Использование протоколов Интернета в IP-телефонии. Протокол IP

Сетевой протокол IP является базовым строительным элементом всей сети Интернет, построенной на базе стека протоколов TCP/IP. Он обеспечивает работу базовой службы доставки пакетов, все протоколы сетевого и соседних уровней используют протокол IP для доставки данных.

Протокол IP выполняет ряд важных функций:

  1. Определяет базовую единицу передачи информации в сети Интернет – дейтограмму;
  2. Определяет схему интернет-адресации (IP-адрес);
  3. Осуществляет обмен данными между уровнем доступа к сети и транспортным уровнем;
  4. Выполняет маршрутизацию пакетов, адресованных удаленным узлам;
  5. Отвечает за разбиение и сборку дейтаграмм.

Особенностью протокола IP является то, что он не проверяет были ли данные успешно доставлены. Иными словами, данный протокол работает без создания логических соединений . Установка логических соединений делегируется протоколам других уровней (например, протокол TCP). Помимо этого, при обнаружении и исправлении ошибок протокол IP также полагается на другие протоколы.

Формат пакета, определяемый протоколом IP называется дейтаграммой.

Как видно дейтаграмма содержит множество различных полей, но нам интересны, в первую очередь, IP-адрес отправителя и IP-адрес получателя. Данные поля занимают по 4 байта каждый. По сути это число от 0.0.0.0 до 255.255.255.255, которое определяет адрес узла в сети Интернет. Доставка пакетов осуществляется на основе Ip-адреса получателя. Если адреса отправителя и получателя находятся в одной подсети, то пакет доставляется напрямую в пункт назначения. В противном случае, пакет будет сначала доставлен на шлюз по-умолчанию (маршрутизатор в локальной сети). Шлюз занимается коммутацией пакетов между физически обособленными сетями.

Другое полезное поле – идентификатор протокола. Данное поле занимает всего 1 байт и указывает какому протоколу верхнего уровня принадлежит пакет (например: TCP, UDP, RIP и др.). Иными словами, поле “протокол” указывает на то, какой тип данных передается поверх “IP”.

Время жизни пакета (TTL) – число переходов (хопов), за который пакет может существовать до своего исчезновения. Хоп – это участок между маршрутизаторами. Наличие этого параметра не позволяет пакету бесконечно путешествовать по сети. Поле TTL занимает 2 байта, соответственно максимальное значение TTL = 255.

Контрольная сумма заголовка – защищает от искажений, которые могут возникнуть в течении передачи пакета. Контрольная сумма вычисляется в передатчике, и полученное значение посылается с пакетом. Приемник повторяет те же самые вычисления всего пакета, включая контрольную сумму. Если результат вычисления удовлетворителен, то пакет принимается; в противном случае он отклоняется. Стоит отметить, что так как заголовки IP-пакета могут меняться (тот же самый TTL), то контрольная сумма рассчитывается при каждой обработке IP-пакета.

Поля “идентификатор”, “флаги”, “указатель фрагмента” относятся к такому понятию как фрагментация. IP-фрагментация – это разбиение датаграммы на множество частей, которые могут быть повторно собраны позже. При использовании пакетного форматирования сеть может передавать длинные сообщения более надежно и эффективно.

Поле идентификатор занимает 2 байта и используется для распознавания пакетов, образовавшихся путем фрагментации исходного пакета. Все фрагменты должны иметь одинаковое значение этого поля.

Поле флаги занимает 3 бита и содержит признаки, связанные с фрагментацией. Установленный бит DF (Do not Fragment) запрещает маршрутизатору фрагментировать данный пакет, а установленный бит MF (More Fragment) говорит о том, что данный пакет является промежуточным (не последним фрагментом).

Поле указатель фрагмента занимает 13 бит и задает смещение в байтах поля данных этого пакет от начала общего поля данных исходного пакета, подвергнутого фрагментации.

Поле тип сервиса (ToS) – байт, содержащий набор критериев, определяющих тип обслуживания IP-пакетов. Тип обслуживания позволяет приоритезировать IP-трафик на сетевых маршрутизаторах, с целью обеспечения высокого качества передачи данных.

Байт побитно (0 – старший, 7 – младший):

  • 0-2 – приоритет (predence) данного IP-пакета
  • 3 – требования ко времени задержки (delay) передачи IP-пакета (0 – нормальная, 1 – низкая задержка)
  • 4 – требования к пропускной способности (throughput) маршрута, по которому должен отправляться IP-сегмент (0 – низкая, 1 – высокая пропускная способность)
  • 5 – требования к надежности (reliability) передачи IP-пакета (0 – нормальная, 1 – высокая надежность)
  • 6-7 – явное сообщение о задержке

Подписывайтесь на нашу

IP (internet protocol - межсетевой протокол) - маршрутизируемый сетевой протокол, протокол сетевого уровня семейства («стека») TCP/IP. IPv4 описан в RFC 791 (сентябрь 1981 года).

Основные положения:

    IP - основной протокол стека TCP/IP, он решает вопросы доставки сообщений между узлами составной сети.

    IP является дейтаграммным протоколом: при передаче информации по протоколу IP каждый пакет передается от узла к узлу и обрабатывается в узлах независимо от других пакетов.

    IP относится к протоколам без установки соединений. IP используется для негарантированной доставки данных, разделяемых на так называемые пакеты от одного узла сети к другому. Это означает, что на уровне этого протокола (третий уровень сетевой модели OSI) не даётся гарантий надёжной доставки пакета до адресата. В частности, пакеты могут прийти не в том порядке, в котором были отправлены, продублироваться (когда приходят две копии одного пакета; в реальности это бывает крайне редко), оказаться повреждёнными (обычно повреждённые пакеты уничтожаются) или не прибыть вовсе. Гарантию безошибочной доставки пакетов дают протоколы более высокого (транспортного уровня) сетевой модели OSI - например, Порты TCP - которые используют IP в качестве транспорта.

    Протокол IP использует принцип маршрутизации. Вид таблицы IP- маршрутизации зависит от конкретной реализации маршрутизатора, но в таблицах всех типов маршрутизаторов есть все ключевые поля, необходимые для выполнения маршрутизации. Существует несколько источников, поставляющих записи в таблицу маршрутизации:

    • Во-первых, при инициализации программное обеспечение стека TCP/IP заносит в таблицу записи о непосредственно подключенных сетях и маршрутизаторах по умолчанию, а также записи об особых адресах типа 127.0.0.0.

      Во-вторых, администратор вручную заносит статические записи о специфичных маршрутах или о маршрутизаторе по умолчанию.

