Отличие цифровой антенны от аналоговой. Цифровой и аналоговый сигнал: в чем сходство и различие, достоинства и недостатки? С "аналоговым сигналом", думаю, разобрались

В последнее время, в информационной сети, стало появляться все больше информации о переходе с аналогового вещания на цифровое, в связи с этим, появляется много вопросов по данной тематике, порождаются всевозможные слухи и предположения. В этой статье, я хочу пояснить, в чем различие "аналогового" и "цифрового" вещания, доступным и понятным для простого пользователя языком (по крайней мере, на сколько это возможно).

Сигналы были первоначально отправлены по волне, аналогичной исходному сигналу, в отличие от новых цифровых сигналов, которые отправляются как двоичный код. Аналоговые сигналы были чрезвычайно эффективными и могли быть подняты с большого расстояния, но они также заняли значительное пространство на полосе пропускания.

Пучок электронов, выпущенных из задней части трубки к экрану в передней части трубки, освещающий люминофоры на экране. Путем модуляции яркости и цветового кодирования луча на экране может быть создано полное изображение. Луч слегка изменил конкретное изображение каждую часть секунды, обманывая ваши глаза, думая, что изображение движется.

Для начала, давайте разберемся что это такое "аналоговый" сигнал.

Аналоговый сигнал

Разъяснять как всегда, я буду на простом примере. За пример, возьмем передачу голосовой информации от одного человека к другому.

Во время разговора, наши голосовые связки излучают определенную вибрацию различной тональности (частоты), и громкости (уровня звукового сигнала). Эта вибрация, пройдя некоторое расстояние, попадает в человеческое ухо, воздействуя там, на так называемую слуховую мембрану. Эта мембрана, начинает вибрировать с такой же частотой и силой вибрации какую излучали наши звуковые связки, с одним лишь отличием, что сила вибрации за счет преодоления расстояния, несколько ослабевает.
Так вот, передачу голосовой речи от одного человека к другому, можно смело назвать
аналоговой передаче й сигнала, и вот почему.

Первоначально аналоговые телевизоры транслировались в черно-белом режиме, что можно было осуществить просто путем изменения интенсивности электронного пучка. Когда цвет пришел, в сигнал была закодирована новая информация, позволяющая телевизорам интерпретировать определенные цвета. Использовались три основных типа цветовой кодировки.

С "аналоговым сигналом", думаю, разобрались

Кроме того, электронно-лучевые трубки требовали громоздкой структуры для поддержки и были ограничены 480 вертикальными линиями для создания изображения. Вот хорошие новости: старый аналоговый телевизор будет работать со спутниковой антенной даже после цифрового преобразования.

Здесь дело в том, что наши голосовые связки, излучают такую же звуковую вибрацию, какую и воспринимает само человеческое ухо (что говорим, то и слышим), то есть, передаваемый и принимаемый звуковой сигнал, имеет схожую форму импульса, и такой же частотный спектр звуковых вибраций, или по другому сказать, "аналогичной" звуковой вибрации.

Установите свою спутниковую антенну или установите ее самостоятельно, в соответствии со спецификациями производителя. Подключите сателлит к спутниковой антенне . Подключите ваш сабвуфер к телевизору. Подключите коаксиальный провод к порту «Телевизионный выход».

Настройте свой телевизор на канал. Позвоните своему спутниковому провайдеру , чтобы активировать ваш спутниковый ресивер . Проверьте покупку высококачественной проволоки; тем лучше провод , тем лучше изображение и звук. Спутниковая антеннаСпутниковый приемникКосиальный провод. . Джек Горман принимал участие во многих областях своей профессиональной карьеры. Его специальность включает производство фильмов и видео, управление спортом, написание, графический веб-дизайн, маркетинг, связь, операции, человеческие ресурсы и фотографии.

Здесь, думаю понятно.

Теперь, рассмотрим более сложный пример. И за этот пример, возьмем упрощенную схему телефонного аппарата, то есть того телефона, которым люди пользовались задолго до появления сотовой связи.

Во время разговора, речевые звуковые вибрации передаются на чувствительную мембрану телефонной трубки (микрофона). Затем, в микрофоне, звуковой сигнал преобразуется в электрические импульсы, и далее поступает по проводам ко второй телефонной трубке, в которой, с помощью электромагнитного преобразователя (динамика или наушника) электрический сигнал преобразуется обратно в звуковой сигнал.

За последнее десятилетие телевидение быстро развивалось. Хотя они связаны друг с другом, они не совсем то же самое. Он также имеет возможность передавать больший объем данных в меньшей полосе пропускания и возможность транслировать отдельные подканалы.

Даррин Майер пишет с того времени. Мейер имеет степень бакалавра искусств в области трансляции журналистики из Университета Небраски-Линкольн. Ну, есть большая разница в качестве между двумя. Качество изображения намного превосходит качество цифрового вещания.

Цифровое изображение более точно, поскольку оно использует цифровую формулу для передачи, так что вы либо видите идеальную картинку, либо ничего вообще. Цифровая система позволяет передавать больше контента через радиоволны. Мы определенно больше живем в мире компьютеров и технологий.

В приведенном выше примере, используется, опять же, "аналоговое" преобразование сигнала. То есть, звуковая вибрация имеет такую же частоту, как и частота электрического импульса в линии связи, а так же, звуковой и электрический импульсы, имеют схожую форму (то есть, аналогичную).

