В какой программе программировать ардуино. Что можно изменить

Здравствуйте! Я Аликин Александр Сергеевич, педагог дополнительного образования, веду кружки «Робототехника» и «Радиотехника» в ЦДЮТТ г. Лабинска. Хотел бы немного рассказать об упрощенном способе программирования Arduino с помощью программы «ArduBloсk».

Эту программу я ввел в образовательный процесс и восхищен результатом, у детей она пользуется особым спросом, особенно при написании простейших программ или для создания какого-то начального этапа сложных программ. ArduBloсk является графической средой программирования, т. е. все действия выполняются с нарисованными картинками с подписанными действиями на русском языке, что в разы упрощает изучение платформы Arduino. Дети уже со 2-го класса с легкостью осваивают работу с Arduino благодаря этой программе.

Да, кто-то может сказать, что еще существует Scratch и он тоже очень простая графическая среда для программирования Arduino. Но Scratch не прошивает Arduino, а всего лишь управляет им по средством USB кабеля. Arduino зависим от компьютера и не может работать автономно. При создании собственных проектов автономность для Arduino - это главное, особенно при создании роботизированных устройств.

Даже всеми известные роботы LEGO, такие как NXT или EV3 нашим ученикам уже не так интересны с появлением в программировании Arduino программы ArduBloсk. Еще Arduino намного дешевле любых конструкторов LEGO и многие компоненты можно просто взять от старой бытовой электронной техники. Программа ArduBloсk поможет в работе не только начинающим, но и активным пользователям платформы Arduino.

Итак, что же такое ArduBloсk? Как я уже говорил, это графическая среда программирования. Практически полностью переведена на русский язык. Но в ArduBloсk изюминка не только это, но и то, что написанную нами программу ArduBloсk конвертирует в код Arduino IDE. Эта программа встраивается в среду программирования Arduino IDE, т. е. это плагин.

Ниже приведен пример мигающего светодиода и конвертированной программы в Arduino IDE. Вся работа с программой очень проста и разобраться в ней сможет любой школьник.

В результате работы на программе можно не только программировать Arduino, но и изучать непонятные нам команды в текстовом формате Arduino IDE, ну а если же «лень» писать стандартные команды - стоит быстрыми манипуляциями мышкой набросать простенькую программку в ArduBlok, а в Arduino IDE её отладить.

Чтобы установить ArduBlok, необходимо для начала загрузить и установить Arduino IDE с официального сайта Arduino и разобраться с настройками при работе с платой Arduino UNO. Как это сделать описано на том же сайте или же на Амперке , либо посмотреть на просторах YouTube. Ну, а когда со всем этим разобрались, необходимо скачать ArduBlok с официального сайта, вот . Последние версии скачивать не рекомендую, для начинающих они очень сложны, а вот версия от 2013-07-12 - самое то, этот файл там самый популярный.

Затем, скачанный файл переименовываем в ardublock-all и в папке «документы». Создаем следующие папки: Arduino > tools > ArduBlockTool > tool и в последнею кидаем скачанный и переименованный файл. ArduBlok работает на всех операционных системах, даже на Linux, проверял сам лично на XP, Win7, Win8, все примеры для Win7. Установка программы для всех систем одинакова.

Ну, а если проще, я приготовил на Mail-диске 7z архив , распаковав который найдете 2 папки. В одной уже рабочая программа Arduino IDE, а в другой папке содержимое необходимо отправить в папку документы.

Для того, чтобы работать в ArduBlok, необходимо запустить Arduino IDE. После чего заходим во вкладку Инструменты и там находим пункт ArduBlok, нажимаем на него - и вот она, цель наша.

Теперь давайте разберемся с интерфейсом программы. Как вы уже поняли, настроек в ней нет, а вот значков для программирования предостаточно и каждый из них несет за собой команду в текстовом формате Arduino IDE. В новых версиях значков еще больше, поэтому разобраться с ArduBlok последней версии сложно и некоторые из значков не переведены на русский.

В разделе «Управление» мы найдем разнообразные циклы.

В разделе «Порты» мы можем с вами управлять значениями портов, а также подключенными к ним звукоизлучателя, сервомашинки или ультразвукового датчика приближения.

В разделе «Числа/Константы» мы можем с вами выбрать цифровые значения или создать переменную, а вот то что ниже вряд ли будите использовать.

В разделе «Операторы» мы с вами найдем все необходимые операторы сравнения и вычисления.

В разделе «Утилиты» в основном используются значки со временем.

