Применение и эксплуатация кислотно-свинцовых герметичных аккумуляторов.

Буферная система питания

При такой системе питания параллельно выпрямителю UZ и нагрузке включена аккумуляторная батарея GB (рис. 2.3). В случае аварии в сети переменного тока или повреждения выпрямителя дальнейшее питание нагрузки обеспечивает батарея без перерыва в подаче энергии. Аккумуляторная батарея обеспечивает надежное резервирование источников электрической энергии, и, кроме того, она совместно с фильтром питания осуществляет необходимое сглаживание пульсации. При буферной системе питания различают три режима работы: среднего тока, импульсного и непрерывного подзаряда.

При режиме среднего тока (рис. 2.4) выпрямитель UZ, вклю­ченный параллельно с аккумуляторной батареей GВ, обеспечивает постоянный ток I в независимо от изменения тока I н в нагрузке R н. Когда ток нагрузки I н мал, выпрямитель питает нагрузку и за­ряжает аккумуляторную батарею током I 3 , а когда ток нагрузки велик, выпрямитель совместно с батареей, которая разряжается током I р, питает нагрузку. Во время заряда напряжение на каждом аккумуляторе батареи увеличивается и может достигать 2,7 В, а во время разряда уменьшается до 2 В. Для осуществления данного режима могут быть использованы простейшие выпрямители без устройств автоматической регулировки. Ток выпрямителя рассчи­тывают исходя из количества электрической энергии (ампер-часы), затрачиваемой на питание нагрузки в течение суток. Это значение должно быть увеличено на 15-25% для компенсации потерь, ко­торые всегда существуют при заряде и разряде аккумуляторов .

К недостаткам режима относятся: невозможность точно опре­делить и установить необходимый ток выпрямителя, так как дей­ствительный характер изменения тока нагрузки никогда точно неизвестен, что приводит к недозаряду или перезаряду аккуму­ляторов; небольшой срок службы аккумуляторов (8-9 лет), вызы­ваемый глубокими циклами заряда и разряда; значительные коле­бания напряжения на нагрузке, так как напряжение на каждом аккумуляторе может изменяться от 2 до 2,7 В.

При режиме импульсного подзаряда (рис. 2.5) ток выпрямителя изменяется скачкообразно в зависимости от напряжения на акку­муляторной батарее GВ. При этом выпрямитель UZ обеспечивает питание нагрузки R н совместно с батареей GВ или питает нагрузку

Рисунок 2.3 – Схема буферной системы питания

Рисунок 2.4 – Режим среднего тока:

а – схема; б – диаграмма токов; в – зависимости токов и напряжений от времени; I З и I Р – соответственно токи заряда и разряда аккумуляторной батареи

Рисунок 2.5 – Режим импульсного подзаряда:

а – схема; б – диаграмма токов и напряжений; в, г – зависимости токов и напряжений от времени

и подзаряжает батарею. Максимальный ток выпрямителя устанавливают несколько больше тока, имеющего место в час наибольшей нагрузки, а минимальный ток нагрузки I В max - меньше минимального тока нагрузки I н.

Предположим, что в исходном положении выпрямитель отдает минимальный ток. Батарея аккумуляторов разряжается, и напря­жение на ней падает до 2,1 В на элемент. Реле Р отпускает якорь и контактами шунтирует резисторR. Ток на выходе выпрямителя возрастает скачкообразно до максимального. С этого момента вы­прямитель питает нагрузку и заряжает батарею. В процессе заряда напряжение на аккумуляторной батарее увеличивается и достигает 2,3 В на элемент. Вновь срабатывает реле Р, и ток выпрямителя падает до минимального; батарея начинает разряжаться. Далее циклы повторяются. Длительность интервалов времени максималь­ного и минимального тока выпрямителя изменяется в соответствии с изменением тока в нагрузке.

К достоинствам режима относятся: простота системы регули­рования тока на выходе выпрямителя; небольшие пределы изме­нения напряжения на аккумуляторной батарее и на нагрузке (от 2,1 до 2,3 В на элемент); увеличение срока службы аккумуляторов до 10-12 лет в связи с менее глубокими циклами заряда и разряда. Этот режим используют для питания устройств автоматики.