      В-третьих, протоколы маршрутизации автоматически заносят в таблицу динамические записи о имеющихся маршрутах.

    Важной особенностью протокола IP, отличающей его от других сетевых протоколов, является его способность выполнять динамическую фрагментацию пакетов при передаче их между сетями с различными MTU .

Структура IP пакета

Пакет протокола IP состоит из заголовка и поля данных. Максимальная длина пакета 65 535 байт. Заголовок обычно имеет длину 20 байт и содержит информацию о сетевых адресах отправителя и получателя, о параметрах фрагментации, о времени жизни пакета, о контрольной сумме и некоторых других. В поле данных IP- пакета находятся сообщения более высокого уровня.

Рассмотрим поля структуру IP- пакета на конкретном примере.

    Поле Длина заголовка (IHL) IP- пакета занимает 4 бит и указывает значение длины заголовка, измеренное в 32-битовых словах. Обычно заголовок IP-пакета имеет длину в 20 байт (пять 32-битовых слов), но при увеличении объема служебной информации эта длина может быть увеличена. Наибольший заголовок занимает 60 октетов.

    Поле Тип сервиса (Type of Service) занимает один байт и задает приоритетность пакета и вид критерия выбора маршрута. Первые три бита этого поля образуют подполе приоритета пакета (Precedence) . Приоритет может иметь значения от самого низкого - 0 (нормальный пакет) до самого высокого - 7 (пакет управляющей информации) . Маршрутизаторы и компьютеры могут принимать во внимание приоритет пакета и обрабатывать более важные пакеты в первую очередь. Поле Type of Service содержит также три бита, определяющие критерий выбора маршрута. Реально выбор осуществляется между тремя альтернативами: малой задержкой, высокой достоверностью и высокой пропускной способностью. Во многих сетях улучшение одного из этих параметров связано с ухудшением другого, кроме того, обработка каждого из них требует дополнительных вычислительных затрат. Поэтому редко, когда имеет смысл устанавливать одновременно хотя бы два из этих трех критериев выбора маршрута. Зарезервированные биты имеют нулевое значение. Установленный * бит D (delay) говорит о том, что маршрут должен выбираться для минимизации задержки доставки данного пакета * бит Т - для максимизации пропускной способности * бит R - для максимизации надежности доставки.

    Поле Общая длина (Total Length) занимает 2 байта и означает общую длину пакета с учетом заголовка и поля данных. Максимальная длина пакета ограничена разрядностью поля, определяющего эту величину, и составляет 65 535 байт, однако в большинстве компьютеров и сетей такие большие пакеты не используются. При передаче по сетям различного типа длина пакета выбирается с учетом максимальной длины пакета протокола нижнего уровня, несущего IP- пакеты. Если это кадры Ethernet, то выбираются пакеты с максимальной длиной в 1500 байт, умещающиеся в поле данных кадра Ethernet. В стандарте предусматривается, что все хосты должны быть готовы принимать пакеты вплоть до 576 байт длиной (приходят ли они целиком или по фрагментам). Существует такое правило: хостам рекомендуется отправлять пакеты размером более чем 576 байт, только если они уверены, что принимающий хост или промежуточная сеть готовы обслуживать пакеты такого размера.

    Поле Идентификатор пакета (Identification) занимает 2 байта и используется для распознавания пакетов, образовавшихся путем фрагментации исходного пакета. Все фрагменты должны иметь одинаковое значение этого поля.

    Поле Флаги (Flags) занимает 3 бита и содержит признаки, связанные с фрагментацией: установленный бит DF (Do not Fragment) запрещает маршрутизатору фрагментировать данный пакет, а установленный бит MF (More Fragments) говорит о том, что данный пакет является промежуточным (не последним) фрагментом. Оставшийся бит зарезервирован.

    Поле Смещение фрагмента (Fragment Offset) занимает 13 бит и задает смещение в байтах поля данных этого пакета от начала общего поля данных исходного пакета, подвергнутого фрагментации. Используется при сборке/разборке фрагментов пакетов при передачах их между сетями с различными величинами MTU . Смещение должно быть кратно 8 байт.

    Поле Время жизни (Time to Live) занимает 1 байт и означает предельный срок, в течение которого пакет может перемещаться по сети. Время жизни данного пакета измеряется в секундах и задается источником передачи. На маршрутизаторах и в других узлах сети по истечении каждой секунды из текущего времени жизни вычитается единица; единица вычитается и в том случае, когда время задержки меньше секунды. Поскольку современные маршрутизаторы редко обрабатывают пакет дольше, чем за одну секунду, то время жизни можно считать равным максимальному числу узлов, которые разрешено пройти данному пакету до того, как он достигнет места назначения. Если параметр времени жизни станет нулевым до того, как пакет достигнет получателя, этот пакет будет уничтожен. Время жизни можно рассматривать как часовой механизм самоуничтожения. Значение этого поля изменяется при обработке заголовка IP-пакета.

    Идентификатор Протокол верхнего уровня (Protocol) занимает 1 байт и указывает, какому протоколу верхнего уровня принадлежит информация, размещенная в поле данных пакета (например, это могут быть сегменты протоколов верхних уровней или протоколов маршрутизации). Значения идентификаторов для различных протоколов приводятся в документе RFC 3232 - Assigned Numbers.

    Контрольная сумма (Header Checksum) занимает 2 байта и рассчитывается только по заголовку. Поскольку некоторые поля заголовка меняют свое значение в процессе передачи пакета по сети (например, время жизни), контрольная сумма проверяется и повторно рассчитывается при каждой обработке IP- заголовка. Контрольная сумма - 16 бит - подсчитывается как дополнение к сумме всех 16-битовых слов заголовка. При вычислении контрольной суммы значение самого поля "контрольная сумма" устанавливается в нуль. Если контрольная сумма неверна, то пакет будет отброшен, как только ошибка будет обнаружена.

    Поля IP-адрес источника (Source IP Address) и

    IP-адрес назначения (Destination IP Address) имеют одинаковую длину - 32 бита - и одинаковую структуру.

    Поле Опции (IP Options) является необязательным и используется обычно только при отладке сети. Механизм опций предоставляет функции управления, которые необходимы или просто полезны при определенных ситуациях, однако он не нужен при обычных коммуникациях. Это поле состоит из нескольких подполей, каждое из которых может быть одного из восьми предопределенных типов. В этих подполях можно указывать точный маршрут прохождения маршрутизаторов, регистрировать проходимые пакетом маршрутизаторы, помещать данные системы безопасности, а также временные отметки. Так как число подполей может быть произвольным, то в конце поля Опции должно быть добавлено несколько байт для выравнивания заголовка пакета по 32-битной границе.