«TinkerKit Bloks»- это раздел для приобретенных датчиков комплекта TinkerKit. Такого комплекта у нас, конечно же, нет, но это не значит, что для других наборов значки не подойдут, даже наоборот - ребятам очень удобно использовать такие значки, как включения светодиода или кнопка. Эти знаки используются практически во всех программах. Но у них есть особенность - при их выборе стоят неверные значки обозначающие порты, поэтому их необходимо удалить и подставить значок из раздела «числа/константы» самый верхний в списке.

«DF Robot» - этот раздел используется при наличии указанных в нем датчиков, они иногда встречаются. И наш сегодняшний пример - не исключение, мы имеем «Регулируемый ИК выключатель» и «Датчик линии». «Датчик линии» отличается от того, что на картинке, так как он от фирмы Амперка. Действия их идентичны, но датчик от Амперки намного лучше, так как в нем имеется регулятор чувствительности.

«Seeedstudio Grove» - датчики этого раздела мной ни разу не использовались, хотя тут только джойстики. В новых версиях этот раздел расширен.

И последний раздел это «Linker Kit». Датчики, представленные в нем, мне не попадались.

Хочется показать пример программы на роботе, двигающемся по полосе. Робот очень прост, как в сборке, так и в приобретении, но обо всем по порядку. Начнем с его приобретения и сборки.

Вот сам набор деталей все было приобретено на сайте Амперка .

  1. AMP-B001 Motor Shield (2 канала, 2 А) 1 890 руб
  2. AMP-B017 Troyka Shield 1 690 руб
  3. AMP-X053 Батарейный отсек 3×2 AA 1 60 руб
  4. AMP-B018 Датчик линии цифровой 2 580 руб
  5. ROB0049 Двухколёсная платформа miniQ 1 1890 руб
  6. SEN0019 Инфракрасный датчик препятствий 1 390 руб
  7. FIT0032 Крепление для инфракрасного датчика препятствий 1 90 руб
  8. A000066 Arduino Uno 1 1150 руб

Для начала соберем колесную платформу и припаяем к двигателям провода.

Затем установим стойки, для крепления платы Arduino UNO, которые были взяты от старой материнской платы ну или иные подобные крепления.

Затем крепим на эти стойки плату Arduino UNO, но один болтик прикрутить не получиться - разъемы мешают. Можно, конечно, их выпаять, но это уже на ваше усмотрение.

Следующим крепим инфракрасный датчик препятствий на его специальное крепление. Обратите внимание, что регулятор чувствительности находиться сверху, это для удобства регулировки.

Теперь устанавливаем цифровые датчики линии, тут придется поискать пару болтиков и 4 гайки к ним Две гайки устанавливаем между самой платформой и датчиком линии, а остальными фиксируем датчики.

Следующим устанавливаем Motor Shield или по другому можно назвать драйвер двигателей. В нашем случае обратите внимание на джампер. Мы не будем использовать отдельное питание для двигателей, поэтому он установлен в этом положение. Нижняя часть заклеивается изолентой, это чтобы не было случайных замыканий от USB разъема Arduino UNO, это на всякий случай.

Сверху Motor Shield устанавливаем Troyka Shield. Он необходим для удобства соединения датчиков. Все используемые нами сенсоры цифровые, поэтому датчики линии подключены к 8 и 9 порту, как их еще называют пины, а инфракрасный датчик препятствий подключен к 12 порту. Обязательно обратите внимание, что нельзя использовать порты 4, 5, 6, 7 так как оны используются Motor Shield для управлением двигателями. Я эти порты даже специально закрасил красным маркером, чтобы ученики разобрались.

Если вы уже обратили внимание, мной была добавлена черная втулка, это на всякий случай, чтобы установленный нами батарейный отсек не вылетел. И наконец, всю конструкцию мы фиксируем обычной резинкой.

Подключения батарейного отсека может быть 2-х видов. Первый подключение проводов к Troyka Shield. Также возможно подпаять штекер питания и подключать уже к самой плате Arduino UNO.

Вот наш робот готов. Перед тем как начать программировать, надо будет изучить, как все работает, а именно:
- Моторы:
Порт 4 и 5 используются для управления одним мотором, а 6 и 7 другим;
Скоростью вращения двигателей мы регулируя ШИМом на портах 5 и 6;
Вперед или назад, подавая сигналы на порты 4 и 7.
- Датчики:
У нас все цифровые, поэтому дают логические сигналы в виде 1 либо 0;
А что бы их отрегулировать, в них предусмотрены специальные регуляторы а при помощи подходящей отвертки их можно откалибровать.

