Интеллектуальные информационные системы в управлении знаниями. II

В соответствии с перечисленными выше признаками ИИС делятся на (данная классификация – одна из возможных) (рис. 1):

    системы с коммутативными способностями (с интеллектуальным интерфейсом);

    экспертные системы (системы для решения сложных задач);

    самообучающиеся системы (системы, способные к самообучению);

    адаптивные системы (адаптивные информационные системы).

Рис. 1. Классификация интеллектуальных информационных систем по типам систем

Интеллектуальные базы данных отличаются от обычных баз данных возможностью выборки по запросу необходимой информации, которая может явно не храниться, а выводиться из имеющейся в базе данных.

Естественно-языковой интерфейс предполагает трансляцию естественно-языковых конструкций на внутримашинный уровень представления знаний. Для этого необходимо решать задачи морфологического, синтаксического и семантического анализа и синтеза высказываний на естественном языке. Так, морфологический анализ предполагает распознавание и проверку правильности написания слов по словарям, синтаксический контроль – разложение входных сообщений на отдельные компоненты (определение структуры) с проверкой соответствия грамматическим правилам внутреннего представления знаний и выявления недостающих частей и, наконец, семантический анализ – установление смысловой правильности синтаксических конструкций. Синтез высказываний решает обратную задачу преобразования внутреннего представления информации в естественно-языковое.

Естественно-языковой интерфейс используется для:

    доступа к интеллектуальным базам данных;

    контекстного поиска документальной текстовой информации;

    машинного перевода с иностранных языков.

Гипертекстовые системы предназначены для реализации поиска по ключевым словам в базах текстовой информации. Интеллектуальные гипертекстовые системы отличаются возможностью более сложной семантической организации ключевых слов, которая отражает различные смысловые отношения терминов. Таким образом, механизм поиска работает прежде всего с базой знаний ключевых слов, а уже затем непосредственно с текстом. В более широком плане сказанное распространяется и на поиск мультимедийной информации, включающей, помимо текстовой, и цифровую информацию.

Системы контекстной помощи можно рассматривать как частный случай интеллектуальных гипертекстовых и естественно-языковых систем. В отличие от обычных систем помощи, навязывающих пользователю схему поиска требуемой информации, в системах контекстной помощи пользователь описывает проблему (ситуацию), а система с помощью дополнительного диалога ее конкретизирует и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы относятся к классу систем распространения знаний (Knowledge Publishing) и создаются как приложение к системам документации (например, технической документации по эксплуатации товаров).

Системы когнитивной графики позволяют осуществлять интерфейс пользователя с ИИС с помощью графических образов, которые генерируются в соответствии с происходящими событиями. Такие системы используются в мониторинге и управлении оперативными процессами. Графические образы в наглядном и интегрированном виде описывают множество параметров изучаемой ситуации. Например, состояние сложного управляемого объекта отображается в виде человеческого лица, на котором каждая черта отвечает за какой-либо параметр, а общее выражение лица дает интегрированную характеристику ситуации. Системы когнитивной графики широко используются также в обучающих и тренажерных системах на основе использования принципов виртуальной реальности, когда графические образы моделируют ситуации, в которых обучаемому необходимо принимать решения и выполнять определенные действия.

Экспертные системы предназначены для решения задач на основе накапливаемой базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области.

Многоагентные системы. Для таких динамических систем характерна интеграция в базе знаний нескольких разнородных источников знаний, обменивающихся между собой получаемыми результатами на динамической основе.

Для многоагентных систем характерны следующие особенности:

    проведение альтернативных рассуждений на основе использования различных источников знаний с механизмом устранения противоречий;

    распределенное решение проблем, которые разбиваются на параллельно решаемые подпроблемы, соответствующие самостоятельным источникам знаний;

    применение множества стратегий работы механизма вывода заключений в зависимости от типа решаемой проблемы;

    обработка больших массивов данных, содержащихся в базе данных;

    использование различных математических моделей и внешних процедур, хранимых в базе моделей;

    способность прерывания решения задач в связи с необходимостью получения дополнительных данных и знаний от пользователей, моделей, параллельно решаемых подпроблем.

В основе самообучающихся систем лежат методы автоматической классификации примеров ситуаций реальной практики.

Характерными признаками самообучающихся систем являются:

    самообучающиеся системы «с учителем», когда для каждого примера задается в явном виде значение признака его принадлежности некоторому классу ситуаций (классообразующего признака);

    самообучающиеся системы «без учителя», когда по степени близости значений признаков классификации система сама выделяет классы ситуаций.

Индуктивные системы используют обобщение примеров по принципу от частного к общему. Процесс классификации примеров осуществляется следующим образом:

      Выбирается признак классификации из множества заданных (либо последовательно, либо по какому-либо правилу, например в соответствии с максимальным числом получаемых подмножеств примеров).

      По значению выбранного признака множество примеров разбивается на подмножества.

      Выполняется проверка, принадлежит ли каждое образовавшееся подмножество примеров одному подклассу.

      Если какое-то подмножество примеров принадлежит одному подклассу, то есть у всех примеров подмножества совпадает значение классообразующего признака, то процесс классификации заканчивается (при этом остальные признаки классификации не рассматриваются).

      Для подмножеств примеров с несовпадающим значением классообразующего признака процесс классификации продолжается, начиная с пункта 1 (каждое подмножество примеров становится классифицируемым множеством).

Нейронные сети представляют собой устройства параллельных вычислений, состоящие из множества взаимодействующих простых процессоров. Каждый процессор такой сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам.

В экспертных системах, основанных на прецедентах (аналогиях), база знаний содержит описания не обобщенных ситуаций, а собственно сами ситуации или прецеденты.

Поиск решения проблемы в экспертных системах, основанных на прецедентах, сводится к поиску по аналогии (то есть абдуктивный вывод от частного к частному).

В отличие от интеллектуальной базы данных, информационное хранилище представляет собой хранилище извлеченной значимой информации из оперативной базы данных, которое предназначено для оперативного ситуационного анализа данных (реализации OLAP-технологии).

Типичными задачами оперативного ситуационного анализа являются:

    определение профиля потребителей конкретных объектов хранения;

    предсказание изменений объектов хранения во времени;

    анализ зависимостей признаков ситуаций (корреляционный анализ).

Адаптивная информационная система – это информационная система, которая изменяет свою структуру в соответствии с изменением модели проблемной области.