При режиме непрерывного подзаряда (рис. 2.6) нагрузка R н пи­тается полностью от выпрямителя UZ. Заряженная аккумуляторная батарея получает от выпрямителя небольшой постоянный ток подзаряда, компенсирующий саморазряд. Для осуществления ука­занного режима необходимо на выходе выпрямителя установить напряжение из расчета (2,2 ± 0,05) В на каждый аккумулятор и поддерживать его с погрешностью не более ±2%. При этом ток подзаряда для кислотных аккумуляторов I п = (0,001-0,002) С н и для щелочных аккумуляторов I п = 0,01С Н. Следовательно, для вы-

Рисунок 2.6 – Режим непрерывного подзаряда:

а – схема; б – диаграмма токов; в – зависимости токов и напряжений от времени

полнения этого режима выпрямители должны иметь точные и надежные устройства стабилизации напряжения. Невыполнение этого требования приводит к перезаряду аккумуляторов или к их глубокому разряду и сульфатации.

К достоинствам режима относится: достаточно высокий к. п. д. установки, определяемый только выпрямителем (η = 0,7÷0,8); большой срок службы аккумуляторов, достигающий 18-20 лет благодаря отсутствию циклов заряда и разряда; высокая стабиль­ность напряжения на выходе выпрямительного устройства; умень­шение эксплуатационных расходов благодаря возможности автома­тизации и упрощению обслуживания аккумуляторов.

Нормально аккумуляторы находятся в заряженном состоянии и не требуют непрерывного наблюдения. Отсутствие циклов заряда и разряда и правильно выбранный ток подзаряда уменьшают сульфатацию и позволяют увеличить периоды между перезарядами и контрольными разрядами.

Недостатком режима является необходимость усложнения пи­тающих устройств за счет элементов стабилизации и автомати­зации. Режим используют в устройствах для питания аппаратуры связи.

Буферный режим заряда аккумуляторов, является основным в системах альтернативной энергетики. От правильной настройки и режима использования оборудования зарядной системы зависит производительность всей системы, надёжность и срок службы оборудования.

При использовании в системах альтернативного энергоснабжения в качестве накопителей электрической энергии аккумуляторов, имеются определённые сложности. Это связано с тем, что поступление электрической энергии от ветряков солнечных батарей неравномерно. Поэтому не всегда удаётся обеспечить необходимый ток заряда для аккумуляторов, чтобы через определённое заданное время отключить зарядку. Для таких систем используют буферный режим заряда аккумуляторов, когда к аккумуляторам постоянно подключено зарядное устройство, а также в любое время могут быть подключены один или несколько потребителей электрической энергии. Буферный режим заряда обычно применяют для аварийного включения резервного питания и для сглаживания пиковых нагрузок при маломощном источнике питания. В альтернативной энергетике буферный режим заряда аккумуляторов выполняет несколько иные функции, обеспечение энергоснабжения системы при прерывистом поступлении энергии для заряда аккумуляторов и обеспечение необходимого количества энергии при неравномерном потреблении энергии потребителями.

Разберём подробнее приведённую схему и работу буферного режима зарядки, его достоинства и недостатки. Важной особенностью этого режима является то, что выходное напряжение зарядного устройства задаётся примерно на 0,05В – 0,1В больше максимального напряжения для заряженного аккумулятора, а значение этого напряжения будет зависеть от конкретного типа аккумулятора. Даже кислотные аккумуляторы разных типов могут иметь различное конечное напряжение заряда, причём оптимальное напряжение несколько меняется при изменении температуры аккумулятора. При отключенной нагрузке R н, зарядка будет происходить следующим образом: ЭДС зарядного устройства Е з превышает ЭДС аккумулятора Е а и направлена встречно напряжению аккумулятора. Сумма падений напряжения в контуре заряда, равна алгебраической сумме ЭДС этого контура. Следовательно, ток заряда будет зависеть от разности ЭДС зарядного устройства и от общего сопротивления цепи, состоящей из внутреннего сопротивления зарядного устройства и аккумулятора.

Внутреннее сопротивление зарядного устройства R з и аккумулятора R а будем считать практически постоянным. Следовательно, величина тока зарядки будет зависеть от разности ЭДС. Внутренние сопротивления небольшие по величине, поэтому если аккумулятор разряжен, ток заряда может стать больше допустимого, для конкретного аккумулятора или зарядного устройства. Поэтому зарядные устройства выполняют по схеме с ограничением максимального тока и применяют для аккумуляторов определённого типа и ёмкости. По мере заряда аккумулятора разница ЭДС, а значит, и ток заряда будут уменьшаться. Поэтому процесс заряда аккумулятора будет замедляться независимо от того, какую мощность в это время способен выдавать источник альтернативной энергии и может продолжаться до нескольких суток.