Подробности можно узнать на Амперке . Почему тут? Потому что там очень много информации по работе с Arduino.

Ну что ж, мы, пожалуй, все просмотрели поверхностно, изучили и конечно же собрали робота. Теперь его необходимо запрограммировать, вот она - долгожданная программа!

И программа конвертированная в Arduino IDE:

Void setup() { pinMode(8 , INPUT); pinMode(12 , INPUT); pinMode(9 , INPUT); pinMode(4 , OUTPUT); pinMode(7 , OUTPUT); pinMode(5, OUTPUT); pinMode(6, OUTPUT); } void loop() { if (digitalRead(12)) { if (digitalRead(8)) { if (digitalRead(9)) { digitalWrite(4 , HIGH); analogWrite(5, 255); analogWrite(6, 255); digitalWrite(7 , HIGH); } else { digitalWrite(4 , HIGH); analogWrite(5, 255); analogWrite(6, 50); digitalWrite(7 , LOW); } } else { if (digitalRead(9)) { digitalWrite(4 , LOW); analogWrite(5, 50); analogWrite(6, 255); digitalWrite(7 , HIGH); } else { digitalWrite(4 , HIGH); analogWrite(5, 255); analogWrite(6, 255); digitalWrite(7 , HIGH); } } } else { digitalWrite(4 , HIGH); analogWrite(5, 0); analogWrite(6, 0); digitalWrite(7 , HIGH); } }

В заключении хочу сказать, эта программа просто находка для образования, даже для самообучения она поможет изучить команды Arduino IDE. Самая главная изюминка - это то, что более 50 значков установки, она начинает «глючить». Да, действительно, это изюминка, так как постоянное программирование только на ArduBlok не обучит вас программированию в Arduino IDE. Так называемый «глюк» дает возможность задумываться и стараться запоминать команды для точной отладки программ.

Желаю успехов.

Доброго времени суток, Хабр. Запускаю цикл статей, которые помогут Вам в знакомстве с Arduino. Но это не значит, что, если Вы не новичок в этом деле – Вы не найдёте ничего для себя интересного.

Введение

Было бы не плохо начать со знакомства с Arduino. Arduino – аппаратно-программные средства для построения систем автоматики и робототехники. Главным достоинством есть то, что платформа ориентирована на непрофессиональных пользователей. То есть любой может создать своего робота вне зависимости от знаний программирования и собственных навыков.

Начало

Создание проекта на Arduino состоит из 3 главных этапов: написание кода, прототипирование (макетирование) и прошивка. Для того, чтоб написать код а потом прошить плату нам необходима среда разработки. На самом деле их есть немало, но мы будем программировать в оригинальной среде – Arduino IDE. Сам код будем писать на С++, адаптированным под Arduino. Скачать можно на официальном сайте . Скетч (набросок) – программа, написанная на Arduino. Давайте посмотрим на структуру кода:


main(){ void setup(){ } void loop(){ } }

Важно заметить, что обязательную в С++ функцию main() процессор Arduino создаёт сам. И результатом того, что видит программист есть:


void setup(){ } void loop(){ }

Давайте разберёмся с двумя обязательными функциями. Функция setup() вызывается только один раз при старте микроконтроллера. Именно она выставляет все базовые настройки. Функция loop() - циклическая. Она вызывается в бесконечном цикле на протяжении всего времени работы микроконтроллера.

Первая программа

Для того, чтоб лучше понять принцип работы платформы, давайте напишем первую программу. Эту простейшую программу (Blink) мы выполним в двух вариантах. Разница между ними только в сборке.


int Led = 13; // объявляем переменную Led на 13 пин (выход) void setup(){ pinMode(Led, OUTPUT); // определяем переменную } void loop(){ digitalWrite(Led, HIGH); // подаём напряжение на 13 пин delay(1000); // ожидаем 1 секунду digitalWrite(Led, LOW); // не подаём напряжение на 13 пин delay(1000); // ожидаем 1 секунду }

Принцип работы этой программы достаточно простой: светодиод загорается на 1 секунду и тухнет на 1 секунду. Для первого варианта нам не понадобиться собирать макет. Так как в платформе Arduino к 13 пину подключён встроенный светодиод.