При этом:

    адаптивная информационная система должна в каждый момент времени адекватно поддерживать организацию бизнес-процессов;

    адаптивная информационная система должна проводить адаптацию всякий раз, как возникает потребность в реорганизации бизнес-процессов;

    реконструкция информационной системы должна проводиться быстро и с минимальными затратами.

Ядром адаптивной информационной системы является постоянно развиваемая модель проблемной области (предприятия), поддерживаемая в специальной базе знаний – репозитории. На основе ядра осуществляется генерация или конфигурация программного обеспечения. Таким образом, проектирование и адаптация ИС сводится, прежде всего, к построению модели проблемной области и ее своевременной корректировке.

Так как нет общепринятого определения, четкую единую классификацию интеллектуальных информационных систем дать затруднительно. Например, если рассматривать интеллектуальные информационные системы с точки зрения решаемой задачи , то можно выделить системы управления и справочные системы, системы компьютерной лингвистики, системы распознавания, игровые системы и системы создания интеллектуальных информационных систем (рис. 2).

При этом системы могут решать не одну, а несколько задач или в процессе решения одной задачи решать и ряд других. Например, при обучении иностранному языку система может решать задачи распознавания речи обучаемого, тестировать, отвечать на вопросы, переводить тексты с одного языка на другой и поддерживать естественно-языковой интерфейс работы.

Рисунок 2 – Классификация интеллектуальных информационных систем по решаемым задачам

Если классифицировать интеллектуальные информационные системы по критерию «используемые методы» , то они делятся на жесткие, мягкие и гибридные (рис. 3).

Мягкие вычисления – это сложная компьютерная методология, основанная на нечеткой логике, генетических вычислениях, нейровычислениях и вероятностных вычислениях.Жесткие вычисления – традиционные компьютерные вычисления (не мягкие).Гибридные системы – системы, использующие более чем одну компьютерную технологию (в случае интеллектуальных систем – технологии искусственного интеллекта).

Рис. 3. Классификация интеллектуальных информационных систем по методам

Возможны и другие классификации, например, выделяют системы общего назначения и специализированные системы (рис. 4).

Рис. 4. Классификация интеллектуальных систем по назначению

Кроме того, эта схема отражает еще один вариант классификации по методам: системы, использующие методы представления знаний, самоорганизующиеся системы и системы, созданные с помощью эвристического программирования. Также в этой классификации системы генерации музыки отнесены к системам общения.

К интеллектуальным системам общего назначения относятся системы, которые не только исполняют заданные процедуры, но на основе метапроцедур поиска генерируют и исполняют процедуры решения новых конкретных задач.

Специализированные интеллектуальные системы выполняют решение фиксированного набора задач, предопределенного при проектировании системы.

Отсутствие четкой классификации также объясняется многообразием интеллектуальных задач и интеллектуальных методов, кроме того, искусственный интеллект – активно развивающаяся наука, в которой новые прикладные области осваиваются ежедневно.

. Данные, информация, знания

Абсолютная информация – это информация, содержащаяся в абсолютных числах, таких как количество чего-либо, взятого "само по себе".

Относительная информация – это информация, содержащаяся в отношениях абсолютного количества к объему совокупности.

Относительная информация измеряется в частях, процентах, промилле, вероятностях и некоторых других подобных единицах. Очевидно, что и из относительной информации, взятой изолированно, вырванной из контекста, делать какие-либо обоснованные выводы не представляется возможным.

Аналитическая информация – это информация, содержащаяся в отношении вероятности (или процента) к некоторой базовой величине, например к средней вероятности по всей выборке.

Аналитическими являются также стандартизированные величины в статистике и количество информации в теории информации.

Аналитическая информация позволяет делать содержательные выводы об исследуемой предметной области. Для того, чтобы сделать аналогичные выводы на основе относительной, и абсолютной информации требуется значительная обработка.

Таким образом, есть все основания рассматривать абсолютную информацию как "информационное сырье", аналитическую – как "информационный товар". Относительная информация в этом смысле занимает промежуточное положение и может рассматриваться как "информационный полуфабрикат". Интеллектуальные информационные системы, преобразуют сырую информацию в кондиционный информационный продукт и, этим самым, многократно повышают ее потребительскую и меновую стоимость.

Данные - это совокупность сведений, зафиксированных на определенном носителе в форме, пригодной для постоянного хранения, передачи и обработки. Преобразование и обработка данных позволяет получить информацию.

Информация - это результат преобразования и анализа данных. Например, в базах данных хранятся различные данные, а по определенному запросу система управления базой данных выдает требуемую информацию.

Знания – это зафиксированная и проверенная практикой обработанная информация, которая использовалась и может многократно использоваться для принятия решений.

Знания – это вид информации, которая хранится в базе знаний и отображает знания специалиста в конкретной предметной области. Знания – это интеллектуальный капитал.

2. Автоматизированные системы распознавания образов

Системой распознавания образов будем называть класс систем искусственного интеллекта, обеспечивающих:

– формирование конкретных образов объектов и обобщенных образов классов;

– обучение, т.е. формирование обобщенных образов классов на основе ряда примеров объектов, классифицированных (т.е. отнесенных к тем или иным категориям – классам) учителем и составляющих обучающую выборку;

– самообучение, т.е. формирование кластеров объектов на основе анализа неклассифицированной обучающей выборки;

– распознавание, т.е. идентификацию (и прогнозирование) состояний объектов, описанных признаками, друг с другом и с обобщенными образами классов;

– измерение степени адекватности модели;

– решение обратной задачи идентификации и прогнозирования (обеспечивается не всеми моделями).

Распознавание – это операция сравнения и определения степени сходства образа данного конкретного объекта с образами других конкретных объектов или с обобщенными образами классов, в результате которой формируется рейтинг объектов или классов по убыванию сходства с распознаваемым объектом.

Ключевым моментом при реализации операции распознавания в математической модели является выбор вида интегрального критерия или меры сходства, который бы на основе знания о признаках конкретного объекта позволил бы количественно определить степень его сходства с другими объектами или обобщенными образами классов.

3. "Система искусственного интеллекта", место СИИ в классификации информационных систем

Интеллектуальными считаются задачи, связанные с разработкой алгоритмов решения ранее нерешенных задач определенного типа.

интеллект представляет собой универсальный алгоритма, способный разрабатывать алгоритмы решения конкретных задач. В 1950 году в статье "Вычислительные машины и разум" (Computing machinery and intelligence) выдающийся английский математики и философ Алан Тьюринг предложил тест, чтобы заменить бессмысленный, по его мнению, вопрос "может ли машина мыслить?" на более определённый.