Каждая станция имеет одну частоту, по которой транслируется аналоговый телевизионный сигнал. Это может привести к статике, снегу или ореолу на канале. Это может также вызвать колебания цвета, яркости и качества звука. И, как радиосигналы, аналоговая передача снижается, а дальше от источника.

В цифровой код, можно закодировать практически любой вид передаваемого электрического сигнала (включая и аналоговый), и не важно, будет это картинка, видео сигнал, аудио сигнал, или текстовая информация, причем можно передавать эти виды сигнала, практически одновременно (в едином цифровом потоке).

Цифровой сигнал, по своим электрическим свойствам (так же как и в примере с тональным сигналом), имеет большую пропускную способность передачи информации, нежели аналоговый сигнал. Так же, цифровой сигнал, можно передавать на большее расстояние, чем аналоговый, причем без снижения качества передаваемого сигнала.

Это означает, что вам нравится стабильно четкое изображение, высококачественный звук и статичность или снег. Цифровая передача требует меньшей пропускной способности по сравнению с аналогичным аналоговым сигналом. Это позволяет вам испытать качественное программирование в домашних условиях. Значение изображения - 4 единицы ширины для каждых 3 единиц высоты.

К сожалению, телевизионные приемники (телевизоры), рассчитанные для приема аналогового телевидения, уже не смогут принимать цифровой эфирный сигнал . Но в любом случае, это не означает, что надо идти в магазин и приобретать новый телевизор способный принимать цифровое ТВ.

Чтобы Вы могли совершать прием цифрового эфирного вещания, на телевизор поддерживающий только аналоговый эфирный сигнал, Вам достаточно приобрести так называемый приемник цифрового телевизионного вещания (или по другому назвать, цифровой эфирный ресивер).

Цифровой эфирный приемник (ресивер), подключается к телевизору через антенное гнездо или через низкочастотный аудио-видео кабель. В данном случае, эфирная антенна, подключается уже не к антенному гнезду телевизора, а к гнезду самого цифрового приемника. Общая схема такого подключения изображена на Рис. 1.

Общий принцип такого приема будет следующий:

Цифровой эфирный радиосигнал будет приниматься эфирной антенной, с антенны этот сигнал будет приходить на цифровой приемник , а уже с приемника аналоговый сигнал поступит на ваш телевизор. Здесь, телевизор будет уже использоваться в качестве монитора, а переключение между телеканалами будет происходить с дистанционного пульта цифрового эфирного приемника (ресивера).

Здесь думаю, следует упомянуть, и о приеме звуковых радиостанций.

Для приема цифрового сигнала с радиовещательных станций, радиоприемники старого образца (поддерживающие прием аналогового вещания), так же уже не подойдут, и потребуется специальный радиоприемник, поддерживающий прием именно цифрового радиосигнала.

Преимущества цифрового эфирного ТВ:

*Как уже упоминалось ранее, основным и самым главным преимуществом цифрового эфирного ТВ, это конечно же мобильность. Свои любимые передачи, Вы сможете смотреть не только у себя дома, но и находясь в дороге. Так же, возможно в будущем, цифровое эфирного ТВ можно буде просматривать и на мобильном телефоне .
*Цифровое эфирное ТВ, это возможность принимать изображение и звук, в очень хорошем качестве.
*По своим электрическим свойствам, или вернее сказать электромагнитным свойствам, цифровой сигнал, можно передавать на большее расстояние, чем аналоговый, причем без снижения качества передаваемого сигнала.
Здесь, следует так же учесть, что цифровой радиосигнал более устойчивый к окружающим нас электромагнитным помехам (помехи могут идти как от находящихся рядом электро-, радиоприборов, так и проходящих неподалеку линий электропередач).
*В цифровом формате, можно передать значительно больше телеканалов, при этом качество изображения и звука будет намного лучше, чем в при аналоговой передаче сигнала.
*Несомненным преимуществом цифрового эфирного вещания, это конечно же простота в настройке, тогда как, к примеру, для установки и настройки спутникового телевидения , требуются определенные знания и навыки.

Думаю, это конечно же не весь список преимуществ цифрового вещания перед аналоговым, но, как говорится, поживем увидим.

Цифровое телевидение стремительно набирает популярность в нашей стране, однако многие люди по-прежнему не знают, чем же оно принципиально отличается от старого доброго аналогового ТВ.

Описание аналогового и цифрового телевидения

Нетрудно догадаться, что в основе аналогового и цифрового телевидения лежат соответственно аналоговый и цифровой сигналы. Аналоговый сигнал идет непрерывно, а значит, в случае какого-либо влияния извне он оказывается уязвимым, что приводит к худшему качеству изображения и звука. Несомненным преимуществом аналогового сигнала является возможность принимать его с помощью простой эфирной антенны . Можно также воспользоваться услугами провайдера кабельного телевидения . Можно сказать, что аналоговый сигнал сегодня уже является устаревшим, поскольку он значительно уступает цифровому сигналу по ряду важнейших параметров – качество, безопасность и др.
Современные телевизоры созданы главным образом для работы с цифровым сигналом, хоть у них еще и наличествует аналоговый разъем. Просто всё дело в том, что аналоговый сигнал не способен раскрыть всего потенциала современных плазменных и ЖК-телевизоров, лучшее качество картинки может дать лишь цифровой сигнал. Он, в отличие от аналогового, поступает компактными «порциями», которые разделены паузами, и поэтому воздействовать на такой сигнал очень непросто. Даже при передаче цифрового сигнала на очень далекое расстояние качество картинки и звука остается на самом высоком уровне. Помимо прочего, цифровой сигнал позволяет передать куда больше каналов, чем аналоговый, поэтому абоненты, подключающие цифровое телевидение, получают более сотни телеканалов самой разной тематики.