Прошивка Arduino

Для того, чтоб залить скетч на Arduino нам необходимо сначала просто сохранить его. Далее, во избежание проблем при загрузке, необходимо проверить настройки программатора. Для этого на верхней панели выбираем вкладку «Инструменты». В разделе «Плата», выберете Вашу плату. Это может быть Arduino Uno, Arduino Nano, Arduino Mega, Arduino Leonardo или другие. Также в разделе «Порт» необходимо выбрать Ваш порт подключения (тот порт, к которому вы подключили Вашу платформу). После этих действий, можете загружать скетч. Для этого нажмите на стрелочку или во вкладке «Скетч» выберете «Загрузка» (также можно воспользоваться сочетанием клавиш “Ctrl + U”). Прошивка платы завершена успешно.

Прототипирование/макетирование

Для сборки макета нам необходимы следующие элементы: светодиод, резистор, проводки (перемычки), макетная плата(Breadboard). Для того, чтоб ничего не спалить, и для того, чтоб всё успешно работало, надо разобраться со светодиодом. У него есть две «лапки». Короткая – минус, длинная – плюс. На короткую мы будем подключать «землю» (GND) и резистор (для того, чтоб уменьшить силу тока, которая поступает на светодиод, чтоб не спалить его), а на длинную мы будем подавать питание (подключим к 13 пину). После подключения, загрузите на плату скетч, если вы ранее этого не сделали. Код остаётся тот же самый.


На этом у нас конец первой части. Спасибо за внимание.

Arduino является очень популярным среди всех любителей конструировать. Следует ознакомить с ними и тех, кто ни разу про него не слышал.

Что собой представляет Arduino?

Как вкратце можно охарактеризовать Arduino? Оптимальными словами будут такие: Arduino представляет собой инструмент, с помощью которого можно создавать различные электронные устройства. По сути, это настоящая аппаратная вычислительная платформа универсального предназначения. Она может использоваться как для построения простых схем, так и для реализации довольно сложных проектов.

Базируется конструктор на своей аппаратной части, которая представляет собой плату ввода-вывода. Для программирования платы используются языки, которые основаны на C/C++. Они получили название, соответственно, Processing/Wiring. От группы С они унаследовали предельную простоту, благодаря чему осваиваются они весьма быстро любым человеком, и применять знания на практике не является довольно значительной проблемой. Чтобы вы понимали легкость работы, часто говорят, что Arduino - для начинающих волшебников-конструкторов. Разобраться с платами "Ардуино" могут даже дети.

Что на нём можно собрать?

Применение Arduino довольно разнообразно, его можно использовать, как и для простейших примеров, которые будут рекомендованы в конце статьи, так и для довольно сложных механизмов, среди которых манипуляторы, роботы или производственные станки. Некоторые умельцы умудряются на основе таких систем делать планшеты, телефоны, системы наблюдения и безопасности домов, системы «умный дом» или просто компьютеры. Arduino-проекты для начинающих, которыми может для начала заняться даже тот, кто не имеет опыта, находятся в конце статьи. Их даже можно использовать для создания примитивных систем виртуальной реальности. Всё благодаря довольной универсальной аппаратной составляющей и возможностям, которые предоставляет программирование Arduino.

Где приобрести составляющие?

Оригинальными считаются составляющие, произведённые в Италии. Но и цена таких комплектов не низкая. Поэтому целый ряд компаний или даже отдельные люди кустарным методом изготавливают Arduino-совместимые устройства и компоненты, которые в шутку прозывают производственными клонами. При покупке таких клонов нельзя с уверенностью сказать, что они будут работать, но желание сэкономить берёт свое.

Составляющие могут приобретаться или в составе комплектов, или по отдельности. Существуют даже уже заранее подготовленные наборы, чтобы собрать машинки, вертолёты с различными типами управления или корабли. Набор, как на фотографии вверху, произведённый в Китае, обойдётся в 49 долларов.

Подробнее об аппаратуре

Плата Ардуино является простым микроконтроллером AVR , который был прошит бутлоадером и имеет минимально необходимый минимум USB-UART порт. Есть ещё важные составляющие, но в пределах статьи лучше будет остановиться только на этих двух составляющих.

Сначала о микроконтроллере, механизме, построенном на одной схеме, в которой и размещается разработанная программа. На программу могут влиять нажатия кнопок, получение сигналов от составляющих творения (резисторов, транзисторов, датчиков и т. д.) и т. д. Причем датчики могут быть самые различные по своему предназначению: освещения, ускорения, температуры, расстояния, давления, препятствия и т. д. В качестве устройств индикации может вестись использование простых деталей, от светодиодов и пищалок к сложным устройствам, вроде графических дисплеев. В качестве рассматриваются моторчики, клапаны, реле, сервомашинки, электромагниты и множество других, которых перечислять очень и очень долго. С чем-то из этих списков МК работает прямо, с помощью соединительных проводов. Для некоторых механизмов нужны переходные устройства. Но если вы уж начнёте конструировать, оторваться вам будет сложно. Теперь поговорим о программировании Arduino.