Если установленное напряжение на зарядном устройстве завышено, то после окончания химического процесса заряда, электрическая энергия будет идти на нагрев аккумулятора и на разложение воды на водород и кислород. У обслуживаемых аккумуляторов это приведёт к быстрому уменьшению уровня электролита. Большинство необслуживаемых аккумуляторов изготавливаются с возможностью рекуперации водорода и кислорода в воду, но возможности этой системы ограничены. Если необслуживаемый аккумулятор периодически сбрасывает через клапан повышенное давление газа, то это приводит к высыханию электролита, быстрому старению и выходу аккумуляторов из строя.

Альтернативные источники энергии не всегда могут вырабатывать энергию достаточную для заряда аккумулятора. Если генератор ветряка выдаёт напряжение меньше, чем напряжение аккумуляторов, то заряд не происходит. Схема зарядного устройства должна защищать аккумулятор от разряда через зарядное устройство и генератор.

Рассмотрим режим разряда аккумулятора при отсутствии зарядного тока:

В этом режиме, согласно рисунку, выключатель SA1разомкнут, а выключатель SA2 замкнут. Ток разряда будет зависеть от ЭДС аккумулятора и суммы внутреннего и внешнего сопротивления и определяется по формуле:

Напряжение на выводах аккумулятора 1 и 2 будет равно ЭДС аккумулятора минус падение напряжения на внутреннем сопротивлении:

U = E a – R a I н

Ток через нагрузку и внутреннее сопротивление одинаковый. Внутреннее сопротивление аккумулятора небольшое и ток в основном зависит от величины сопротивления нагрузки. Чем меньше сопротивление нагрузки, тем больше потребляемый ток и больше величина падения на внутреннем сопротивлении и меньше напряжение на выводах аккумулятора 1 и 2.

Теперь рассмотрим режим одновременной работы зарядного устройства и нагрузки аккумулятора, когда замкнуты контакты SA1и SA2.

Если во время заряда аккумулятора, подключили нагрузку, которая потребляет небольшой по сравнению с зарядным ток, то на зарядку аккумулятора будет идти уже меньшая часть тока. При постепенном уменьшении сопротивления нагрузки и увеличении потребляемого тока, зарядный ток аккумулятора будет уменьшаться и при некотором значении прекратится. Потребляемый от зарядного устройства ток увеличится, что приведёт к некоторому падению напряжения до величины ЭДС аккумулятора. Если поступающий от зарядного устройства ток меньше или равен току, потребляемому нагрузкой, то в таком режиме потреблять энергию можно очень долго. Дальнейшее увеличение потребляемого тока приведёт к тому, что падение напряжения ещё больше увеличится и аккумулятор начнёт отдавать запасённую ранее энергию. Аккумулятор берёт на себя пиковую повышенную нагрузку. Длительная работа в таком режиме может привести к глубокому разряду аккумулятора, в результате снижается ЭДС аккумулятора. Слишком глубокий разряд аккумулятора значительно сокращает срок его службы, поэтому нагрузку лучше подключать через преобразователь или иное устройство, способное автоматически отключать нагрузку при снижении напряжения ниже допустимого уровня. Для кислотных аккумуляторов нежелательно, чтобы они долго находились в разряженном состоянии.

При использовании буферного режима заряда, необходимо следить за поступлением энергии от источника и желательно учитывать, что в то время, когда источник энергии способен выдавать большое количество энергии, но эта энергия не потребляется, то при заряженных аккумуляторах энергия не накапливается, а значит, безвозвратно теряется. При отсутствии поступления энергии от источника, например, ветряка, потребление энергии необходимо сократить или прекратить, чтобы не разрядить аккумуляторы больше допустимой нормы, а также иметь некоторый запас на случай длительных перерывов в поступлении энергии.


Все мы привыкли в благам цивилизации, и когда что то из удобств исчезает, человек ощущает сильный дискомфорт. У большинства иногда пропадает электроэнергия, так как состояние электросети в большинстве городов очень старые и аварии происходят довольно часто. После того как я в очередной раз 4 часа просидел в темноте, я решил что нужно что то делать... И решение пришло довольно быстро. Аккумулятор 12V 7Ah, такие используются в компьютерных бесперебойниках, небольшая схема, которая будет поддерживать данный аккумулятор, всегда в заряженном состоянии, кусок светодиодной ленты, и Разъем для подключения роутера (без интернета скучно), ноутбук и планшет слава богу имеет свой аккумулятор... И все, нам теперь есть чем заняться и без центральной поставки электроэнергии....
Схема зарядки держит аккумулятор в буферном режиме, то есть на аккумулятор всегда поступает напряжение определенного уровня, что поддерживает его в заряженном состоянии. Производители пишут на корпусе какое именно напряжение необходимо для вашей батареи. Обычно оно лежит в пределах 13,5 - 13,8 вольта. Под таким напряжением аккумулятор может быть подключен к сети постоянно.