    Поле Выравнивание (Padding) используется для того, чтобы убедиться в том, что IP- заголовок заканчивается на 32-битной границе. Выравнивание осуществляется нулями.

IP фрагментация, MTU, MSS, и PMTUD

Фрагментация IP пакетов: MTU , MSS , и PMTUD . PMTUD (Path MTU Discovery) и проблема фрагментации пакетов (network mtu ping packet)

Почему же работают пинг при проблемах с MTU? Пакеты ICMP Request и Relpy имеют размер от 32 до 64 байтов, пингуемый сервер возвращает очень мало информации, которая вполне укладывается в допустимый размер вместе со всеми заголовками.

Протокол Порты TCP позволяет согласовать значение максимального размера сегмента (MSS) обоим участникам соединения. Каждая сторона указывает предлагаемый размер MSS в поле ОПЦИИ заголовка пакета TCP. Будет принято наименьшее из двух значений. Такое согласование позволяет избежать фрагментации пакетов при прохождении через маршрутизаторы и шлюзы, и их последующей сборки на целевом хосте, что приводит к задержкам и снижению скорости передачи.

Фрагментация подразумевает разбиение блока данных (пакета) на равные части. Соответственно после фрагментации следующим этапом следует сборка фрагментов. Протокол IP позволяет выполнять фрагментацию только тех пакетов, которые поступают на входные порты маршрутизаторов. Следует различать фрагментацию сообщений в узле-отправителе, и динамическую фрагментацию сообщений в маршрутизаторах. Дело в том, что практически во всех стеках протоколов есть протоколы, которые осуществляют фрагментацию сообщений прикладного уровня на такие части, которые укладываются в кадры канального уровня. В стеке TCP/IP, например, эту задачу решает протокол транспортного уровня TCP. Этот протокол может разбивать поток байтов, передаваемый ему с прикладного уровня на сообщения нужного размера (например, на 1460 байт для протокола Ethernet).

Поэтому протокол IP в узле-отправителе не использует свои возможности по фрагментации пакетов.

А вот при необходимости передать пакет в следующую сеть, для которой размер пакета является слишком большим, IP-фрагментация становится необходимой.

В функции уровня IP входит разбиение слишком длинного для конкретного типа составляющей сети сообщения на более короткие пакеты с созданием соответствующих служебных полей, нужных для последующей сборки фрагментов в исходное сообщение.

В большинстве типов локальных и глобальных сетей значения MTU, то есть максимальный размер поля данных, в которое должен инкапсулировать свой пакет протокол IP, значительно отличается.

Сети Ethernet имеют значение MTU, равное 1500 байт, сети FDDI - 4096 байт, а сети Х.25 чаще всего работают с MTU в 128 байт.

Итак, необходимость фрагментации пакетов на уровне IP мы пояснили. Теперь перейдем к самому процессу фрагментации пакетов IP.

Как мы уже выяснили из предыдущего раздела нашего урока, в поле Flags заголовка IP-пакет может быть помечен как не фрагментируемый. Любой пакет, помеченный таким образом, не может быть фрагментирован модулем IP ни при каких условиях.

Даже в том случае, если пакет, помеченный как не фрагментируемый, не может достигнуть получателя без фрагментации, то он просто уничтожается, а узлу-отправителю посылается соответствующее сообщение.

Протокол IP допускает возможность использования в пределах отдельной подсети ее собственных средств фрагментирования, невидимых для протокола IP.

Например, технология АТМ делит поступающие IP-пакеты на ячейки с полем данных в 48 байт с помощью своего уровня сегментирования, а затем собирает ячейки в исходные пакеты на выходе из сети. Но такие технологии, как АТМ, являются скорее исключением, чем правилом.

Процедуры фрагментации и сборки протокола IP рассчитаны на то, чтобы пакет мог быть разбит на практически любое количество частей, которые впоследствии могли бы быть вновь собраны.

Для того, чтобы не перепутать фрагмент различных типов, в заголовке IP-пакетов используется поле Identification.

Модуль протокола IP, отправляющий пакет, устанавливает в поле Identification значение, которое должно быть уникальным для данной пары отправитель - получатель. Кроме этого отправитель в заголовке пакета устанавливает время, в течение которого пакет может быть активным в сети.

Поле смещения фрагмента (Fragment Offset) сообщает получателю положение фрагмента в исходном пакете. Смещение фрагмента и длина определяют часть исходного пакета, принесенную этим фрагментом. Флаг "more fragments" показывает появление последнего фрагмента. Модуль протокола IP, отправляющий неразбитый на фрагменты пакет, устанавливает в нуль флаг "more fragments" и смещение во фрагменте.

Все эти поля дают достаточное количество информации для сборки пакета.

Итак, чтобы разделить на фрагменты большой пакет, модуль протокола IP, установленный, например, на маршрутизаторе, создает несколько новых пакетов и копирует содержимое полей IP-заголовка из большого пакета в IP-заголовки всех новых пакетов. Данные из старого пакета делятся на соответствующее число частей, размер каждой из которых, кроме самой последней, обязательно должен быть кратным 8 байт.

Размер последней части данных равен полученному остатку.

Каждая из полученных частей данных помещается в новый пакет.

Когда происходит фрагментация, то некоторые параметры IP-заголовка копируются в заголовки всех фрагментов, а другие остаются лишь в заголовке первого фрагмента.

Процесс фрагментации может изменить значения данных, расположенных в поле параметров, и значение контрольной суммы заголовка, изменить значение флага "more fragments" и смещение фрагмента, изменить длину IP-заголовка и общую длину пакета.

В заголовок каждого пакета заносятся соответствующие значения в поле смещения "fragment offset", а в поле общей длины пакета помещается длина каждого пакета.

Таким образом, первый фрагмент будет иметь в поле "fragment offset" нулевое значение. Во всех пакетах, кроме последнего, флаг "more fragments" устанавливается в единицу, а в последнем фрагменте - в нуль.

Теперь давайте рассмотрим процесс сборки фрагментов пакетов.

Чтобы собрать фрагменты пакета, модуль протокола IP объединяет IP-пакеты, имеющие одинаковые значения в полях идентификатора, отправителя, получателя и протокола.

Таким образом, отправитель должен выбрать идентификатор таким образом, чтобы он был уникален для данной пары отправитель-получатель, для данного протокола и в течение того времени, пока данный пакет (или любой его фрагмент) может существовать в составной IP-сети.