Подробнее о процессе программирования платы

Уже готовую к работе на микроконтроллере программу называют прошивкой. Может быть как один проект, так и проекты Arduino, поэтому каждую прошивку желательно было бы хранить в отдельной папке, чтобы ускорить процесс нахождения нужных файлов. Она прошивается на кристалл МК посредством специализированных устройств: программаторов. И тут "Ардуино" имеет одно преимущество - ему не нужен программатор. Всё сделано так, чтобы программирование Arduino для начинающих не составляло труда. Написанный код можно загрузить в МК посредством USB-шнура. Достигается это преимущество не каким-то встроенным уже заранее программатором, а спецпрошивкой - бутлоадером. Бутлоадер является специальной программкой, которая запускается сразу после подключения и слушает, будут ли какие-то команды, прошивать ли кристалл, есть ли проекты Arduino или нет. Из использования бутлоадера выплывает несколько очень привлекательных плюсов:

  1. Использование только одного канала связи, что не требует дополнительных затрат по времени. Так, проекты Arduino не требуют, чтобы вы подключали множество различных проводов, и возникала путаница при их использовании. Для успешной работы хватает одного USB-шнура.
  2. Защита от кривых рук. Довести микроконтроллер до состояния кирпича с помощью прямой прошивки довольно легко, сильно напрягаться не надо. При работе с бутлоадером до потенциально опасных настроек вам не добраться (с помощью программы разработки, конечно, а так сломать можно всё). Поэтому Arduino для начинающих предназначен не только с той точки зрения, что понятен и удобен, он ещё позволит избежать нежелательных денежных трат, связанных с неопытностью работающего с ними человека.

Проекты для начала

Когда вы обзавелись комплектом, паяльником, канифолью и припоем, не следует сразу лепить очень сложные конструкции. Их, конечно, слепить можно, но шанс успеха в Arduino для начинающих довольно низкий при сложных проектах. Для тренировки и «набивания» руки вы можете попробовать реализовать несколько более простых задумок, которые помогут разобраться с взаимодействием и работой "Ардуино". В качестве таких первых шагов в работе с Arduino для начинающих можно посоветовать рассмотреть:

  1. Создать который будет работать благодаря "Ардуино".
  2. Подключение отдельной кнопки к "Ардуино". При этом можно сделать так, чтобы кнопка могла регулировать свечение светодиода из пункта №1.
  3. Подключение потенциометра.
  4. Управление сервоприводом.
  5. Подключение и работа с трехцветным светодиодом.
  6. Подключение пьезоэлемента.
  7. Подключение фоторезистора.
  8. Подключение датчика движения и сигналы о его работе.
  9. Подключение датчика влажности или температуры.

Проекты для будущего

Вряд ли вы интересуетесь "Ардуино" для того, чтобы подключать отдельные светодиоды. Скорее всего, вас привлекает возможность создать свою машинку, или летающую вертушку. Такие проекты сложны в своей реализации, они потребует много времени и усидчивости, но, выполнив их, вы получите то, что желали: ценный опыт конструирования с Arduino для начинающих.

Вам понадобится

  • - плата Arduino UNO,
  • - кабель USB (USB A - USB B),
  • - персональный компьютер,
  • - светодиод,
  • - резистор 220 Ом,
  • - пара проводов 5-10 см,
  • - при наличии - макетная плата (breadboard).

Инструкция

Загрузите среду разработки Arduino для своей операционной системы (поддерживаются ОС Windows, Mac OS X, Linux) на странице http://arduino.cc/en/Main/Software, можно установщик, можно . Скачанный файл содержит также и драйверы для плат Arduino.

Установите драйвер. Рассмотрим вариант для ОС Windows. Для этого дождитесь, когда операционная система предложит установить драйвер. Откажитесь. Нажмите Win + Pause, запустите Диспетчер устройств. Найдите раздел "Порты (COM & LPT)". Увидите там порт с названием "Arduino UNO (COMxx)". Кликните правой кнопкой мыши на нём и выберите "Обновить драйвер". Далее выбираете расположение драйвера, который вы только что скачали.

Среда разработки уже содержит в себе множество примеров для изучения работы платы. Откройте пример "Blink": Файл > Примеры > 01.Basics > Blink.

Укажите среде разработки свою плату. Для этого в меню Сервис > Плата выберите "Arduino UNO".