Судья-человек ограниченное время, например, 5 минут, переписывается в чате (в оригинале – по телеграфу) на естественном языке с двумя собеседниками, один из которых – человек, а другой – компьютер. Если судья за предоставленное время не сможет надёжно определить, кто есть кто, то компьютер прошёл тест.

Идею Тьюринга поддержал Джо Вайзенбаум, написавший в 1966 году первую "беседующую" программу "Элиза". Программа всего в 200 строк лишь повторяла фразы собеседника в форме вопросов и составляла новые фразы из уже использованных в беседе слов.

А.Тьюринг считал, что компьютеры, в конечном счете, пройдут его тест, т.е. на вопрос: "Может ли машина мыслить?" он отвечал утвердительно, но в будущем времени: "Да, смогут!"

Сегодня уже существуют многочисленные варианты интеллектуальных систем, которые не имеют цели, но имеют критерии поведения: генетические алгоритмы и имитационное моделирование эволюции. Поведение этих систем выглядит таким образом, как будто они имеют различные цели и добиваются их.

Ежегодно производится соревнование между разговаривающими программами, и наиболее человекоподобной, по мнению судей, присуждается приз Лебнера (Loebner).

Любая информационная система (ИС) выполняет следующие функции: 1воспринимает вводимые пользователем информационные запросы и необходимые исходные данные, 2обрабатывает введенные и хранимые в системе данные в соответствии с известным алгоритмом и формирует требуемую выходную информацию.

С точки зрения реализации перечисленных функций ИС можно рассматривать как фабрику, производящую информацию, в которой заказом является информационный запрос, сырьем - исходные данные, продуктом - требуемая информация, а инструментом (оборудованием) - знание, с помощью которого данные преобразуются в информацию.

…если в ходе эксплуатации ИС выяснится потребность в модификации одного из двух компонентов программы, то возникнет необходимость ее переписывания. Это объясняется тем, что полным знанием проблемной области обладает только разработчик ИС, а программа служит “недумающим исполнителем” знания разработчика. Этот недостаток устраняются в интеллектуальных информационных системах.

Интеллектуальная информационная система (ИИС) - это ИС, которая основана на концепции использования базы знаний для генерации алгоритмов решения экономических задач различных классов в зависимости от конкретных информационных потребностей пользователей.

Для интеллектуальных информационных систем, ориентированных на генерацию алгоритмов решения задач, характерны следующие признаки:

Развитые коммуникативные способности,

Умение решать сложные плохо формализуемые задачи,

Способность к самообучению,

Коммуникативные способности ИИС характеризуют способ взаимодействия (интерфейса) конечного пользователя с системой.

Сложные плохо формализуемые задачи - это задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, для которой могут быть характерны неопределенность и динамичность исходных данных и знаний.

5. Этапы жизненного цикла систем искусственного интеллекта

№ Наименование этапа

1 Разработка идеи и концепции системы

2 Разработка теоретических основ системы

3 Разработка математической модели системы

4 Разработка методики численных расчетов в системе:

4.1 – разработка структур данных

4.2 – разработка алгоритмов обработки данных

5 Разработка структуры системы и экранных форм интерфейса

6 Разработка программной реализации системы

7 Отладка системы

8 Экспериментальная эксплуатация

9 Опытная эксплуатация

10 Промышленная эксплуатация

11 Заказные модификации системы

12 Разработка новых версий системы

13 Снятие системы с эксплуатации

Условно каждому из признаков интеллектуальности соответствует свой класс ИИС:

Системы с интеллектуальным интерфейсом;

Экспертные системы;

Самообучающиеся системы.

6 Экспертная система (ЭС) - это ИИС, предназначенная для решения слабоформализуемых задач на основе накапливаемого в базе знаний опыта работы экспертов в проблемной области

Экспертная система является инструментом, усиливающим интеллектуальные способности эксперта, и может выполнять следующие роли:

1консультанта для неопытных или непрофессиональных пользователей;

2ассистента в связи с необходимостью анализа экспертом различных вариантов принятия решений;

3партнера эксперта по вопросам, относящимся к источникам знаний из смежных областей деятельности.

Исторически, ЭС были первыми системами искусственного интеллекта, которые привлекли внимание потребителей.

Классы экспертных систем. По степени сложности решаемых задач экспертные системы можно классифицировать следующим образом:

По способу формирования решения экспертные системы разделяются на два класса: аналитические и синтетические. Аналитические системы предполагают выбор решений из множества известных альтернатив, а синтетические системы - генерацию неизвестных решений. Аналитическая экспертная система - это ЭС, осуществляющая оценку вариантов решений (проверку гипотез). Синтетическая экспертная система - это ЭС, осуществляющая генерацию вариантов решений (формирование гипотез).

По способу учета временного признака экспертные системы могут быть статическими или динамическими. Статические системы решают задачи при неизменяемых в процессе решения данных и знаниях, инамические системы допускают такие изменения.

Статическая экспертная система - это ЭС, решающая задачи в условиях, не изменяющихся во времени исходных данных и знаний.

Динамическая экспертная система - это ЭС, решающая задачи в условиях изменяющихся во времени исходных данных и знаний.

По видам используемых данных и знаний экспертные системы классифицируются на системы с детерминированными (четко определенными) знаниями и неопределенными знаниями. Под неопределенностью знаний (данных) понимается их неполнота (отсутствие), недостоверность (неточность измерения), двусмысленность (многозначность понятий), нечеткость (качественная оценка вместо количественной).

По числу используемых источников знаний экспертные системы могут быть построены с использованием одного или множества источников знаний.

7. Система с интеллектуальным интерфейсом - это ИИС, предназначенная для поиска неявной информации в базе данных или тексте для произвольных запросов, составляемых, как правило, на ограниченном естественном языке

Интеллектуальные БД отличаются от обычных БД возможностью выборки по запросу необходимой информации, которая может явно не храниться, а выводиться из имеющейся в базе данных. Примерами таких запросов могут быть следующий: - “Вывести список товаров, цена которых выше среднеотраслевой”,

В запросе требуется осуществить поиск по условию, которое должно быть доопределено в ходе решения задачи. Формулирование запроса осуществляется в диалоге с пользователем, последовательность шагов которого выполняется в максимально удобной для пользователя форме. Запрос к базе данных может формулироваться и с помощью естественно-языкового интерфейса.