Вполне очевидно, что модуль протокола IP, отправляющий пакеты, должен иметь таблицу идентификаторов, где каждая запись соотносится с каждым отдельным получателем, с которым осуществлялась связь, и указывает последнее значение максимального времени жизни пакета в IP-сети.

Однако, поскольку поле идентификатора допускает 65 536 различных значений, некоторые хосты могут использовать просто уникальные идентификаторы, не зависящие от адреса получателя.

В некоторых случаях целесообразно, чтобы идентификаторы IP-пакетов выбирались протоколами более высокого, чем IP, уровня.

Процедура объединения заключается в помещении данных из каждого фрагмента в позицию, указанную в заголовке пакета в поле "fragment offset".

Каждый модуль IP должен быть способен передать пакет из 68 байт без дальнейшей фрагментации. Это связано с тем, что IP-заголовок может включать до 60 байт, а минимальный фрагмент данных - 8 байт. Каждый получатель должен быть в состоянии принять пакет из 576 байт в качестве единого куска либо в виде фрагментов, подлежащих сборке. Если бит флага запрета фрагментации (Don"t Fragment, DF) установлен, то фрагментация данного пакета запрещена, даже если в этом случае он будет потерян.

Данное средство может использоваться для предотвращения фрагментации в тех случаях, когда хост - получатель не имеет достаточных ресурсов для сборки фрагментов.

Итак, после длительных объяснений давайте закрепим на примере все, что мы сейчас узнали о фрагментации IP-пакетов.

Рассмотрим процесс фрагментации IP-пакетов при передаче между сетями с разным размером пакетов на примере, который показан на этом рисунке.

Канальный и физический уровни обозначены, как К1, Ф1, К2, Ф2 соответственно.

Пусть компьютер 1 связан с сетью, имеющей значение MTU в 4096 байт, например с сетью FDDI.

При поступлении на IP-уровень компьютера 1 сообщения от транспортного уровня размером в 5600 байт протокол IP делит его на два IP-пакета. В первом пакете устанавливает признак фрагментации и присваивает пакету уникальный идентификатор, например 486.

В первом пакете величина поля смещения равна 0, а во втором - 2800.

Признак фрагментации во втором пакете равен нулю, что показывает, что это последний фрагмент пакета.

Общая величина IP-пакета составляет 2800 плюс 20 (размер IP-заголовка), то есть 2820 байт, что умещается в поле данных кадра FDDI.

Сетевой интерфейс отправляет кадры следующему маршрутизатору.

После того, как кадры пройдут уровень сетевого интерфейса маршрутизатора (К1 и Ф1) и освободятся от заголовков FDDI, модуль IP по сетевому адресу определяет, что прибывшие два пакета нужно передать в сеть 2, которая является сетью Ethernet и имеет значение MTU, равное 1500.

Следовательно, прибывшие IP-пакеты необходимо фрагментировать.

Маршрутизатор извлекает поле данных из каждого пакета и делит его еще пополам, чтобы каждая часть уместилась в поле данных кадра Ethernet.

Затем он формирует новые IP-пакеты, каждый из которых имеет длину 1400 + 20 = 1420 байт, что меньше 1500 байт, поэтому они нормально помещаются в поле данных кадров Ethernet.

В результате в компьютер 2 по сети Ethernet приходят четыре IP-пакета с общим идентификатором 486.

Протокол IP, работающий в компьютере 2, должен правильно собрать исходное сообщение.

Если пакеты пришли не в том порядке, в котором были посланы, то смещение укажет правильный порядок их объединения.

Отметим, что IP-маршрутизаторы не собирают фрагменты пакетов в более крупные пакеты, даже если на пути встречается сеть, допускающая такое укрупнение. Это связано с тем, что отдельные фрагменты сообщения могут перемещаться по интерсети по различным маршрутам, поэтому нет гарантии, что все фрагменты проходят через какой-либо промежуточный маршрутизатор на их пути.

При приходе первого фрагмента пакета узел назначения запускает таймер, который определяет максимально допустимое время ожидания прихода остальных фрагментов этого пакета.

Таймер устанавливается на максимальное из двух значений: первоначальное установочное время ожидания и время жизни, указанное в принятом фрагменте.

Таким образом, первоначальная установка таймера является нижней границей для времени ожидания при c6opке. Если таймер истекает раньше прибытия последнего фрагмента, то все ресурсы сборки, связанные с данным пакетом, освобождаются, все полученные к этому моменту фрагменты пакета отбрасываются, а в узел, пославший исходный пакет, направляется сообщение об ошибке.

IP - Internet Protocol

Набор протоколов TCP/IP разделен на уровни гораздо проще, чем предусмотрено моделью OSI. TCP и UDP - это транспортные протоколы, соответствующие уровню 4 OSI. Они используют IP, протокол уровня 3 OSI (сетевого уровня). Кроме этих трех протоколов, в наборе протоколов TCP/IP есть еще два базовых протокола, расширяющих IP: ICMP и IGMP. Функциональные возможности этих протоколов должны быть реализованы в уровне, содержащем IP.

Internet Protocol соединяет два узла. Каждый узел идентифицируется 32-битным адресом, называемым IP-адресом . При отправке сообщения IP-протокол получает его от протоколов верхнего уровня, TCP или UDP, и добавляет IP-заголовок, содержащий информацию о хосте-адресате.

Чтобы понять протокол IP, самый лучший способ - детально исследовать IP-заголовок. Содержащаяся в нем информация приведена в таблице:

Структура IP-заголовка
Поле Длина Описание
Версия IP 4 бита Версия протокола IP, создавшего заголовок. Текущая версия протокола IP - 4.
Длина IP-заголовка 4 бита Длина заголовка. Минимальное значение - 5 в единицах по 32 бита, или 4 байта. Следовательно, минимальная длина заголовка равна 20 байтам.
Тип обслуживания 1 байт Поле типа обслуживания позволяет отправлять сообщения с нормальной или высокой производительностью, нормальной или увеличенной задержкой, нормальной или высокой надежностью. Это поле полезно при отправке в сеть дейтаграмм. Несколько разновидностей сетей используют эту информацию, чтобы выделить приоритет определенного трафика. Кроме того, сообщения управления сетью по сравнению с обычными сообщениями имеют повышенные приоритет и надежность.
Общая длина 2 байта В этих двух байтах задается общая длина сообщения - заголовка и данных- в октетах. Максимальный размер IP-пакета равен 65 535 байтов, но для большинства сетей такой размер непрактичен. Самый большой размер, который может быть принят всеми хостами, равен 576 байтам. Длинные сообщения могут разделяться на фрагменты - такой процесс называется фрагментацией .
Идентификация 2 байта Если сообщение разбито на фрагменты, поле идентификации помогает собрать фрагменты сообщения. Все фрагменты одного сообщения имеют один и тот же идентификационный номер.
Флаги 3 бита Эти флаги указывают, фрагментировано ли сообщение и является ли текущий пакет последним фрагментом сообщения.
Смещение фрагмента 13 битов В этих 13 битах задается смещение фрагментированного сообщения. Фрагменты могут поступать не в том порядке, в каком они были отправлены, поэтому смещение необходимо, чтобы восстановить исходные данные. Первый фрагмент сообщения имеет длину О, а в остальных фрагментах дается смещение, по которому следует поместить фрагмент. Единица смещения равна 8 байтам, так что значение смещения 64 означает, что второй фрагмент нужно присоединить к сообщению после 512 байтов первого пакета.
Время жизни 1 байт Значение "время жизни" (TTL) задает число секунд, которое сообщение может существовать, прежде чем будет отброшено. В этом значении необязательно указывается число секунд, поскольку каждый маршрутизатор, пересекаемый сообщением, должен уменьшить значение TTL на 1, даже если он затратил на обработку сообщения меньше одной секунды. Поэтому на практике в этом значении задается число допустимых "прыжков".
Протокол 1 байт В этом байте указывается протокол, используемый на следующем уровне стека протоколов для этого сообщения. Номера протоколов определены в доступной оперативной базе данных Internet Assigned Number Authority (IANA) .
Контрольная сумма заголовка 2 байта Это контрольная сумма одного заголовка. Поскольку заголовок изменяется с каждым отправленным сообщением, контрольная сумма также изменяется.
Адрес источника 4 байта В этом поле указывается 32-битный IP-адрес отправителя.
Адрес назначения 4 байта Это 32-битный IP-адрес, по которому отправлено сообщение.
Опции переменная Здесь могут появляться необязательные поля. Например, можно указать, что это сообщение секретно или совершенно секретно. Также предусмотрена возможность будущих расширений.
Дополнение переменная Это поле содержит переменное число нулей, такое, чтобы заголовок заканчивался на 32-битной границе.

Internet Protocol (IP) определен в RFC 791. Документы RFC (Request for Comments) содержат техническую информацию о многих важных интернет-технологиях.

IP-адрес

Каждый узел в сети TCP/IP может быть идентифицирован 32-битным IP-адресом. Обычно IP-адрес представляется четырьмя десятичными значениями в таком виде: 192.168.0.1. Каждое из этих чисел представляет собой один байт IP-адреса и может находиться в пределах от 0 до 255.

IP-адрес содержит две части: сетевую часть и часть хоста. В зависимости от класса сети сетевая часть состоит из одного, двух или трех байтов:

Первый бит адреса сети класса А должен быть 0, поэтому первый байт для сети класса А имеет двоичные значения в пределах от 00000001 (1) до 01111110 (126). Остальные три байта служат для идентификации узлов в сети, позволяя соединить в сети класса А более 16 млн. устройств.

Заметим, что в приведенной таблице адреса с числом 127 в первом байте пропущены, поскольку это зарезервированный диапазон адресов. Адрес 127.0.0.1 - это всегда адрес локального хоста, а 127.0.0.0 - адрес локальной обратной связи. Обратная связь используется для тестирования стека сетевых протоколов на одной машине, без прохода через сетевую интерфейсную плату.

В IP-адресе для сети класса В первые два бита всегда имеют значение 10, что дает диапазон от 10000000 (128) до 10111111 (191). Второй байт продолжает идентификацию сети значением от 0 до 255, оставляя два последних байта для идентификации узлов сети, всего до 65 534 устройств.

Сети класса С отличаются IP-адресом, в котором в первых трех битах установлено значение 110, разрешая значения в диапазоне от 11000000 (192) до 11011111 (223). В сети этого типа лишь один байт оставлен для идентификации узлов, поэтому к ней можно подсоединить только 254 устройства.

Число устройств, которое можно подсоединить к сети каждого из этих классов с особыми IP-адресами, обратно пропорционально числу возможных сетей этого типа. Например, сеть класса А, допуская 16 млн. хостов, оставляет только часть первого байта для идентификации сети. В результате во всем мире может существовать лишь 126 сетей класса А. Только крупные компании, подобные AT & Т, IBM, Xerox и HP, имеют такой сетевой адрес. Когда компания запрашивает IP-сеть в органе, ведающем сетями, обычно она получает сеть класса С.

Если компания пожелает, чтобы больше хостов напрямую были подключены к Интернету, можно найти еще одну сеть класса С. Если для каждого хоста в сети не требуется прямого доступа к Интернету, можно использовать частный IP-адрес, и тогда применяется другая опция.

Сетевые адреса классов А, В и С оставляют свободными адреса, имеющие в первом байте значения от 224 до 255.

Агентство IANA выделяет номера сетей и публикует их перечень на странице http://www.iana.org/assignments/ipv4-adclress-space . Почти во всех странах есть региональные регистрационные ведомства, выдающие по запросам номера сетей. Региональные ведомства получают диапазон сетей от IANA.

Чтобы избежать исчерпания IP-адресов, хосты, не соединенные напрямую с Интернетом, могут использовать адреса из диапазонов частных адресов. Частные адреса уникальны не глобально, а только локально, внутри сети. Во всех классах сетей резервируются определенные диапазоны, которые могут использоваться как частные адреса хостами, не требующими непосредственного двустороннего доступа к Интернету. Такие хосты вполне могут обращаться к Интернету через шлюз, который не посылает во внешнюю сеть частный IP-адрес.

Подсети

Для соединения двух узлов в разных сетях требуется маршрутизатор. Номер хоста определяется 24 битами IP-адреса класса А, в то время как для сети класса С доступно лишь 8 битов. Маршрутизатор разделяет номер хоста на номер подсети и номер хоста в подсети. Включение дополнительных маршрутизаторов сократит объемы широковещательной передачи в сети, а это может сократить нагрузку в сети.

Новые маршрутизаторы главным образом включаются, чтобы улучшить возможность соединения между группами компьютеров в разных зданиях, городах и т. д. Рассмотрим пример разделения сети класса С с адресом 194.180.44 на подсети.