Сравнение аналогового и цифрового телевидения

Увы, аналоговое телевидение сегодня фактически не имеет явных преимуществ перед цифровым вещанием, кроме разве что возможности «ловить» сигнал с помощью обычной антенны. Впрочем, цифровое телевидение тоже может быть мобильным с помощью приемника цифрового сигнала. Учитывая, что вне зависимости от расстояния цифровой сигнал остается защищенным от взлома и помех и гарантирует высокий уровень качества, плюсы цифрового телевидения становятся совершенно очевидны.

TheDifference.ru определил, что разница между аналоговым и цифровым телевидением заключается в следующем:

Цифровое телевидение обеспечивает более высокий уровень качества и защиты сигнала. Аналоговый сигнал был и остается уязвимым для внешнего воздействия и не может обеспечить столь качественное изображение.
Цифровое телевидение более мобильное – уже сегодня можно принимать цифровой сигнал, находясь в дороге или далеко от дома.
Аналоговое телевидение не способно предоставить такого большого числа каналов, как цифровое. Благодаря особенностям цифрового сигнала, при подключении цифрового ТВ абонент может получить доступ к нескольким сотням различных телеканалов.

Подпишитесь на новости

Аналоговый сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений.

Различают два пространства сигналов - пространство L (непрерывные сигналы), и пространство l (L малое) - пространство последовательностей. Пространство l (L малое) есть пространство коэффициентов Фурье (счетного набора чисел, определяющих непрерывную функцию на конечном интервале области определения), пространство L - есть пространство непрерывных по области определения (аналоговых) сигналов. При некоторых условиях, пространство L однозначно отображается в пространство l (например, первые две теоремы дискретизации Котельникова).

Аналоговые сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют непрерывным сигналом. Аналоговым сигналам противопоставляются дискретные (квантованные, цифровые). Примеры непрерывных пространств и соответствующих физических величин:

    прямая: электрическое напряжение

    окружность: положение ротора, колеса, шестерни, стрелки аналоговых часов, или фаза несущего сигнала

    отрезок: положение поршня, рычага управления, жидкостного термометра или электрический сигнал, ограниченный по амплитуде различные многомерные пространства: цвет, квадратурно-модулированный сигнал.

Свойства аналоговых сигналов в значительной мере являются противоположностью свойств квантованных или цифровых сигналов.

Отсутствие чётко отличимых друг от друга дискретных уровней сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте "количество информации" будет ограничено лишь динамическим диапазоном средства измерения.

Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесенная в сигнал, неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).

Применение:

Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал, снимаемый с термопары, несет информацию об изменении температуры, сигнал с микрофона - о быстрых изменениях давления в звуковой волне, и т.п.

2.2 Цифровой сигнал

Цифровой сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений.

Сигналы представляют собой дискретные электрические или световые импульсы. При таком способе вся емкость коммуникационного канала используется для передачи одного сигнала. Цифровой сигнал использует всю полосу пропускания кабеля. Полоса пропускания - это разница между максимальной и минимальной частотой, которая может быть передана по кабелю. Каждое устройство в таких сетях посылает данные в обоих направлениях, а некоторые могут одновременно принимать и передавать. Узкополосные системы (baseband) передают данные в виде цифрового сигнала одной частоты.

Дискретный цифровой сигнал сложнее передавать на большие расстояния, чем аналоговый сигнал, поэтому его предварительно модулируют на стороне передатчика, и демодулируют на стороне приёмника информации. Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации.

Замечание. Следует иметь в виду, что реальный цифровой сигнал по своей физической природе является аналоговым. Из-за шумов и изменения параметров линий передачи он имеет флуктуации по амплитуде, фазе/частоте (джиттер), поляризации. Но этот аналоговый сигнал (импульсный и дискретный) наделяется свойствами числа. В результате для его обработки становится возможным использование численных методов (компьютерная обработка).

О природе сигналов обыватель не задумывается, а вот о разнице между аналоговым и цифровым вещанием или форматами - иногда приходится. По умолчанию считается, что аналоговые технологии уходят в прошлое, и вскоре будут полностью заменены на цифровые. Стоит знать, от чего мы отказываемся в угоду новым веяниям.

Аналоговый сигнал - сигнал данных, описываемый непрерывными функциями времени, то есть амплитуда колебаний его может принимать любые значения в пределах максимума.

Цифровой сигнал - сигнал данных, описываемый дискретными функциями времени, то есть амплитуда колебаний принимает значения только строго определенные.

На практике это позволяет говорить о том, что аналоговый сигнал сопровождается большим количеством помех, тогда как цифровой их успешно отфильтровывает. Последний же способен восстанавливать исходные данные. Кроме того, непрерывный аналоговый сигнал часто несет в себе много лишней информации, что приводит к его избыточности - несколько цифровых сигналов можно передать вместо одного аналогового.

Если говорить о телевидении, а именно эта сфера своим переходом на “цифру” волнует большинство потребителей, то можно считать аналоговый сигнал совершенно себя изжившим. Однако пока что аналоговые сигналы принимает любая предназначенная для этого техника, а цифровой требует специальной. Правда, с распространением “цифры” аналоговых телевизоров все меньше и спрос на них катастрофически уменьшается.