Естественно-языковой интерфейс предполагает трансляцию естественно-языковых конструкций на внутримашинный уровень представления знаний.

Естественно-языковый интерфейс используется для:

Доступа к интеллектуальным базам данных;

Контекстного поиска документальной текстовой информации;

Машинного перевода c иностранных языков.

Гипертекстовые системы предназначены для реализации поиска по ключевым словам в базах текстовой информации. Механизм поиска работает прежде всего с базой знаний ключевых слов, а уже затем непосредственно с текстом.

Системы контекстной помощи можно рассматривать, как частный случай интеллектуальных гипертекстовых и естественно-языковых систем. В системах контекстной помощи пользователь описывает проблему (ситуацию), а система с помощью дополнительного диалога ее конкретизирует и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы относятся к классу систем распространения знаний (Knowledge Publishing) и создаются как приложение к системам документации (например, технической документации по эксплуатации товаров).

Системы когнитивной графики позволяют осуществлять интерфейс пользователя с ИИС с помощью графических образов, которые генерируются в соответствии с происходящими событиями.

8. Самообучающаяся система - это ИИС, которая на основе примеров реальной практики автоматически формирует единицы знаний

В основе самообучающихся систем лежат методы автоматической классификации примеров ситуаций реальной практики (обучения на примерах). Примеры реальных ситуаций накапливаются за некоторый исторический период и составляют обучающую выборку. Эти примеры описываются множеством признаков классификации. Причем обучающая выборка может быть:

- “с учителем”, когда для каждого примера задается в явном виде значение признака его принадлежности некоторому классу ситуаций (классообразующего признака);

- “без учителя”, когда по степени близости значений признаков классификации система сама выделяет классы ситуаций.

В результате обучения системы автоматически строятся обобщенные правила или функции, определяющие принадлежность ситуаций классам, которыми обученная система пользуется при интерпретации новых возникающих ситуаций. Таким образом, автоматически формируется база знаний, используемая при решении задач классификации и прогнозирования. Эта база знаний периодически автоматически корректируется по мере накопления опыта реальных ситуаций, что позволяет сократить затраты на ее создание и обновление.

Этап идентификации проблемной области - определение требований к разрабатываемой ЭС, контуров рассматриваемой проблемной области (объектов, целей, подцелей, факторов), выделение ресурсов на разработку ЭС.

Этап идентификации проблемной области включает определение назначения и сферы применения экспертной системы, подбор экспертов и группы инженеров по знаниям, выделение ресурсов, постановку и параметризацию решаемых задач.

Начало работ по созданию экспертной системы инициируют руководители компаний. Обычно необходимость разработки экспертной системы связана с затруднениями лиц, принимающих решение, что сказывается на эффективности функционирования проблемной области. Как правило, назначение экспертной системы связано с одной из следующих областей:

Обучение и консультация неопытных пользователей;

Распространение и использование уникального опыта экспертов;

Автоматизация работы экспертов по принятию решений;

Оптимизация решения проблем, выдвижение и проверка гипотез.

После предварительного определения контуров разрабатываемой экспертной системы инженеры по знаниям совместно с экспертами осуществляют более детальную постановку проблем и параметризацию системы. К основным параметрам проблемной области относятся следующие:

Класс решаемых задач (интерпретация, диагностика, коррекция, прогнозирование, планирование, проектирование, мониторинг, управление);

Критерии эффективности результатов решения задач (минимизация использования ресурсов, повышение качества продукции и обслуживания, ускорение оборачиваемости капитала и т.д.);

Критерии эффективности процесса решения задач (повышение точности принимаемых решений, учет большего числа факторов, просчет большего числа альтернативных вариантов, адаптивность к изменениям проблемной области и информационных потребностей пользователей, сокращение сроков принятия решений);

Цели решаемых задач (выбор из альтернатив, например, выбор поставщика или синтез значения, например, распределение бюджета по статьям);

Подцели (разбиение задачи на подзадачи, для каждой из которых определяется своя цель);

Исходные данные (совокупность используемых факторов);

Особенности используемых знаний (детерминированность/ неопределенность, статичность/динамичность, одноцелевая/ многоцелевая направленность, единственность/ множественность источников знаний).

На этапе формализации базы знаний осуществляется выбор метода представления знаний. В рамках выбранного формализма осуществляется проектирование логической структуры базы знаний.

Этап формализации базы знаний - выбор метода представления знаний, в рамках которого проектируется логическая структура базы знаний.

Логическая модель предполагает унифицированное описание объектов и действий в виде предикатов первого порядка.

Логическая модель отражает логические связи между элементами данных вне зависимости от их содержания и среде хранения.

Логическая модель данных может быть реляционной, иерархической или сетевой. Пользователям выделяются подмножества этой логической модели, называемые внешними моделями, отражающие их представления о предметной области. Внешняя модель соответствует представлениям, которые пользователи получают на основе логической модели, в то время как концептуальные требования отражают представления, которые пользователи первоначально желали иметь и которые легли в основу разработки концептуальной модели. Логическая модель отображается в физическую память, такую, как диск, лента или какой-либо другой носитель информации.

11. Этапы проектирования экспертной системы

Этапы создания экспертных систем: идентификация, концептуализация, формализация, реализация, тестирование, внедрение. На начальных этапах идентификации и концептуализации, связанных с определением контуров будущей системы, инженер по знаниям выступает в роли ученика, а эксперт - в роли учителя, мастера. На заключительных этапах реализации и тестирования инженер по знаниям демонстрирует результаты разработки, адекватность которых проблемной области оценивает эксперт. На этапе тестирования это могут быть совершенно другие эксперты. На этапе тестирования созданные экспертные системы оцениваются с позиции двух основных групп критериев: точности и полезности. Следующий этап жизненного цикла экспертной системы - внедрение и опытная эксплуатация в массовом порядке без непосредственного контроля со стороны разработчиков и переход от тестовых примеров к решению реальных задач. Важнейшим критерием оценки становятся соотношение стоимости системы и ее эффективности. На этом этапе осуществляется сбор критических замечаний и внесение необходимых изменений. В результате опытной эксплуатации может потребоваться разработка новых специализированных версий, учитывающих особенности проблемных областей. На всех этапах разработки инженер по знаниям играет активную роль, а эксперт - пассивную. По мере развития самообучающихся свойств экспертных систем роль инженера по знаниям уменьшается, а активное поведение заинтересованного в эффективной работе экспертной системы пользователя-эксперта возрастает.