Выберите порт, которому назначена плата Arduino. Чтобы узнать, к какому порту подключена плата, запустите диспетчер устройств и найдите раздел Порты (COM & LPT). В скобках после названия платы будет указан порта. Если платы нет в списке, попробуйте её от компьютера и, выждав несколько секунд, снова.

Отключите плату от компьютера. Соберите схему, как показано на рисунке. Обратите внимание, что короткая ножка светодиода должна быть соединена с выводом GND, длинная через резистор с цифровым пином 13 платы Arduino. Удобнее пользоваться макетной , но при её отсутствии можно соединить провода скруткой.
Важное примечание! Цифровой пин 13 уже имеет свой резистор на плате. Поэтому при подключении светодиода к плате внешний резистор использовать не обязательно. При подключении светодиода к любым другим выводам Ардуино использование обязательно!

Теперь можно загрузить программу в память платы. Подключите плату к компьютеру, подождите несколько секунд, пока происходит инициализация платы. Нажмите кнопку "Загрузить", и Ваш запишется в память платы Arduino. Программирование под Arduino весьма интуитивно и совсем не сложно. Посмотрите на изображение - в комментариях к программе есть небольшие пояснения. Этого достаточно чтобы разобраться с вашим первым экспериментом.

Видео по теме

Обратите внимание

Будьте внимательны при работе с платой Arduino - это электронное изделие, которое требует бережного отношения. Снизу платы есть оголённые проводники, и если Вы положите плату на токопроводящую поверхность, есть вероятность сжечь плату. Также не трогайте плату влажными или мокрыми руками и избегайте при работе сырых помещений.

Полезный совет

В сети есть множество сайтов, посвящённых Arduino. Читайте, осваивайте, не бойтесь экспериментировать и познавать новое!

Источники:

  • Мигаем светодиодом

Программирование привлекает и интересует многих современных людей, в особенности - молодых и начинающих специалистов, которые только начинают выбирать будущую профессию. Они нередко встают перед вопросом - с чего начать в изучении программирования? Если вы решили научиться программировать, не стоит совершать распространенную ошибку - не беритесь сразу за сложные системы и языки (например, Си). Начав со слишком сложного языка, вы можете сформировать неправильное впечатление о программировании в целом. Начинающим рекомендуется работать с самыми простыми системами - например, учиться писать программы в Бейсик. Изучение этого языка позволит в короткие сроки добиться хороших результатов. Усвоить PureBasic несложно - этот универсальный компилируемый язык, имеющий широкие возможности, поможет вам понять основы программирования и совершенствовать свои умения в дальнейшем.

Инструкция

На изучение основ программирования у вас может уйти около года. Вам предстоит узнать особенности процедурного и объектно-ориентированного программирования, принципы работы с бинарными деревьями, массивами, списками и т.д. Только после изучения основ переходите к более сложным задачам.

Посещайте сайты разработчиков языков программирования, изучайте документацию. Обязательно общайтесь на форумах программистов, они, как правило, отвечают на большинство вопросов новичков.

Математика

Если вы хотите научиться программировать, вам просто необходимо знать математику. В процессе работы вам предстоит столкнуться с большим количеством проблем, которые невозможно будет решить без знания основ этой науки. Существует большое количество математических , систем и теорий (ряды Фурье, числа Фибоначчи и т.д.), которые значительно упрощают процесс программирования.

Обучение не заканчивается

Эволюция языков программирования не стоит на месте, их развитие идет постоянно. Старайтесь читать как можно больше литературы, посвященной той области программирования, в которой вы планируете работать. Всегда ищите альтернативные пути решения возникающих проблем, это поможет вам постоянно повышать эффективность работы создаваемого вами программного кода. Беседуйте с профессиональными программистами, они всегда смогут посоветовать, как справиться с той или иной проблемой. Чтение кодов их программ также принесет вам большую пользу.
Невозможно постоянно держать все в уме. Не стесняйтесь пользоваться справочниками по языкам программирования.

Задачи программирования, какими бы простыми они ни были, никогда не решаются с наскока. Они всегда требуют выработки правильного алгоритма действий, эффективного в данной конкретной ситуации. Поиск оптимальных алгоритмов требует постоянной практики и тренировки. Старайтесь чаще решать небольшие задачи по программированию (найти их можно на специализированных сайтах), это поможет вам постепенно оттачивать свои навыки в этой области.

Этот урок дает минимальные знания, необходимые для программирования систем Ардуино на языке C. Можно только просмотреть его и в дальнейшем использовать как справочную информацию. Тем, кто программировал на C в других системах можно пропустить статью.