Еще одна важная характеристика сигнала - безопасность. В этом отношении аналоговый демонстрирует полную беззащитность перед влияниями или вторжениями извне. Цифровой же шифруется посредством присвоения ему кода из радиоимпульсов, так что любое вмешательство исключено. На большие расстояния цифровые сигналы передавать сложно, потому используется схема модуляции-демодуляции.

Выводы сайт

  1. Аналоговый сигнал непрерывен, цифровой - дискретен.
  2. При передаче аналогового сигнала выше риск забивания канала помехами.
  3. Аналоговый сигнал избыточен.
  4. Цифровой сигнал фильтрует помехи и восстанавливает исходные данные.
  5. Цифровой сигнал передается в зашифрованном виде.
  6. Несколько цифровых сигналов можно послать вместо одного аналогового.

Простому потребителю совсем необязательно знать, какова природа сигналов. Но порой необходимо знать разницу между аналоговым и цифровым форматами, чтобы с открытыми глазами подходить к выбору того или иного варианта, ведь сегодня на слуху, что время аналоговых технологий прошло, на смену им приходят цифровые. Следует понять разницу, чтобы знать от чего уходим и чего ожидать.

Сигнал аналоговый - это сигнал непрерывный, имеющий бесконечное число близких по значению данных в пределах максмальных, все параметры которого описываются временной зависимой переменной.

Сигнал цифровой - это раздельный сигнал, описываемый раздельной функцией времени, соответственно в каждый момент времени, величина амплитуды сигнала имеет строго определенное значение.

Практика показала, что при аналоговых сигналах возможны помехи, устраняемые при цифровом сигнале. Кроме того, цифровой может восстановить изначальные данные. При непрерывном аналоговом сигнале проходит много информации, зачастую излишней. Вместо одного аналогового можно передать несколько цифровых.

На сегодняшний день потребителя интересует вопрос телевидения, так как именно в этом контексте чаще и произносится фраза "переход на цифровой сигнал". В этом случае аналоговый можно считать пережитком прошлого, но ведь именно его принимает существующая техника, а для приема цифрового необходима специальная. Конечно, в связи с появлением и расширением использования "цифры", теряют былую популярность.

Преимущества и недостатки видов сигналов

Немаловажную роль в оценке параметров того или иного сигнала имеет безопасность. Различного характера влияния, посторонние вторжения делают аналоговый сигнал беззащитным. При цифровом подобное исключается, так как он кодируется из радиоимпульсов. Для больших расстояний передача цифровых сигналов усложнена, приходится использовать схемы модуляции-демодуляции.

Поводя итог, можно сказать, что отличия аналогового и цифрового сигнала состоят:

  • В непрерывности аналогового и дискретности цифрового;
  • В большей вероятности помех при передаче аналогового;
  • В избыточности аналогового сигнала;
  • В способности цифрового фильтровать помехи и восстанавливать исходую информацию;
  • В передаче цифрового сигнала в закодированной форме. Один аналоговый сигнал замещается несколькими цифровыми.

Очень часто мы слышим такие определения, как «цифровой» или «дискретный» сигнал, в чем его отличие от «аналогового»?

Суть различия в том, что аналоговый сигнал непрерывный во времени (голубая линия), в то время как цифровой сигнал состоит из ограниченного набора координат (красные точки). Если все сводить к координатам, то любой отрезок аналогового сигнала состоит из бесконечного количества координат.

У цифрового сигнала координаты по горизонтальной оси расположены через равные промежутки времени, в соответствии с частотой дискретизации. В распространенном формате Audio-CD это 44100 точек в секунду. По вертикали точность высоты координаты соответствует разрядности цифрового сигнала, для 8 бит это 256 уровней, для 16 бит = 65536 и для 24 бит = 16777216 уровней. Чем выше разрядность (количество уровней), тем ближе координаты по вертикали к исходной волне.

Аналоговыми источниками являются: винил и аудиокассеты. Цифровыми источниками являются: CD-Audio, DVD-Audio, SA-CD (DSD) и файлы в WAVE и DSD форматах (включая производные APE, Flac, Mp3, Ogg и т.п.).

Преимущества и недостатки аналогового сигнала

Преимуществом аналогового сигнала является то, что именно в аналоговом виде мы воспринимаем звук своими ушами. И хотя наша слуховая система переводит воспринимаемый звуковой поток в цифровой вид и передает в таком виде в мозг, наука и техника пока не дошла до возможности именно в таком виде подключать плееры и другие источники звука напрямик. Подобные исследования сейчас активно ведутся для людей с ограниченными возможностями, а мы наслаждаемся исключительно аналоговым звуком.

Недостатком аналогового сигнала являются возможности по хранению, передаче и тиражированию сигнала. При записи на магнитную ленту или винил, качество сигнала будет зависеть от свойств ленты или винила. Со временем лента размагничивается и качество записанного сигнала ухудшается. Каждое считывание постепенно разрушает носитель, а перезапись вносит дополнительные искажения, где дополнительные отклонения добавляет следующий носитель (лента или винил), устройства считывания, записи и передачи сигнала.

Делать копию аналогового сигнала, это все равно, что для копирования фотографии ее еще раз сфотографировать.

Преимущества и недостатки цифрового сигнала

К преимуществам цифрового сигнала относится точность при копировании и передачи звукового потока, где оригинал ничем не отличается от копии.

Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами.

Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости . И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат.

На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц. Как показывают психоакустические исследования, дальнейшее повышение частоты дискретизации мало заметно, а вот повышение разрядности дает субъективное улучшение.

Как ЦАП строят волну

ЦАП – это цифро-аналоговый преобразователь, элемент, переводящий цифровой звук в аналоговый. Мы рассмотрим поверхностно основные принципы. Если по комментариям будет виден интерес более подробно рассмотреть ряд моментов, то будет выпущен отдельный материал.

Мультибитные ЦАП

Очень часто волну представляют в виде ступенек, что обусловлено архитектурой первого поколения мультибитных ЦАП R-2R, работающих аналогично переключателю из реле.


На вход ЦАП поступает значение очередной координаты по вертикали и в каждый свой такт он переключает уровень тока (напряжения) на соответствующий уровень до следующего изменения.

Хотя считается, что ухо человека слышит не выше 20 кГц, и по теории Найквиста можно восстановить сигнал до 22 кГц, остается вопрос качества этого сигнала после восстановления. В области высоких частот форма полученной «ступенчатой» волны обычно далека от оригинальной. Самый простой выход из ситуации – это увеличивать частоту дискретизации при записи, но это приводит к существенному и нежелательному росту объема файла.


Альтернативный вариант – искусственно увеличить частоту дискретизации при воспроизведении в ЦАП, добавляя промежуточные значения. Т.е. мы представляем путь непрерывной волны (серая пунктирная линия), плавно соединяющий исходные координаты (красные точки) и добавляем промежуточные точки на этой линии (темно фиолетовые).

При увеличении частоты дискретизации обычно необходимо повышать и разрядность, чтобы координаты были ближе к аппроксимированной волне.


Благодаря промежуточным координатам удается уменьшить «ступеньки» и построить волну ближе к оригиналу.

Когда вы видите функцию повышения частоты с 44.1 до 192 кГц в плеере или внешнем ЦАП, то это функция добавления промежуточных координат, а не восстановления или создание звука в области выше 20 кГц.

Изначально это были отдельные SRC микросхемы до ЦАП, которые потом перекочевали непосредственно в сами микросхемы ЦАП. Сегодня можно встретить решения, где к современным ЦАП добавляется такая микросхема, это сделано для того, чтобы обеспечить альтернативу встроенным алгоритмам в ЦАП и порой получить еще более лучший звук (как например это сделано в Hidizs AP100).

Основной отказ в индустрии от мультибитных ЦАП произошел из-за невозможности дальнейшего технологического развития качественных показателей при текущих технологиях производства и более высокой стоимости против «импульсных» ЦАП-ов с сопоставимыми характеристиками. Тем не менее, в Hi-End продуктах предпочтение отдают зачастую старым мультибитным ЦАП-ам, нежели новым решениям с технически более хорошими характеристиками.

Импульсные ЦАП

В конце 70-тых широкое распространение получил альтернативный вариант ЦАП-ов, основанный на «импульсной» архитектуре – «дельта-сигма». Технология импульсных ЦАП-ов стала возможной появлению сверх-быстрых ключей и позволила использовать высокую несущую частоту.


Амплитуда сигнала является средним значением амплитуд импульсов (зеленым показаны импульсы равной амплитуды, а белым итоговая звуковая волна).

Например последовательность в восемь тактов пяти импульсов даст усредненную амплитуду (1+1+1+0+0+1+1+0)/8=0,625. Чем выше несущая частота, тем больше импульсов попадает под сглаживание и получается более точное значение амплитуды. Это позволило представить звуковой поток в однобитном виде с широким динамическим диапазоном.

Усреднение возможно делать обычным аналоговым фильтром и если такой набор импульсов подать напрямую на динамик, то на выходе мы получим звук, а ультра высокие частоты не будут воспроизведены из-за большой инертности излучателя. По этому принципу работают ШИМ усилители в классе D, где плотность энергии импульсов создается не их количеством, а длительностью каждого импульса (что проще в реализации, но невозможно описать простым двоичным кодом).

Мультибитный ЦАП можно представить как принтер, способный наносить цвет пантоновыми красками. Дельта-Сигма – это струйный принтер с ограниченным набором цветов, но благодаря возможности нанесению очень мелких точек (в сравнении с пантовым принтером), за счет разной плотности точек на единицу поверхности дает больше оттенков.


На изображении мы обычно не видим отдельных точек из-за низкой разрешающей способности глаза, а только средний тон. Аналогично и ухо не слышит импульсов по отдельности.


В конечном итоге при текущих технологиях в импульсных ЦАП можно получить волну, близкую к той, что теоретически должна получится при аппроксимации промежуточных координат.

Надо отметить, что после появления дельта-сигма ЦАП исчезла актуальность рисовать «цифровую волну» ступеньками, т.к. так ступеньками волну современные ЦАП не строят. Правильно дискретный сигнал строить точками соединенной плавной линией.

Являются ли идеальными импульсные ЦАП?

Но на практике не все безоблачно, и существует ряд проблем и ограничений.

Т.к. подавляющее количество записей сохранено в многоразрядном сигнале, то перевод в импульсный сигнал по принципу «бит в бит» требует излишне высокую несущую частоту, которую современные ЦАП не поддерживают.

Основной функцией современных импульсных ЦАП является перевод многоразрядного сигнала в однобитный с относительно невысокой несущей частотой с прореживанием данных. В основном именно эти алгоритмы и определяют конечное качество звучания импульсных ЦАП-ов.

Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. Такие ЦАП называются мультибитными дельта-сигма.

Сегодня импульсные ЦАП-ы получили второе дыхание в быстродействующих микросхемах общего назначения в продуктах компаний NAD и Chord за счет возможности гибко программировать алгоритмы преобразования.

Формат DSD

После широкого распространения дельта-сигма ЦАП-ов вполне логичным было и появления формата записи двоичного кода напрямую дельта-сигма кодировке. Этот формат получил название DSD (Direct Stream Digital).

Широкого распространения формат не получил по нескольким причинам. Редактирование файлов в этом формате оказалось излишне ограниченным: нельзя микшировать потоки, регулировать громкость и применять эквализацию. А это значит, что без потери качества можно лишь архивировать аналоговые записи и производить двухмикрофонную запись живых выступлений без последующей обработки. Одним словом – денег толком не заработать.

В борьбе с пиратством диски формата SA-CD не поддерживались (и не поддерживаются до сих пор) компьютерами, что не позволяет делать их копии. Нет копий – нет широкой аудитории. Воспроизвести DSD аудиоконтент можно было только с отдельного SA-CD проигрывателя с фирменного диска. Если для PCM формата есть стандарт SPDIF для цифровой передачи данных от источника к отдельному ЦАП, то для DSD формата стандарта нет и первые пиратские копии SA-CD дисков были оцифровками с аналоговых выходов SA-CD проигрывателей (хоть ситуация и кажется глупой, но на деле некоторые записи выходили только на SA-CD, либо та же запись на Audio-CD специально была сделана некачественно для продвижения SA-CD).

Переломный момент произошел с выходом игровых приставок SONY, где SA-CD диск до воспроизведения автоматически копировался на жесткий диск приставки. Этим воспользовались поклонники формата DSD. Появление пиратских записей простимулировало рынок на выпуск отдельных ЦАП для воспроизведения DSD потока. Большинство внешних ЦАП с поддержкой DSD на сегодняшний день поддерживает передачу данных по USB используя формат DoP в виде отдельного кодирования цифрового сигнала через SPDIF.

Несущие частоты для DSD сравнительно небольшие, 2.8 и 5.6 МГц, но этот звуковой поток не требует никаких преобразований с прореживанием данных и вполне конкурентно-способен с форматами высокого разрешения, такими как DVD-Audio.

На вопрос что лучше, DSP или PCM однозначного ответа нет. Все упирается в качество реализации конкретного ЦАП и таланта звукорежиссера при записи конечного файла.

Общий вывод

Аналоговый звук – это то, что мы слышим и воспринимаем, как окружающий мир глазами. Цифровой звук, это набор координат, описывающих звуковую волну, и который мы напрямую услышать не можем без преобразования в аналоговый сигнал.

Аналоговый сигнал, записанный напрямую на аудиокассету или винил нельзя без потери качества перезаписать, в то время как волну в цифровом представлении можно копировать бит в бит.

Цифровые форматы записи являются постоянным компромиссом между количеством точностью координат против объема файла и любой цифровой сигнал является лишь приближением к исходному аналоговому сигналу. Однако при этом разный уровень технологий записи и воспроизведения цифрового сигнала и хранения на носителях для аналогового сигнала дают больше преимуществ цифровому представлению сигнала, аналогично цифровой фотокамере против пленочного фотоаппарата.

Сигналами называют информационные коды, которые применяются людьми для того, чтобы передавать сообщения в информационной системе. Сигнал может подаваться, но его получение не обязательно. Тогда как сообщением можно считать только такой сигнал (или совокупность сигналов), который был принят и декодирован получателем (аналоговый и цифровой сигнал).

Одними из первых методов передачи информации без участия людей или других живых существ были сигнальные костры. При возникновении опасности последовательно разводились костры от одного поста к другому. Далее мы будем рассматривать способ передачи информации при помощи электромагнитных сигналов и подробно остановимся на рассмотрении темы аналоговый и цифровой сигнал .

Любой сигнал может быть представлен в виде функции, которая описывает изменения его характеристик. Такое представление удобно для изучения устройств и систем радиотехники. Помимо сигнала в радиотехнике есть еще шум, который является его альтернативой. Шум не несет полезной информации и искажает сигнал, взаимодействуя с ним.

Само понятие дает возможность отвлечься от конкретных физических величин при рассмотрении явлений, связанных с кодированием и декодированием информации. Математическая модель сигнала в исследованиях позволяет опираться на параметры функции времени.

Типы сигналов

Сигналы по физической среде носителя информации делятся на электрические, оптические, акустические и электромагнитные.

По методу задания сигнал может быть регулярным и нерегулярным. Регулярный сигнал представляется детерминированной функцией времени. Нерегулярный сигнал в радиотехнике представлен хаотической функцией времени и анализируется вероятностным подходом.

Сигналы в зависимости от функции, которая описывает их параметры могут быть аналоговыми и дискретными. Дискретный сигнал, который был подвергнут квантованию называется цифровым сигналом.

Обработка сигнала

Аналоговый и цифровой сигнал обрабатывается и направлен на то, чтобы передать и получить информацию, закодированную в сигнале. После извлечения информации ее можно применять в разных целях. В частных случаях информация подвергается форматированию.

Аналоговые сигналы подвергаются усилению, фильтрации, модуляции и демодуляции. Цифровые же помимо этого еще могут подвергаться сжатию, обнаружению и др.