Прототип экспертной системы - это расширяемая (изменяемая) на каждом последующем этапе версия базы знаний с возможной модификацией программных механизмов. После каждого этапа возможны итеративные возвраты на уже выполненные этапы проектирования, что способствует постепенному проникновению инженера по знаниям в глубину решаемых проблем, эффективности использования выделенных ресурсов, сокращению времени разработки, постоянному улучшению компетентности и производительности системы. Пример разработки экспертной системы гарантирования (страхования) коммерческих займов CLUES (loan-uderwriting expert systems).


Генетические Алгоритмы (ГА) – это адаптивные методы функциональной оптимизации, основанные на компьютерном имитационном моделировании биологической эволюции. Основные принципы ГА были сформулированы Голландом (Holland, 1975), и хорошо описаны во многих работах и на ряде сайтов в Internet.

Теория Дарвина традиционно моделируется в ГА, хотя, конечно, это не исключает возможности моделирования и других теорий эволюции в ГА.

В основе модели эволюции Дарвина лежат случайные изменения отдельных материальных элементов живого организма при переходе от поколения к поколению. Целесообразные изменения, которые облегчают выживание и производство потомков в данной конкретной внешней среде, сохраняются и передаются потомству, т.е. наследуются. Особи, не имеющие соответствующих приспособлений, погибают, не оставив потомства или оставив его меньше, чем приспособленные (считается, что количество потомства пропорционально степени приспособленности). Поэтому в результате естественного отбора возникает популяция из наиболее приспособленных особей, которая может стать основой нового вида, каждый конкретный генетический алгоритм представляют имитационную модель некоторой определенной теории биологической эволюции или ее варианта.

Работа ГА представляет собой итерационный процесс, который продолжается до тех пор, пока поколения не перестанут существенно отличаться друг от друга, или не пройдет заданное количество поколений или заданное время. Для каждого поколения реализуются отбор, кроссовер (скрещивание) и мутация.

13. Этап концептуализации проблемной области - построение концептуальной модели, отражающей в целостном виде сущность функционирования проблемной области на объектном (структурном), функциональном (операционном), поведенческом (динамическом) уровнях

На этапе построения концептуальной модели создается целостное и системное описание используемых знаний, отражающее сущность функционирования проблемной области. От качества построения концептуальной модели проблемной области во многом зависит насколько часто в дальнейшем по мере развития проекта будет выполняться перепроектирование базы знаний. Хорошая концептуальная модель может только уточняться (детализироваться или упрощаться), но не перестраиваться.

Результат концептуализации проблемной области обычно фиксируется в виде наглядных графических схем на объектном, функциональном и поведенческом уровнях моделирования:

Объектная модель описывает структуру предметной области как совокупности взаимосвязанных объектов;

Функциональная модель отражает действия и преобразования над объектами;

Поведенческая модель рассматривает взаимодействия объектов во временном аспекте.

Первые две модели описывают статические аспекты функционирования проблемной области, а третья модель - динамику изменения ее состояний. Естественно, что для различных классов задач могут требоваться разные виды моделей, а следовательно, и ориентированные на них методы представления знаний. Рассмотрим каждую из представленных видов моделей.

Объектная модель - отражение на семантическом уровне фактуального знания о классах объектов, их свойств и отношений.

Концептуальное проектирование - сбор, анализ и редактирование требований к данным. Для этого осуществляются следующие мероприятия:

Обследование предметной области, изучение ее информационной структуры;

Выявление всех фрагментов, каждый из которых характеризуется пользовательским представлением, информационными объектами и связями между ними, процессами над информационными объектами

Моделирование и интеграция всех представлений

По окончании данного этапа получаем концептуальную модель, инвариантную к структуре базы данных. Часто она представляется в виде модели "сущность-связь".

Логическое проектирование - преобразование требований к данным в структуры данных. На выходе получаем СУБД-ориентированную структуру базы данных и спецификации прикладных программ. На этом этапе часто моделируют базы данных применительно к различным СУБД и проводят сравнительный анализ моделей.

Физическое проектирование - определение особенностей хранения данных, методов доступа и т.д.

Архитектура экспертной системы экономического анализа (особенности формирования базы знаний, выбора методов логического вывода, пользовательского интерфейса) во многом зависит от целей и глубины анализа: внешнего (для сторонних организаций) или внутреннего (для самого предприятия).

Внешний экономический анализ проводится внешними для предприятия субъектами: инвесторами, кредиторами, партнерами, поставщиками, аудиторами, налоговыми и таможенными службами, страховыми организациями и т.д. Для внешнего анализа используются интерпретирующие экспертные системы.

Целью внешнего анализа предприятия является определение общего состояния предприятия, т.е. интерпретация его экономического положения с точки зрения выявления возможностей эффективного взаимодействия с ним внешних организаций

Интеллектуальная система моделирования бизнес-процессов предназначена для анализа на долговременной основе эффективности организации бизнес-процессов, прогнозирования последствий реализации рекомендаций по реинжинирингу бизнес-прцессов.

В случае применения экспертной системы внутреннего финансового анализа FINEX экспертиза осуществляется автоматически на основе введенных данных финансовой отчетности.

Функциями экспертной системы финансового анализа предприятия являются:

Ввод и проверка правильности составления бухгалтерской отчетности;

Анализ финансового состояния предприятия;

Анализ результатов финансово-хозяйственной деятельности предприятия и диагностика эффективности использования ресурсов.

Анализ финансового состояния предприятия предполагает комплексную рейтинговую и классификационную оценку платежеспособности и финансовой устойчивости предприятия.

Классификационный метод - ситуации классифицируются как различные комбинации значений признаков, при этом используется конъюнктивный подход к построению правил. Этот метод точный, жесткий.

. Данные, информация, знания

Абсолютная информация – это информация, содержащаяся в абсолютных числах, таких как количество чего-либо, взятого "само по себе".

Относительная информация – это информация, содержащаяся в отношениях абсолютного количества к объему совокупности.

Относительная информация измеряется в частях, процентах, промилле, вероятностях и некоторых других подобных единицах. Очевидно, что и из относительной информации, взятой изолированно, вырванной из контекста, делать какие-либо обоснованные выводы не представляется возможным.

Аналитическая информация – это информация, содержащаяся в отношении вероятности (или процента) к некоторой базовой величине, например к средней вероятности по всей выборке.

Аналитическими являются также стандартизированные величины в статистике и количество информации в теории информации.