Повторю, что это минимальная информация. Описание указателей, классов, строковых переменных и т.п. будет дано в последующих уроках. Если что-то окажется непонятным, не беспокойтесь. В дальнейших уроках будет много примеров и пояснений.

Структура программы Ардуино.

Структура программы Ардуино достаточно проста и в минимальном варианте состоит из двух частей setup() и loop().

void setup() {

void loop() {

Функция setup() выполняется один раз, при включении питания или сбросе контроллера. Обычно в ней происходят начальные установки переменных, регистров. Функция должна присутствовать в программе, даже если в ней ничего нет.

После завершения setup() управление переходит к функции loop(). Она в бесконечном цикле выполняет команды, записанные в ее теле (между фигурными скобками). Собственно эти команды и совершают все алгоритмические действия контроллера.

Первоначальные правила синтаксиса языка C.

; точка с запятой Выражения могут содержать сколь угодно много пробелов, переносов строк. Признаком завершения выражения является символ ”точка с запятой ”.

z = x + y;
z= x
+ y ;

{ } фигурные скобки определяют блок функции или выражений. Например, в функциях setup() и loop().

/* … */ блок комментария , обязательно закрыть.

/* это блок комментария */

// однострочный комментарий , закрывать не надо, действует до конца строки.

// это одна строка комментария

Переменные и типы данных.

Переменная это ячейка оперативной памяти, в которой хранится информация. Программа использует переменные для хранения промежуточных данных вычислений. Для вычислений могут быть использованы данные разных форматов, разной разрядности, поэтому у переменных в языке C есть следующие типы.

Тип данных Разрядность, бит Диапазон чисел
boolean 8 true, false
char 8 -128 … 127
unsigned char 8 0 … 255
byte 8 0 … 255
int 16 -32768 … 32767
unsigned int 16 0 … 65535
word 16 0 … 65535
long 32 -2147483648 … 2147483647
unsigned long 32 0 … 4294967295
short 16 -32768 … 32767
float 32 -3.4028235+38 … 3.4028235+38
double 32 -3.4028235+38 … 3.4028235+38

Типы данных выбираются исходя из требуемой точности вычислений, форматов данных и т.п. Не стоит, например, для счетчика, считающего до 100, выбирать тип long. Работать будет, но операция займет больше памяти данных и программ, потребует больше времени.

Объявление переменных.

Указывается тип данных, а затем имя переменной.

int x; // объявление переменной с именем x типа int
float widthBox; // объявление переменной с именем widthBox типа float

Все переменные должны быть объявлены до того как будут использоваться.

Переменная может быть объявлена в любой части программы, но от этого зависит, какие блоки программы могут ее использовать. Т.е. у переменных есть области видимости.

  • Переменные, объявленные в начале программы, до функции void setup(), считаются глобальными и доступны в любом месте программы.
  • Локальные переменные объявляются внутри функций или таких блоков, как цикл for, и могут использоваться только в объявленных блоках. Возможны несколько переменных с одним именем, но разными областями видимости.

int mode; // переменная доступна всем функциям

void setup() {
// пустой блок, начальные установки не требуются
}

void loop() {

long count; // переменная count доступна только в функции loop()

for (int i=0; i < 10;) // переменная i доступна только внутри цикла
{
i++;
}
}

При объявлении переменной можно задать ее начальное значение (проинициализировать).

int x = 0; // объявляется переменная x с начальным значением 0
char d = ‘a’; // объявляется переменная d с начальным значением равным коду символа ”a”

При арифметических операциях с разными типами данных происходит автоматическое преобразование типов данных. Но лучше всегда использовать явное преобразование.

int x; // переменная int
char y; // переменная char
int z; // переменная int

z = x + (int) y; // переменная y явно преобразована в int

Арифметические операции.

Операции отношения.

Логические операции.

Операции над указателями.

Битовые операции.

& И
| ИЛИ
^ ИСКЛЮЧАЮЩЕЕ ИЛИ
~ ИНВЕРСИЯ
<< СДВИГ ВЛЕВО
>> СДВИГ ВПРАВО

Операции смешанного присваивания.

Выбор вариантов, управление программой.