Аналоговый сигнал

Наши органы чувств воспринимают всю поступающую в них информацию в аналоговом виде. К примеру, если мы видим проезжающий мимо автомобиль, мы видим его движение непрерывно. Если бы наш мозг мог получать информацию о его положении раз в 10 секунд, люди бы постоянно попадали под колеса. Но мы можем оценивать расстояние куда быстрее и это расстояние в каждый момент времени четко определено.

Абсолютно то же самое происходит и с другой информацией, мы можем оценивать громкость в любой момент, чувствовать какое давление наши пальцы оказывают на предметы и т.п. Иными словами, практически вся информация, которая может возникать в природе имеет аналоговый вид. Передавать подобную информацию проще всего аналоговыми сигналами, которые являются непрерывными и определены в любой момент времени.

Чтобы понять, как выглядит аналоговый электрический сигнал, можно представить себе график, на котором будет отображена амплитуда по вертикальной оси и время по горизонтальной оси. Если мы, к примеру, замеряем изменение температуры, то на графике появится непрерывная линия, отображающая ее значение в каждый момент времени. Чтобы передать такой сигнал с помощью электрического тока, нам надо сопоставить значение температуры со значением напряжения. Так, например, 35.342 градуса по Цельсию могут быть закодированы как напряжение 3.5342 В.

Аналоговые сигналы раньше использовались во всех видах связи. Чтобы избежать помех такой сигнал нужно усиливать. Чем выше уровень шума, то есть помех, тем сильнее надо усиливать сигнал, чтобы его можно было принять без искажения. Такой метод обработки сигнала затрачивает много энергии на выделение тепла. При этом усиленный сигнал может сам стать причиной помех для других каналов связи.

Сейчас аналоговые сигналы еще применяются в телевидении и радио, для преобразования входного сигнала в микрофонах. Но, в целом, этот тип сигнала повсеместно вытеснен или вытесняется цифровыми сигналами.

Цифровой сигнал

Цифровой сигнал представлен последовательностью цифровых значений. Чаще всего сейчас применяются двоичные цифровые сигналы, так как они используются в двоичной электронике и легче кодируются.

В отличие от предыдущего типа сигнала цифровой сигнал имеет два значения «1» и «0». Если мы вспомним наш пример с измерением температуры, то тут сигнал будет сформирован иначе. Если напряжение, которое подается аналоговым сигналом соответствует значению измеряемой температуры, то в цифровом сигнале для каждого значения температуры будет подаваться определенное количество импульсов напряжения. Сам импульс напряжения тут будет равен «1», а отсутствие напряжения – «0». Приемная аппаратура будет декодировать импульсы и восстановит исходные данные.

Представив, как будет выглядеть цифровой сигнал на графике, мы увидим, что переход от нулевого значения к максимальному производится резко. Именно эта особенность позволяет принимающей аппаратуре более четко «видеть» сигнал. Если возникают какие-либо помехи, приемнику проще декодировать сигнал, нежели чем при аналоговой передаче.

Однако цифровой сигнал с очень большим уровнем шума восстановить невозможно, тогда как из аналогового типа при большом искажении еще есть возможность «выудить» информацию. Это связано с эффектом обрыва. Суть эффекта в том, что цифровые сигналы могут передаваться на определенные расстояния, а затем просто обрываются. Этот эффект возникает повсеместно и решается простой регенерацией сигнала. Там, где сигнал обрывается, нужно вставить повторитель или уменьшить длину линии связи. Повторитель не усиливает сигнал, а распознает его изначальный вид и выдает его точную копию и может использоваться сколь угодно в цепи. Такие способы повторения сигнала активно применяются в сетевых технологиях.

Помимо всего прочего аналоговый и цифровой сигнал различается и возможность кодирования и шифрования информации. Это является одной из причин перехода мобильной связи на «цифру».

Аналоговый и цифровой сигнал и цифро-аналоговое преобразования

Следует еще немного рассказать о том, как аналоговая информация передается по цифровым каналам связи. Вновь прибегнем к примерам. Как уже говорилось звук – это аналоговый сигнал.

Что происходит в мобильных телефонах, которые передают информацию по цифровым каналам

Звук, попадая в микрофон подвергается аналого-цифровому преобразованию (АЦП). Этот процесс состоит из 3 ступеней. Берутся отдельные значения сигнала через одинаковые отрезки времени, этот процесс называется дискретизация. По теореме Котельникова о пропускной способности каналов, частота взятия этих значений должна быть вдвое выше, чем самая высокая частота сигнала. То есть, если в нашем канале стоит ограничение на частоту в 4 кГц, то частота дискретизации будет составлять 8 кГц. Далее все выбранные значения сигнала округляются или, иначе говоря, квантуются. Чем больше уровней при этом будет создано, тем выше будет точность восстановленного сигнала на приемнике. Затем все значения преобразуются в двоичный код, который передается на базовую станцию и затем доходит до другого абонента, являющегося приемником. В телефоне приемника происходит процедура цифро-аналогового преобразования (ЦАП). Это обратная процедура, цель которой на выходе получить сигнал как можно более идентичный исходному. Далее уже аналоговый сигнал выходит в виде звука из динамика телефона.

Сегодня попытаемся разобраться, что такое аналоговый и цифровой сигналы? Их преимущества и недостатки. Не будем кидаться различными научными терминами и определениями, а попытаемся разобраться в ситуации на пальцах.