Аналитическая информация позволяет делать содержательные выводы об исследуемой предметной области. Для того, чтобы сделать аналогичные выводы на основе относительной, и абсолютной информации требуется значительная обработка.

Таким образом, есть все основания рассматривать абсолютную информацию как "информационное сырье", аналитическую – как "информационный товар". Относительная информация в этом смысле занимает промежуточное положение и может рассматриваться как "информационный полуфабрикат". Интеллектуальные информационные системы, преобразуют сырую информацию в кондиционный информационный продукт и, этим самым, многократно повышают ее потребительскую и меновую стоимость.

Данные - это совокупность сведений, зафиксированных на определенном носителе в форме, пригодной для постоянного хранения, передачи и обработки. Преобразование и обработка данных позволяет получить информацию.

Информация - это результат преобразования и анализа данных. Например, в базах данных хранятся различные данные, а по определенному запросу система управления базой данных выдает требуемую информацию.

Знания – это зафиксированная и проверенная практикой обработанная информация, которая использовалась и может многократно использоваться для принятия решений.

Знания – это вид информации, которая хранится в базе знаний и отображает знания специалиста в конкретной предметной области. Знания – это интеллектуальный капитал.

2. Автоматизированные системы распознавания образов

Системой распознавания образов будем называть класс систем искусственного интеллекта, обеспечивающих:

– формирование конкретных образов объектов и обобщенных образов классов;

– обучение, т.е. формирование обобщенных образов классов на основе ряда примеров объектов, классифицированных (т.е. отнесенных к тем или иным категориям – классам) учителем и составляющих обучающую выборку;

– самообучение, т.е. формирование кластеров объектов на основе анализа неклассифицированной обучающей выборки;

– распознавание, т.е. идентификацию (и прогнозирование) состояний объектов, описанных признаками, друг с другом и с обобщенными образами классов;

– измерение степени адекватности модели;

– решение обратной задачи идентификации и прогнозирования (обеспечивается не всеми моделями).

Распознавание – это операция сравнения и определения степени сходства образа данного конкретного объекта с образами других конкретных объектов или с обобщенными образами классов, в результате которой формируется рейтинг объектов или классов по убыванию сходства с распознаваемым объектом.

Ключевым моментом при реализации операции распознавания в математической модели является выбор вида интегрального критерия или меры сходства, который бы на основе знания о признаках конкретного объекта позволил бы количественно определить степень его сходства с другими объектами или обобщенными образами классов.

3. "Система искусственного интеллекта", место СИИ в классификации информационных систем

Интеллектуальными считаются задачи, связанные с разработкой алгоритмов решения ранее нерешенных задач определенного типа.

интеллект представляет собой универсальный алгоритма, способный разрабатывать алгоритмы решения конкретных задач. В 1950 году в статье "Вычислительные машины и разум" (Computing machinery and intelligence) выдающийся английский математики и философ Алан Тьюринг предложил тест, чтобы заменить бессмысленный, по его мнению, вопрос "может ли машина мыслить?" на более определённый.

Судья-человек ограниченное время, например, 5 минут, переписывается в чате (в оригинале – по телеграфу) на естественном языке с двумя собеседниками, один из которых – человек, а другой – компьютер. Если судья за предоставленное время не сможет надёжно определить, кто есть кто, то компьютер прошёл тест.

Идею Тьюринга поддержал Джо Вайзенбаум, написавший в 1966 году первую "беседующую" программу "Элиза". Программа всего в 200 строк лишь повторяла фразы собеседника в форме вопросов и составляла новые фразы из уже использованных в беседе слов.

А.Тьюринг считал, что компьютеры, в конечном счете, пройдут его тест, т.е. на вопрос: "Может ли машина мыслить?" он отвечал утвердительно, но в будущем времени: "Да, смогут!"

Сегодня уже существуют многочисленные варианты интеллектуальных систем, которые не имеют цели, но имеют критерии поведения: генетические алгоритмы и имитационное моделирование эволюции. Поведение этих систем выглядит таким образом, как будто они имеют различные цели и добиваются их.

Ежегодно производится соревнование между разговаривающими программами, и наиболее человекоподобной, по мнению судей, присуждается приз Лебнера (Loebner).

Любая информационная система (ИС) выполняет следующие функции: 1воспринимает вводимые пользователем информационные запросы и необходимые исходные данные, 2обрабатывает введенные и хранимые в системе данные в соответствии с известным алгоритмом и формирует требуемую выходную информацию.

С точки зрения реализации перечисленных функций ИС можно рассматривать как фабрику, производящую информацию, в которой заказом является информационный запрос, сырьем - исходные данные, продуктом - требуемая информация, а инструментом (оборудованием) - знание, с помощью которого данные преобразуются в информацию.

…если в ходе эксплуатации ИС выяснится потребность в модификации одного из двух компонентов программы, то возникнет необходимость ее переписывания. Это объясняется тем, что полным знанием проблемной области обладает только разработчик ИС, а программа служит “недумающим исполнителем” знания разработчика. Этот недостаток устраняются в интеллектуальных информационных системах.

Интеллектуальная информационная система (ИИС) - это ИС, которая основана на концепции использования базы знаний для генерации алгоритмов решения экономических задач различных классов в зависимости от конкретных информационных потребностей пользователей.

Для интеллектуальных информационных систем, ориентированных на генерацию алгоритмов решения задач, характерны следующие признаки:

Развитые коммуникативные способности,

Умение решать сложные плохо формализуемые задачи,

Способность к самообучению,

Коммуникативные способности ИИС характеризуют способ взаимодействия (интерфейса) конечного пользователя с системой.

Сложные плохо формализуемые задачи - это задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, для которой могут быть характерны неопределенность и динамичность исходных данных и знаний.

5. Этапы жизненного цикла систем искусственного интеллекта

№ Наименование этапа

1 Разработка идеи и концепции системы

2 Разработка теоретических основ системы

3 Разработка математической модели системы

4 Разработка методики численных расчетов в системе:

4.1 – разработка структур данных

4.2 – разработка алгоритмов обработки данных

5 Разработка структуры системы и экранных форм интерфейса

6 Разработка программной реализации системы

7 Отладка системы

8 Экспериментальная эксплуатация

9 Опытная эксплуатация

10 Промышленная эксплуатация

11 Заказные модификации системы

12 Разработка новых версий системы

13 Снятие системы с эксплуатации

Условно каждому из признаков интеллектуальности соответствует свой класс ИИС:

Системы с интеллектуальным интерфейсом;

Экспертные системы;

Самообучающиеся системы.