Такая сеть может фильтровать адреса с помощью маски подсети (subnet mask) 255.255.255.224. Первые три байта (состоящие из всех единиц) представляют собой маску для сети класса С. Последний байт - это десятичное значение двоичного представления 11100000, в котором первые три бита адреса хоста указывают подсеть, а последние пять битов представляют адрес хоста в конкретной подсети. Три бита подсети представляют 128, 64 и 32, и, таким образом, поддерживаются адреса подсетей, показанные ниже:

IPv6

Протокол, предшествовавший Internet Protocol, был разработан Управлением перспективных исследовательских работ Министерства обороны США (DARPA) в 1960-х годах, а набор протоколов TCP/IP получил признание лишь в 1980 г. Поскольку IP базировался на существовавших сетевых протоколах DARPA, он получил номер версии 4 и теперь известен как IPv4. В те времена, когда человечество в большинстве своем представляло себе мобильный телефон как трубку, которую можно снимать со стены и переносить к дивану, число хостов, поддерживаемых IP, казалось более чем достаточным.

Однако сегодня все хотят подключить к Интернету холодильники и газонокосилки, и IETF разработало новую версию IP - IPv6. Наиболее важное изменение этой версии по сравнению с IPv4 заключается в использовании для адресации не 32, а 128 битов, что позволит всем Tablet PC, Pocket PC, мобильным телефонам, телевизорам, автомобилям, газонокосилкам, кофеваркам и мусорным контейнерам стать полноправными хостами Интернета. :)

Кроме возможности назначить адрес почти каждому атому в Солнечной системе, в IPv6 появляется еще несколько полезных изменений:

    Возможности расширенной адресации . Чтобы определить диапазон адресов групповой рассылки, в адреса IPv6 может включаться маршрутная информация о группах. Кроме того, появляется альтернативный адрес для отправки сообщения любому хосту или любой группе хостов.

    Упрощение формата заголовка . Некоторые поля заголовка IPv4 удаляются, другие становятся необязательными. Однако полная длина заголовка IPv6 больше, чем в IPv4 из-за 128-битных адресов источника и назначения.

    Улучшенная поддержка расширяемости . В будущем добавлять расширения к протоколу IPv6 станет легче. Ограничения на длину для опций удалено.

    Маркирование потока . Для конкретных потоков трафика добавляется новая возможность. Поток - это последовательность пакетов, перемещающаяся от источника к назначению. В новом протоколе приложения могут предлагать аудио- и видеовозможности в реальном времени по различным потокам. Каждый поток может запрашивать обработку в реальном времени или особо качественную обработку у маршрутизаторов, через которые он распространяется.

    Аутентификация и секретность . Добавляются расширения IPv6, поддерживающие аутентификацию, секретность и конфиденциальность отправляемых данных.

Номера портов

Для идентификации узлов сети протокол IP использует IP-адреса, а транспортный уровень (уровень 4) использует конечные точки для идентификации приложения. Чтобы указать конечную точку приложения, протоколы TCP и UDP вместе с IP-адресом используют номер порта.

Сервер должен предоставить известную конечную точку, с которой мог бы соединиться клиент, хотя номер порта может создаваться для клиента динамически. Номера портов TCP и UDP имеют длину 16 битов, их можно подразделить на три категории:

    Системные (известные) номера портов

    Пользовательские (зарегистрированные) номера портов

    Динамические, или частные, порты

Системные номера портов находятся в диапазоне от 0 до 1023. Эти номера должны использоваться только системными, привилегированными процессами. Широко известные протоколы пользуются номерами портов, установленными по умолчанию из этого диапазона.

Пользовательские номера портов находятся в диапазоне от 1024 до 49151. Ваше серверное приложение обычно будет занимать один из этих портов, и вы, если захотите сделать его известным сообществу пользователей Интернета, сможете зарегистрировать номер порта в IANA.

Динамические номера портов принимают значения из диапазона от 49 152 до 65 535. Если не требуется знать номер порта до запуска приложения, подойдет порт в этом диапазоне. Клиентские приложения, которые соединяются с серверами, могут использовать такой порт.

Запустив утилиту netstat с опцией -а, мы увидим перечень всех используемых в данный момент портов и указание о состоянии соединения - находится ли соединение в состоянии прослушивания или соединение уже было установлено:

В файле services из каталога \system32\drivers\etc перечислены многие предопределенные пользовательские и системные номера портов. Если порт содержится в перечне этого файла, то утилита netstat вместо номера порта отобразит имя протокола.

В этой статье будут рассказаны основы модели TCP/IP. Для лучшего понимания описаны основные протоколы и службы. Главное - не торопиться и стараться понимать каждую вещь поэтапно. Все они взаимосвязаны и без понимания одной, трудно будет понять другую. Здесь скомпонована весьма поверхностная информация, так что эту статью смело можно назвать «стеком протоколов TCP/IP для чайников». Однако, многие вещи здесь не так трудны для понимания, как может показаться на первый взгляд.

TCP/IP

Стек TCP/IP - сетевая модель передачи данных в сети, она определяет порядок взаимодействия устройств. Данные поступают на канальный уровень и обрабатываются поочередно каждым уровнем выше. Стек представлен в виде абстракции, которая объясняет принципы обработки и приема данных.

Стек протоколов сети TCP/IP имеет 4 уровня:

  1. Канальный (Link).
  2. Сетевой (Internet).
  3. Транспортный (Transport).
  4. Прикладной (Application).

Прикладной уровень

Прикладной уровень обеспечивает возможность взаимодействия между приложением и другими уровнями стека протоколов, анализирует и преобразовывает поступающую информацию в формат, подходящий для программного обеспечения. Является ближайшим к пользователю и взаимодействует с ним напрямую.

  • HTTP;
  • SMTP;

Каждый протокол определяет собственный порядок и принципы работы с данными.

HTTP (HyperText Transfer Protocol) предназначен для передачи данных. По нему отправляются, например, документы в формате HTML, которые служат основой веб-страницы. Упрощенно схема работы представляется как «клиент - сервер». Клиент отправляет запрос, сервер его принимает, должным образом обрабатывает и возвращает конечный результат.

Служит стандартом передачи файлов в сети. Клиент посылает запрос на некий файл, сервер ищет этот файл в своей базе и при успешном обнаружении отправляет его как ответ.

Используется для передачи электронной почты. SMTP-операция включает в себя три последовательных шага:

  1. Определение адреса отправителя. Это необходимо для возвращения писем.
  2. Определение получателя. Этот шаг может повторяться некоторое количество раз при указании нескольких адресатов.
  3. Определение содержимого сообщения и отправка. В качестве служебной информации передаются данные о типе сообщения. Если сервер подтверждает готовность принять пакет, то совершается сама транзакция.