Что такое аналоговый сигнал?

Аналоговый сигнал основан на аналогии электрического сигнала (значений тока и напряжения) значению исходного сигнала (цвету пикселя, частоте и амплитуде звука и т.п). Т.е. определенные значения тока и напряжения соответствуют передаче определенного цвета пикселя или звукового сигнала.

Приведу пример на аналоговом видеосигнале.

Напряжение на проводе 5 вольт соответствует синему цвету, 6 вольт – зеленому, 7 вольт красному.

Для того чтобы на экране появились красные, синие и зеленые полосы нужно поочередно подавать на кабель напряжения 5, 6, 7 вольт. Чем быстрее мы проводим смену напряжений, тем тоньше полоски получаются у нас на мониторе. Сократив интервал между сменой напряжений до минимума, мы получим уже не полоски, а чередующиеся друг за другом цветные точки.

Важной особенностью аналогового сигнала является то обстоятельство, что он передается строго от передатчика к приемнику (например, от антенны к телевизору), обратной связи нет. Поэтому если в передачу сигнала вмешается помеха (например, вместо шести вольт придет четыре), цвет пикселя исказится, и на экране появится рябь.
Аналоговый сигнал непрерывен.
Что такое цифровой сигнал?

Передача данных осуществляется также с помощью электрического сигнала, но значений этих сигналов всего два и они соответствуют 0 и 1. Т.е. по проводам передается последовательность из нулей и единиц. Примерно так: 01010001001 и т. д. Для того чтобы приемное устройство (например, телевизор) не запутался в передаваемых данных, цифры передаются пачками. Это происходит примерно так: 10100010 10101010 10100000 10111110. Каждая такая пачка несет какую-нибудь информацию, например - цвет пикселя. Важной особенностью цифрового сигнала, является то, что передающие и принимающее устройство могут общаться между собой и исправлять друг за другом ошибки, которые могут возникнуть при передаче.

Примеры передачи цифрового и аналогового сигналов

Для цифрового сигнала передача происходит примерно так:

  • Помеха: АААААААААААААА!
  • Телевизор: Какой? Не слышу!
  • Видеомагнитофон: Зеленый!
  • Телевизор: Ага, понял! Рисую зеленый.
  • Телевизор: Прошу подтвердить, что цвет красный.
  • Видеомагнитофон: подтверждаю.
  • Телевизор: Ок! рисую.

Передача для аналогового сигнала:

  • Видеомагнитофон: Эй, телевизор, цвет пикселя с координатами 120х300 - зеленый.
  • Помеха: АААААААААААААА!
  • Телевизор: Какой? Не слышу! Блин, нарисую синий.
  • Видеомагнитофон: Следующий цвет красный!
  • Помеха: БАХ! БУМ!
  • Телевизор: Красный вроде! Рисую.
  • Видеомагнитофон: Лопата!
  • Помеха: ПШШШШШШ!
  • Телевизор: ?!. Надо что-то рисовать?! Пусть будет лопата!

Преимущества и недостатки цифрового и аналогового сигналов

Из вышесказанного можно сделать вывод, что при прочих равных условиях качество передачи информации с помощью цифры будет выше, чем при аналоговом представлении сигнала. В то же время при хорошей помехозащищенности две технологии могут конкурировать на равных.

Простому потребителю совсем необязательно знать, какова природа сигналов. Но порой необходимо знать разницу между аналоговым и цифровым форматами, чтобы с открытыми глазами подходить к выбору того или иного варианта, ведь сегодня на слуху, что время аналоговых технологий прошло, на смену им приходят цифровые. Следует понять разницу, чтобы знать от чего уходим и чего ожидать.

Сигнал аналоговый - это сигнал непрерывный, имеющий бесконечное число близких по значению данных в пределах максмальных, все параметры которого описываются временной зависимой переменной.

Сигнал цифровой - это раздельный сигнал, описываемый раздельной функцией времени, соответственно в каждый момент времени, величина амплитуды сигнала имеет строго определенное значение.

Практика показала, что при аналоговых сигналах возможны помехи, устраняемые при цифровом сигнале. Кроме того, цифровой может восстановить изначальные данные. При непрерывном аналоговом сигнале проходит много информации, зачастую излишней. Вместо одного аналогового можно передать несколько цифровых.

На сегодняшний день потребителя интересует вопрос телевидения, так как именно в этом контексте чаще и произносится фраза "переход на цифровой сигнал". В этом случае аналоговый можно считать пережитком прошлого, но ведь именно его принимает существующая техника, а для приема цифрового необходима специальная. Конечно, в связи с появлением и расширением использования "цифры", теряют былую популярность.

Преимущества и недостатки видов сигналов

Немаловажную роль в оценке параметров того или иного сигнала имеет безопасность. Различного характера влияния, посторонние вторжения делают аналоговый сигнал беззащитным. При цифровом подобное исключается, так как он кодируется из радиоимпульсов. Для больших расстояний передача цифровых сигналов усложнена, приходится использовать схемы модуляции-демодуляции.

Поводя итог, можно сказать, что отличия аналогового и цифрового сигнала состоят:

  • В непрерывности аналогового и дискретности цифрового;
  • В большей вероятности помех при передаче аналогового;
  • В избыточности аналогового сигнала;
  • В способности цифрового фильтровать помехи и восстанавливать исходую информацию;
  • В передаче цифрового сигнала в закодированной форме. Один аналоговый сигнал замещается несколькими цифровыми.