Схема зарядного устройства состоит с сетевого трансформатора, стабилизатора напряжения на микросхеме LM317, и аккумуляторной батареи. Все монтируется на небольшой печатной плате, микросхему lm317 необходимо установит на радиатор.


Настройка заключается в установке напряжения на выходе зарядного устройства 13,5 - 13,8 вольта. Для питания роутера я дополнительно ставил кренку на 9 вольт. При емкости аккумулятора 7Ah. метр светодиодной белой ленты и роутер работал более 4 часов, больше не проверялось, свет обычно включают...
Скачать схему, файл печатной платы, аварийного источника бесперебойного питания

Самым важным условием для правильной работы и высоких показателей отдачи и срока службы аккумулятора является его правильный заряд. И совершенно неважно, о какой именно модели мы говорим. Это касается как батарей высокой мощности, которые применяются в промышленности, так и небольших батарей, размещенных в плеерах и смартфонах.

Увы, не все пользователи подобных устройств знают эти правила. Наша статья направлена на повышение технической грамотности клиентов и выступает в роли своеобразной инструкции по применению аккумуляторных батарей. И когда вы столкнетесь с проблемами, в наличии будет качественный материал с описанием всех важных этапов.

Производители выпускают большое количество аккумуляторных батарей: каждая из них обладает своими уникальными особенностями. Это касается как режима эксплуатации, так и процесса заряда. Качественные модели ведущих производителей всегда снабжаются подробной инструкцией, но бывают редкие случаи, когда подобные документы попросту не включают в комплект поставки. Искать нужные статьи на просторах Интернета - не самое увлекательное занятие, да и времени на это попросту не хватает.

А потому в этой статье мы опишем основные моменты правильной зарядки герметизированных , свинцово-кислотных аккумуляторов необслуживаемого типа. Они применяются как в бытовых приборах, так и в источниках бесперебойного питания. Кроме того, все модели автомобильных аккумуляторов исполнены по тому же принципу. Гелевые и AGM аккумуляторы заряжаются согласно этой инструкции. Можно с успехом применять представленные правила для стартерных аккумуляторов , которые требуют обслуживания. Но здесь есть некоторые особенности, которые мы укажем в представленной статье.

Самый главный вопрос - как именно заряжать аккумулятор?

В этом разделе мы расскажем об основных моментах правильного заряда аккумуляторной батареи. Существует очень важное правило: оно касается всех моделей, которые присутствуют на рынке, без исключения. Чем меньшее количество раз аккумуляторная батарея разряжается и чем ниже глубина разряда, тем больше срок ее эксплуатации.

Существует немало мифов, которые касаются процесса заряда. Чаще всего "специалисты" утверждают, что нужно разрядить аккумулятор полностью и заряжать его до максимальных отметок. Более того, подобные "знатоки" уверены, что периодически разряжая аккумулятор, вы увеличиваете срок его эксплуатации. Это все неправильно: если ваш консультант предлагает купить товар и пересказывает подобные басни - не заходите больше в этот магазин.

Если мы рассматриваем батареи низкого качества, которые изготовлены неизвестным производителем, то для них периодический процесс заряда и разряда действительно важен. Если этого не делать, то подобные аккумуляторные батареи попросту выходят из строя (пластины растворяются в серной кислоте и образуются сульфаты). Но для качественных моделей наиболее оптимальным режимом работы является буферный. Во время него разряды полностью исключаются, а батарея находится под постоянной нагрузкой.

Чтобы понять правила заряда аккумулятора, следует разбираться в основных понятиях о режимах его работы.

Наиболее оптимальный - буферный режим работы.

Нет более яркого примера такого режима - как источник бесперебойного питания. В ИБП аккумулятор все время заряжается и начинает отдавать энергию лишь в тех случаях, когда пропадает питание в электрической сети. Как только питание восстанавливается, происходит процесс подзарядки. Это самый правильный режим эксплуатации: использование аккумулятора в таком режиме приводит к длительному сроку службы. Самые продвинутые модели могут служить более 12 лет. И это далеко не предел для AGM аккумуляторов нового поколения.

Давайте рассмотрим циклический режим работы.