Заголовок (Header)

В заголовке содержатся служебные данные. Важно понимать, что они предназначаются только для конкретного уровня. Это значит, что как только пакет отправится к получателю, то будет обработан там по такой же модели, но в обратном порядке. Вложенный заголовок будет нести специальную информацию, которая может быть обработана только определенным образом.

Например, заголовок, вложенный на транспортном уровне, на другой стороне может быть обработан только транспортным уровнем. Другие просто его проигнорируют.

Транспортный уровень

На транспортном уровне полученная информация обрабатывается как единый блок, вне зависимости от содержимого. Полученные сообщения делятся на сегменты, к ним добавляется заголовок, и все это отправляется ниже.

Протоколы передачи данных:

Самый распространенный протокол. Он отвечает за гарантированную передачу данных. При отправке пакетов контролируется их контрольная сумма, процесс транзакции. Это значит, что информация дойдет «в целости и сохранности» независимо от условий.

UDP (User Datagram Protocol) - второй по популярности протокол. Он также отвечает за передачу данных. Отличительное свойство кроется в его простоте. Пакеты просто отправляются, не создавая особенной связи.

TCP или UDP?

У каждого из этих протоколов есть своя область применения. Она логически обусловлена особенностями работы.

Основное преимущество UDP заключается в скорости передачи. TCP является сложным протоколом с множеством проверок, в то время как UDP представляется более упрощенным, а значит, и более быстрым.

Недостаток кроется в простоте. Ввиду отсутствия проверок не гарантируется целостность данных. Таким образом, информация просто отправляется, а все проверки и подобные манипуляции остаются за приложением.

UDP используется, например, для просмотра видео. Для видеофайла не критична потеря небольшого количества сегментов, в то время как скорость загрузки - важнейший фактор.

Однако если необходимо отправить пароли или реквизиты банковской карты, то необходимость использования TCP очевидна. Потеря даже самой мизерной части данных может повлечь за собой катастрофические последствия. Скорость в этом случае не так важна, как безопасность.

Сетевой уровень

Сетевой уровень из полученной информации образует пакеты и добавляет заголовок. Наиболее важной частью данных являются IP и MAC-адреса отправителей и получателей.

IP-адрес (Internet Protocol address) - логический адрес устройства. Содержит информацию о местоположении устройства в сети. Пример записи: .

MAC-адрес (Media Access Control address) - физический адрес устройства. Используется для идентификации. Присваивается сетевому оборудованию на этапе изготовления. Представлен как шестибайтный номер. Например: .

Сетевой уровень отвечает за:

  • Определение маршрутов доставки.
  • Передачу пакетов между сетями.
  • Присвоение уникальных адресов.

Маршрутизаторы - устройства сетевого уровня. Они прокладывают путь между компьютером и сервером на основе полученных данных.

Самый популярный протокол этого уровня - IP.

IP (Internet Protocol) - интернет-протокол, предназначенный для адресации в сети. Используется для построения маршрутов, по которым происходит обмен пакетами. Не обладает никакими средствами проверки и подтверждения целостности. Для обеспечения гарантий доставки используется TCP, который использует IP в качестве транспортного протокола. Понимание принципов этой транзакции во многом объясняет основу того, как работает стек протоколов TCP/IP.

Виды IP-адресов

В сетях используются два вида IP-адресов:

  1. Публичные.
  2. Приватные.

Публичные (Public) используются в Интернете. Главное правило - абсолютная уникальность. Пример их использования - маршрутизаторы, каждый из которых имеет свой IP-адрес для взаимодействия с сетью Интернет. Такой адрес называется публичным.

Приватные (Private) не используются в Интернете. В глобальной сети такие адреса не являются уникальными. Пример - локальная сеть. Каждому устройству присваивается уникальный в пределах данной сети IP-адрес.

Взаимодействие с сетью Интернет ведется через маршрутизатор, который, как уже было сказано выше, имеет свой публичный IP-адрес. Таким образом, все компьютеры, подключенные к маршрутизатору, представляются в сети Интернет от имени одного публичного IP-адреса.

IPv4

Самая распространенная версия интернет-протокола. Предшествует IPv6. Формат записи - четыре восьмибитных числа, разделенные точками. Через знак дроби указывается маска подсети. Длина адреса - 32 бита. В подавляющем большинстве случаев, когда речь идет об IP-адресе, имеется в виду именно IPv4.

Формат записи: .

IPv6

Эта версия предназначается для решения проблем предыдущей версией. Длина адреса - 128 бит.

Основная проблема, которую решает IPv6 - это исчерпание адресов IPv4. Предпосылки начали проявляться уже в начале 80-х годов. Несмотря на то, что эта проблема вступила в острую стадию уже в 2007-2009 годах, внедрение IPv6 очень медленно «набирает обороты».

Главное преимущество IPv6 - более быстрое интернет-соединение. Это происходит из-за того, что для этой версии протокола не требуется трансляции адресов. Выполняется простая маршрутизация. Это является менее затратным и, следовательно, доступ к интернет-ресурсам предоставляется быстрее, чем в IPv4.

Пример записи: .

Существует три типа IPv6-адресов:

  1. Unicast.
  2. Anycast.
  3. Multicast.

Unicast - тип одноадресных IPv6. При отправке пакет достигает только интерфейса, расположенного на соответствующем адресе.

Anycast относится к групповым IPv6-адресам. Отправленный пакет попадет в ближайший сетевой интерфейс. Используется только маршрутизаторами.

Multicast являются многоадресными. Это значит, что отправленный пакет достигнет всех интерфейсов, находящихся группе мультивещания. В отличие от broadcast, который является «вещанием для всех», multicast вещает лишь определенной группе.

Маска подсети

Маска подсети выявляет из IP-адреса подсеть и номер хоста.

Например, IP-адрес имеет маску . В таком случае формат записи будет выглядеть так . Число «24» - это количество бит в маске. Восемь бит равняется одному октету, который также может называться байтом.

Если подробнее, то маску подсети можно представить в двоичной системе счисления таким образом: . В ней имеется четыре октета, и запись состоит из «1» и «0». Если сложить количество единиц, то получим в сумме «24». К счастью, считать по единице не обязательно, ведь в одном октете - 8 значений. Видим, что три из них заполнены единицами, складываем и получаем «24».

Если говорить именно о маске подсети, то в двоичном представлении она имеет в одном октете либо единицы, либо нули. При этом последовательность такова, что сначала идут байты с единицами, а только потом с нулями.

