокол пользовательских дейтаграмм , или User Datagram Protocol, не зависит от подключений, он передает данные пакетами, которые называют UDP-дейтаграммами. Однако этот протокол не так надежен, как TCP, потому что отравитель не получает данных о том, был ли принят пакет в действительности.

3. ICMP (Internet Control Message Protocol) существует для того, чтобы передавать сообщения об ошибках, возникающих в процессе обмена данными в сети Internet. Однако при этом ICMP-протокол только лишь сообщает об ошибках, но не устраняет причины, которые привели к возникновению этих ошибок.

4. Telnet - который используется для реализации текстового интерфейса в сети с помощью транспорта TCP.

5. SMTP (Simple Mail Transfer Protocol) - это специальный электронными сообщениями, определяющий формат сообщений, которые пересылаются с одного компьютера, называемого SMTP-клиентом, на другой компьютер, на котором запущен SMTP-сервер. При этом данная пересылка может быть отложена на некоторое время до тех пор, пока не активируется работа как клиента, так и сервера.

Схема передачи данных по протоколу TCP-IP

1. Протокол TCP разбивает весь объем данных на пакеты и нумерует их, упаковывая в TCP-конверты, что позволяет восстановить порядок получения частей информации. При помещении данных в такой конверт происходит вычисление контрольной суммы, которая записывается потом в TCP-заголовок.

3. Затем с помощью протокола TCP происходит проверка того, все ли пакеты получены. Если во время приема вычисленная заново не совпадает с указанной на конверте, это свидетельствует о том, что часть информации была утеряна или искажена при передаче, протокол TCP-IP заново запрашивает пересылку этого пакета. Также требуется подтверждение прихода данных от получателя.

4. После подтверждения получения всех пакетов протокол TCP упорядочивает их соответствующим образом и собирает заново в единое целое.

Протоколом TCP используются повторные передачи данных, периоды ожидания (или таймауты), что обеспечивает надежность доставки информации. Пакеты могут передаваться в двух направлениях одновременно.

Тем самым протокол TCP-IP снимает необходимость использования повторных передач и ожиданий для прикладных процессов (таких, как Telnet и FTP).