6 Экспертная система (ЭС) - это ИИС, предназначенная для решения слабоформализуемых задач на основе накапливаемого в базе знаний опыта работы экспертов в проблемной области

Экспертная система является инструментом, усиливающим интеллектуальные способности эксперта, и может выполнять следующие роли:

1консультанта для неопытных или непрофессиональных пользователей;

2ассистента в связи с необходимостью анализа экспертом различных вариантов принятия решений;

3партнера эксперта по вопросам, относящимся к источникам знаний из смежных областей деятельности.

Исторически, ЭС были первыми системами искусственного интеллекта, которые привлекли внимание потребителей.

Классы экспертных систем. По степени сложности решаемых задач экспертные системы можно классифицировать следующим образом:

По способу формирования решения экспертные системы разделяются на два класса: аналитические и синтетические. Аналитические системы предполагают выбор решений из множества известных альтернатив, а синтетические системы - генерацию неизвестных решений. Аналитическая экспертная система - это ЭС, осуществляющая оценку вариантов решений (проверку гипотез). Синтетическая экспертная система - это ЭС, осуществляющая генерацию вариантов решений (формирование гипотез).

Лекция

Тема: «Интеллектуальные технологии и системы»

План:

1. Понятие искусственного интеллекта. Интеллектуальные информационные

технологии.

2. Классификация интеллектуальных информационных систем.

3. Экспертные системы как основная разновидность интеллектуальных систем.

4. Искусственные нейронные сети.

Использование информационных технологий (ИТ) в различных сферах человеческой деятельности, рост объемов информации и необходимость оперативно реагировать в любых ситуациях потребовали поиска адекватных путей решения возникающих проблем. Самым эффективным из них является путь интеллектуализации информационных технологий.

Вопрос №1 Понятие искусственного интеллекта.

Интеллектуальные информационные технологии

Новая информационная технология основывается прежде всего на интеллектуальных технологиях и теории искусственного интеллекта.

Термин интеллект происходит от латинского intellectus - что означает ум, рассудок, разум; мыслительные способности человека.

Под искусственным интеллектом понимают способности компьютерных систем к интеллектуальным действиям. Чаще всего здесь имеются в виду способности, связанные с человеческим мышлением.

Искусственный интеллект - раздел информатики, связанный с разработкой интеллектуальных программ для компьютеров.

Искусственный интеллект (ИИ) – это научное направление, возникшее на стыке кибернетики, лингвистики, психологии и программирования.

Под интеллектуальными информационными технологиями понимают такие информационные технологии, в которых предусмотрены следующие возможности:

  • наличие баз знаний, отражающих опыт конкретных людей, групп, обществ, человечества в целом, при решении таких задач, как: принятие решений, проектирование, извлечение смысла, объяснение, обучение;
  • наличие моделей мышления на основе баз знаний: правил и логических выводов; аргументации и рассуждения; распознавания и классификации ситуаций; обобщения и понимания и т. п.;
  • способность формировать вполне четкие решения на основе нечетких, неполных, недоопределенных данных;
  • способность объяснять выводы и решения, то есть наличие механизма объяснений;
  • способность к обучению, переобучению и, следовательно, к развитию.

История интеллектуальных информационных технологий



Обратимся к истории развития ИИТ, которая ведет отсчет с 60-х годов прошлого века и включает несколько основных периодов.

  • 60-70-е годы. Это годы осознания возможностей искусственного интеллекта и формирования заказа на поддержку процессов принятия решений и управления.
  • 70-80-е годы. На этом этапе происходит осознание важности знаний для формирования адекватных решений; появляются ЭКСПЕРТНЫЕ СИСТЕМЫ.
  • с 80-х гг. по настоящее время. Появляются интегрированные (гибридные) модели представления знаний, сочетающие в себе следующие виды интеллекта: поисковый, вычислительный, логический и образный. Создание нейронных сетей

Особенность интеллектуальных информационных технологий (ИИТ) - их «универсальность». Они практически не имеют ограничений по применению в таких областях, как управление, проектирование, машинный перевод, диагностика, распознавание образов, синтез речи и т. д.

ИИТ также находят широкое применение для распределенного решения сложных задач, совместного проектирования изделий, построения виртуальных предприятий, моделирования больших производственных систем и электронной торговли, электронной разработки сложных компьютерных систем, управления системами знаний и информации и т. п. Еще одно эффективное применение - поиск информации в Internet и других глобальных сетях, ее структуризация и доставка заказчику.

Вопрос №2 Классификация интеллектуальных информационных систем

Для ИИС характерны следующие признаки:

Развитые коммуникативные способности (способ взаимодействия конечного пользователя с системой);

Умение решать сложные, плохо формализуемые задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, характеризующейся неопределенностью и динамичностью исходных данных и знаний;

Способность к самообучению, т.е. умение системы автоматически извлекать знания из накопленного опыта и применять их для решения задач;

Адаптивность – способность системы к развитию в соответствии с объективными изменениями области знаний.

Каждому из перечисленных признаков условно соответствует свой класс ИИС.

1. Системы с интеллектуальным интерфейсом (коммуникативные способности):

- Интеллектуальные базы данных . Позволяют в отличие от традиционных БД обеспечивать выборку необходимой информации, не присутствующей в явном виде, а выводимой из совокупности хранимых данных.

- Естественно-языковой интерфейс . Применяется для доступа к интеллектуальным базам данных, контекстного поиска документальной текстовой информации, голосового ввода команд в системах управления, машинного перевода с иностранных языков.

- Гипертекстовые системы . Используются для реализации поиска по ключевым словам в базах данных с текстовой информацией.

- Системы контекстной помощи . Относятся к классу систем распространения знания. Такие системы, как правило, являются приложениями к документации. В этих системах пользователь описывает проблему, а система на основе дополнительного диалога конкретизирует ее и выполняет поиск рекомендаций по данной проблеме.

- Системы когнитивной графики . Ориентированы на общение с пользователем ИИС посредством графических образов, которые генерируются в соответствии с изменением параметров моделируемых или наблюдаемых процессов. Применение когнитивной графики особенно актуально в системах мониторинга и оперативного управления, в обучающих и тренажерных системах, в оперативных системах принятия решений, работающих в режиме реального времени.