Оператор IF проверяет условие в скобках и выполняет последующее выражение или блок в фигурных скобках, если условие истинно.

if (x == 5) // если x=5, то выполняется z=0
z=0;

if (x > 5) // если x >
{ z=0; y=8; }

IF … ELSE позволяет сделать выбор между двух вариантов.

if (x > 5) // если x > 5, то выполняется блок z=0, y=8;
{
z=0;
y=8;
}

{
z=0;
y=0;
}

ELSE IF – позволяет сделать множественный выбор

if (x > 5) // если x > 5, то выполняется блок z=0, y=8;
{
z=0;
y=8;
}

else if (x > 20) // если x > 20, выполняется этот блок
{
}

else // в противном случае выполняется этот блок
{
z=0;
y=0;
}

SWITCH CASE - множественный выбор. Позволяет сравнить переменную (в примере это x) с несколькими константами (в примере 5 и 10) и выполнить блок, в котором переменная равна константе.

switch (x) {

case 5:
// код выполняется если x = 5
break;

case 10:
// код выполняется если x = 10
break;

default:
// код выполняется если не совпало ни одно предыдущее значение
break;
}

Цикл FOR . Конструкция позволяет организовывать циклы с заданным количеством итераций. Синтаксис выглядит так:

for (действие до начала цикла;
условие продолжения цикла;
действие в конце каждой итерации) {

// код тела цикла

Пример цикла из 100 итераций.

for (i=0; i < 100; i++) // начальное значение 0, конечное 99, шаг 1

{
sum = sum + I;
}

Цикл WHILE . Оператор позволяет организовывать циклы с конструкцией:

while (выражение)
{
// код тела цикла
}

Цикл выполняется до тех пор, пока выражение в скобках истинно. Пример цикла на 10 итераций.

x = 0;
while (x < 10)
{
// код тела цикла
x++;
}

DO WHILE – цикл с условием на выходе.

do
{
// код тела цикла
} while (выражение);

Цикл выполняется пока выражение истинно.
BREAK – оператор выхода из цикла. Используется для того, чтобы прервать выполнение циклов for, while, do while.

x = 0;
while (x < 10)
{
if (z > 20) break; // если z > 20, то выйти из цикла
// код тела цикла
x++;
}

GOTO – оператор безусловного перехода.

goto metka1; // переход на metka1
………………
metka1:

CONTINUE - пропуск операторов до конца тела цикла.

x = 0;
while (x < 10)
{
// код тела цикла
if (z > 20) continue; // если z > 20, то вернуться на начало тела цикла
// код тела цикла
x++;
}

Массивы.

Массив это область памяти, где последовательно хранятся несколько переменных.

Объявляется массив так.

int ages; // массив из 10 переменных типа int

float weight; // массив из 100 переменных типа float

При объявлении массивы можно инициализировать:

int ages = { 23, 54, 34, 24, 45, 56, 23, 23, 27, 28};

Обращаются к переменным массивов так:

x = ages; // x присваивается значение из 5 элемента массива.
ages = 32; // 9 элементу массива задается значение 32

Нумерация элементов массивов всегда с нуля.

Функции.

Функции позволяют выполнять одни и те же действия с разными данными. У функции есть:

  • имя, по которому ее вызывают;
  • аргументы – данные, которые функция использует для вычисления;
  • тип данных, возвращаемый функцией.

Описывается пользовательская функция вне функций setup() и loop().

void setup() {
// код выполняется один раз при запуске программы
}

void loop() {
// основной код, выполняется в цикле
}

// объявление пользовательской функции с именем functionName
type functionName(type argument1, type argument1, … , type argument)
{
// тело функции
return();
}

Пример функции, вычисляющей сумму квадратов двух аргументов.

int sumQwadr (int x, int y)
{
return(x* x + y*y);
}

Вызов функции происходит так:

d= 2; b= 3;
z= sumQwadr(d, b); // в z будет сумма квадратов переменных d и b

Функции бывают встроенные, пользовательские, подключаемые.

Очень коротко, но этих данных должно хватить для того, чтобы начать писать программы на C для систем Ардуино.

Последнее, что я хочу рассказать в этом уроке, как принято оформлять программы на C. Думаю, если вы читаете этот урок в первый раз, стоит пропустить этот раздел и вернутся к нему позже, когда будет что оформлять.

Главная цель внешнего оформления программ это улучшить читаемость программ, уменьшить число формальных ошибок. Поэтому для достижения этой цели можно смело нарушать все рекомендации.

Имена в языке C.

Имена, представляющие типы данных, должны быть написаны в смешанном регистре. Первая буква имени должна быть заглавная (верхний регистр).

Signal, TimeCount

Переменные должны быть записаны именами в смешанном регистре, первая буква строчная (нижний регистр).

Рубрика: . Вы можете добавить в закладки.