Рассмотрим небольшой пример. Есть IP-адрес и маска подсети . Считаем и записываем: . Теперь сопоставляем маску с IP-адресом. Те октеты маски, в которых все значения равны единице (255) оставляют соответствующие им октеты в IP-адресе без изменения. Если же в значении нули (0), то октеты в IP-адресе также становятся нулями. Таким образом, в значении адреса подсети получаем .

Подсеть и хост

Подсеть отвечает за логическое разделение. По сути, это устройства, использующие одну локальную сеть. Определяется диапазоном IP-адресов.

Хост - это адрес сетевого интерфейса (сетевой карты). Определяется из IP-адреса с помощью маски. Например: . Так как первые три октета - подсеть, то остается . Это и есть номер хоста.

Диапазон адресов хоста - от 0 до 255. Хост под номером «0» является, собственно, адресом самой подсети. А хост под номером «255» является широковещательным.

Адресация

Для адресации в стеке протоколов TCP/IP используются три типа адресов:

  1. Локальные.
  2. Сетевые.
  3. Доменные имена.

Локальными называются MAC-адреса. Они используются для адресации в таких технологиях локальной сети как, например, Ethernet. В контексте TCP/IP слово «локальные» означает, что они действуют лишь в пределах подсети.

Сетевым адресом в стеке протоколов TCP/IP является IP-адрес. При отправке файла из его заголовка считывается адрес получателя. С его помощью маршрутизатор узнает номер хоста и подсеть и, основываясь на этой информации, прокладывает маршрут к конечному узлу.

Доменные имена - это удобочитаемые адреса веб-сайтов в Интернете. Веб-сервера в сети Интернет доступны по публичному IP-адресу. Он успешно обрабатывается компьютерами, однако для людей представляется слишком неудобным. Для того чтобы избежать подобных сложностей, используются доменные имена, которые состоят из областей, называемых «доменами». Они располагаются в порядке строгой иерархии, от верхнего уровня к нижнему.

Домен первого уровня представляет конкретную информацию. Общие (.org, .net) не ограничены какими-либо строгими границами. Обратная ситуация - с локальными (.us, .ru). Они, как правило, привязаны территориально.

Домены низших уровней - это все остальное. Он может быть любого размера и содержать любое количество значений.

Например, "www.test.quiz.sg" - корректное доменное имя, где «sg» - локальный домен первого (верхнего) уровня, «quiz.sg» - домен второго уровня, «test.quiz.sg» - домен третьего уровня. Доменные имена также могут называться DNS-именами.

DNS (Domain Name System) устанавливает соответствие между доменными именами и публичным IP-адресом. При наборе доменного имени в строке браузера DNS обнаружит соответствующий IP-адрес и сообщит устройству. Устройство обработает этот и вернет его в виде веб-страницы.

Канальный уровень

На канальном уровне определяется взаимосвязь между устройством и физической средой передачи, добавляется заголовок. Отвечает за кодировку данных и подготовку фреймов для передачи по физической среде. На этом уровне работают сетевые коммутаторы.

Самые распространенные протоколы:

  1. Ethernet.
  2. WLAN.

Ethernet - наиболее распространенная технология проводных локальных сетей.

WLAN - локальная сеть на основе беспроводных технологий. Взаимодействие устройств происходит без физических кабельных соединений. Пример самого распространенного метода - Wi-Fi.

Настройка TCP/IP для использования статического IPv4-адреса

Статический IPv4-адрес назначается напрямую в настройках устройства или автоматически при подключении к сети и является постоянным.

Для настройки стека протоколов TCP/IP на использование постоянного IPv4-адреса необходимо ввести в консоль команду ipconfig/all и найти следующие данные.

Настройка TCP/IP для использования динамического IPv4-адреса

Динамический IPv4-адрес используется какое-то время, сдается в аренду, после чего меняется. Присваивается устройству автоматически при подключении к сети.

Чтобы настроить стек протоколов TCP/IP на использование непостоянного IP-адреса необходимо зайти в свойства нужного соединения, открыть свойства IPv4 и поставить отметки так, как указано.

Способы передачи данных

Данные передаются через физическую среду тремя способами:

  • Simplex.
  • Half-duplex.
  • Full Duplex.

Simplex - это односторонняя связь. Передача ведется только одним устройством, в то время как другое только принимает сигнал. Можно сказать, что информация транслируется только в одном направлении.

Примеры симплексной связи:

  • Телевещание.
  • Сигнал от спутников GPS.

Half-duplex - это двусторонняя связь. Однако только один узел может передавать сигнал в определенный момент времени. При такой связи два устройства не могут одновременно использовать один канал. Полноценная двусторонняя связь может быть невозможна физически или приводить к коллизиям. Говорится, что они конфликтуют за среду передачи. Этот режим применяется при использовании коаксиального кабеля.

Пример полудуплексной связи - общение по рации на одной частоте.

Full Duplex - полноценная двусторонняя связь. Устройства могут одновременно транслировать сигнал и производить прием. Они не конфликтуют за среду передачи. Этот режим применяется при использовании технологии Fast Ethernet и соединении с помощью витой пары.

Пример - общение по телефону через мобильную сеть.

TCP/IP vs OSI

Модель OSI определяет принципы передачи данных. Уровни стека протоколов TCP/IP прямо соответствуют этой модели. В отличие от четырехуровневого TCP/IP имеет 7 уровней:

  1. Физический (Physical).
  2. Канальный (Data Link).
  3. Сетевой (Network).
  4. Транспортный (Transport).
  5. Сеансовый (Session).
  6. Представительский (Presentation).
  7. Прикладной (Application).

В данный момент не стоит сильно углубляться в эту модель, но необходимо хотя бы поверхностное понимание.

Прикладной уровень в модели TCP/IP соответствует трем верхним уровням OSI. Все они работают с приложениями, поэтому можно отчетливо проследить логику такого объединения. Такая обобщенная структура стека протоколов TCP/IP способствует облегченному пониманию абстракции.

Транспортный уровень остается без изменений. Выполняет одинаковые функции.

Сетевой уровень также не изменен. Выполняет ровно те же задачи.

Канальный уровень в TCP/IP соответствует двум последним уровням OSI. Канальный уровень устанавливает протоколы передачи данных через физическую среду.

Физический представляет собой собственно физическую связь - электрические сигналы, коннекторы и т.п. В стеке протоколов TCP/IP было решено объединить эти два уровня в один, так как они оба работают с физической средой.