2. Экспертные системы (решение сложных плохо формализуемых задач). Применяются для решения неформализованных проблем, к которым относятся задачи, обладающие одной из следующих характеристик:

Задачи не могут быть представлены в числовой форме;

Исходные данные и знания о предметной области обладают неоднозначностью, неточностью, противоречивостью;

Цели нельзя выразить с помощью четко определенной целевой функции;

Не существует однозначного алгоритмического решения задачи;

Главное отличие ЭС и СИИ от систем обработки данных состоит в том, что в них используется символьный, а не числовой способ представления данных, а в качестве методов обработки информации применяются процедуры логического вывода и эвристического поиска решений.

Экспертная система (ЭС) – это ИИС, предназначенная для решения слабоформализуемых задач на основе накапливаемого в базе знаний опыта работы экспертов в проблемной области. Она включает базу знаний с набором правил и механизмом вывода и позволяет на основании предоставляемых пользователем фактов распознать ситуацию, поставить диагноз, сформулировать решение или дать рекомендацию для выбора действия.

Экспертные системы предназначены для воссоздания опыта, знаний профессионалов высокого уровня и использования этих знаний в процессе управления. Они разрабатываются с использованием математического аппарата нечеткой логики для эксплуатации в узких областях применения, поскольку их использование требует больших компьютерных ресурсов для обработки и хранения знаний. В основе построения экспертных систем лежит база знаний, которая основывается на моделях представления знаний. В силу больших финансовых и временных затрат в российских экономических ИС экспертные системы не имеют большого распространения.

Считается, что любая экспертная система – это система, основанная на знаниях, но последняя не всегда является экспертной. В системах, основанных на знаниях, правила (или эвристики), по которым решаются проблемы в конкретной предметной области, хранятся в базе знаний . Проблемы ставятся перед системой в виде совокупности фактов , описывающих некоторую ситуацию, и система с помощью базы знаний пытается вывести заключение из этих фактов.

Система функционирует в следующем циклическом режиме : выбор (запрос) данных или результатов анализов, наблюдение, интерпретация результатов, усвоение новой информации, выдвижение с помощью правил временных гипотез и затем выбор следующей порции данных или результатов анализов. Такой процесс продолжается до тех пор, пока не поступит информация, достаточная для окончательного заключения.

Более простые системы, основанные на знаниях, функционируют в режиме диалога, или режиме консультации . После запуска система задает пользователю ряд вопросов о решаемой задаче, требующих ответа «да» или «нет». Ответы служат для установления фактов, по которым может быть выведено окончательное заключение.

В любой момент времени в системе содержится три типа знаний :

· структурированные статические знания о предметной области, после того как эти знания выявлены, они уже не изменяются;

· структурированные динамические знания – изменяемые знания о предметной области; они обновляются по мере выявления новой информации;

· рабочие знания, применяемые для решения конкретной задачи или проведения консультации.

Все перечисленные выше знания хранятся в базе знаний . Для ее построения требуется провести опрос специалистов, являющихся экспертами в конкретной предметной области, а затем систематизировать, организовать и снабдить эти знания указателями, чтобы впоследствии их можно было легко извлечь из базы знаний.

Архитектура экспертной системы . Архитектура ЭС представлена на рис. 7.2. База знаний (БЗ) отражает знания экспертов. Однако далеко не каждый эксперт в состоянии грамотно изложить всю структуру своих знаний.

Выявлением знаний эксперта и представлением их в БЗ занимаются специалисты – инженеры знаний .

ЭС должна обладать механизмом приобретения знаний для ввода знаний в базу и их последующее обновление.

В простейшем случае – это интеллектуальный редактор, который позволяет вводить единицы знаний в базу, а также проводить их анализ на непротиворечивость.

Области применения систем, основанных на знаниях, могут быть сгруппированы в несколько основных классов: прогнозирование, планирование, контроль и управление, обучение .

Технологию построения экспертных систем называют инженерией знаний . Этот процесс требует специфической формы взаимодействия создателя экспертной системы, которого называют инженером знаний, и одного или нескольких экспертов в некоторой предметной области. Инженер знаний «извлекает» из экспертов процедуры, стратегии, эмпирические правила, которые они используют при решении задач, и встраивает эти знания в экспертную систему.

Рис. 7.2. Архитектура ЭС

В результате появляется система, решающая задачи во многом так же, как человек-эксперт.

Ядро экспертной системы составляет база знаний , которая создается и накапливается в процессе ее построения. Знания выражены в явном виде и организованы так, чтобы упростить принятие решений. Накопление и организация знаний – одна из самых важных характеристик экспертной системы.

Наиболее полезной характеристикой экспертной системы является то, что она применяет для решения проблем высококачественный опыт . Этот опыт может представлять уровень мышления наиболее квалифицированных экспертов в данной области, что ведет к решениям творческим, точным и эффективным. Именно высококачественный опыт в сочетании с умением его применять делает систему рентабельной, способной заслужить признание на рынке. Этому также способствует гибкость системы. Система может наращиваться постепенно в соответствии с нуждами бизнеса или заказчика. Это означает, что можно вначале вложить сравнительно скромные средства, а потом наращивать возможности системы по мере необходимости.

Другой полезной чертой экспертных систем является наличие у них прогностических возможностей. Экспертная система может функционировать в качестве модели решения задачи в заданной области, давая ожидаемые ответы в конкретной ситуации и показывая, как изменятся эти ответы в новых ситуациях. Экспертная система может объяснить подробно, каким образом новая ситуация привела к изменениям. Это позволяет пользователю оценить возможное влияние новых фактов или информации и понять, как они связаны с решением. Аналогично пользователь может оценить влияние новых стратегий или процедур на решение, добавляя новые правила или изменяя уже существующие.

Важным свойством экспертных систем является возможность их применения для обучения и тренировки персонала . Экспертные системы могут быть разработаны с расчетом на подобный процесс обучения, так как они уже содержат необходимые знания и способны объяснить процесс своего рассуждения. Остается только добавить программное обеспечение, поддерживающее соответствующий требованиям эргономики интерфейс между обучаемым и экспертной системой. Кроме того, должны быть включены знания о методах обучения и возможном поведении пользователя.

Итак, в настоящее время ЭС является инструментом, усиливающим интеллектуальные способности всей системы в целом, и выполняет следующие задачи:

1) консультация для неопытных (непрофессиональных) пользователей,

2) помощь при анализе различных вариантов принятия решения,

3) помощь по вопросам, относящимся к смежным областям деятельности.

Наиболее широко и продуктивно ЭС применяются в бизнесе, производстве, медицине, менее – в науке.