Стандартный пример циклического режима применения аккумуляторной батареи - это игрушечный автомобиль, домашние системы автоматического электрического питания. При таком типе работы происходит процесс разряда и заряда, причем это происходит 1 раз в сутки. Это самый тяжелый режим эксплуатации: в таких случаях не говорят о сроках службы во временном эквиваленте. В этих случаях рассматривают ресурс циклов работы. Обычные AGM аккумуляторные батареи работают не более 300 циклов, а новые модели - 600 циклов.

Мы часто удивляемся «техникам», которые для циклического режима работы применяют автомобильные аккумуляторы, предназначенные для запуска стартера. Сразу же предупреждаем: данные модели рассчитаны лишь на один процесс - запуск двигателя. А после этого генератор должен подавать питание самостоятельно. Если вы планируете применять циклический режим работы, пластины достаточно быстро выйдут из строя, и ваша "экономия средств" закончится провалом.

Как следует заряжать аккумуляторные батареи в буферном режиме работы.

Как известно, номинальное напряжение каждого элемента в АКБ свинцово - кислотного типа составляет 2В. Чаще всего для бытовых нужд используют трехэлементные и шестиэлементные батареи.

Во время буферного режима работы, напряжение должно составлять 2,3 В на один элемент аккумулятора. Если рассматривать 12- вольтовые модели, то этот показатель составляет 13,8 В а 6-вольтовые модели - 6,9В.

Параметры тока для заряда должны составлять 30 процентов от 10-часовой емкости аккумулятора. Если мы говорим о гелевых моделях, то эти показатели равны 20 процентам. В качестве примера рассмотрим обычную аккумуляторную батарею С10. Ее емкость 100 Ач, а значит, ток заряда не должен превышать 30А.

Давайте рассмотрим правильный процесс заряда аккумуляторов, которые работают в циклическом режиме: Параметры напряжения 2,45 В/эл, ток заряда равен 20 процентам для С10.

Длительность заряда батареи.

Длительность процесса заряда батареи зависит от ряда факторов: в первую очередь, от изначальной заряженности. В первые минуты происходит быстрая зарядка (ускоренная), но спустя некоторое время потребление тока снижается и прекращается в тот момент, когда АКБ достигает полной заряженности. Самый главный критерий заряженности - это снижение потребление тока батареей, до показателей 1,5 мА на каждый Ач емкости аккумулятора. Если мы рассмотрим батарею С20, то снижение тока зарядки до 200 - 300мА говорит о том, что аккумулятор практически полностью заряжен. Чтобы повысить заряд до 100 процентов, нужно продолжить процесс зарядки таким током в течении 1 часа.

Разряженный аккумулятор заряжается за 10 - 12 часов при циклическом режиме работы. При буферном режиме работы эти цифры достигают 40 часов. Для полного заряда АКБ ей нужно подать на 20 процентов энергии больше, чем указано в номинальных значениях. Здесь срабатывают стандартные физические законы. И эти параметры совершенно не зависят от марки производителя и типа батареи. Выражаясь простым языком, отсутствие перенасыщения не завершит все химические и электрические реакции, которые протекают в батарее.

Оптимальные температурные показатели для процесса зарядки - 20 градусов по Цельсию. Если температура снижена, то время зарядки следует увеличивать. Когда вы пытаетесь зарядить аккумулятор при низких температурах, то все ваши усилия стремятся к нулю.

Буферный режим работы аккумуляторных батарей является самым «любимым» - батарея находится на постоянной подзарядке и очень редко получает глубокий разряд. В таком режиме аккумулятор прослужит вам максимально долго.

Примером использования аккумулятора в буферном режиме может быть источник бесперебойного питания: когда присутствует сеть, аккумулятор постоянно держит заряд, а в момент, когда сеть пропадает, аккумулятор начинает отдавать накопленную энергию. В компьютерных источниках бесперебойного питания обычно используют аккумуляторы 12 В ёмкостью от 7 до 26 А-ч, это даёт возможность компьютеру проработать от аккумулятора дополнительных 10-15 минут при отключении электричества.

Сфера применения при буферном режиме:

  • накопители солнечной энергии
  • источники бесперебойного питания (ИБП)
  • системы аварийного освещения
  • лифты
  • пожарные и охранные системы
  • контрольно-кассовые аппараты
  • аварийные системы

Циклический режим

Циклический режим работы является самым «жёстким» для аккумуляторной батареи. В таком режиме её полностью разряжают, потом ставят на зарядку и снова полностью разряжают. Срок службы в таком случае будет зависеть от глубины разряда аккумулятора.

Большинство свинцово-кислотных аккумуляторов AGM-типа имеют циклический ресурс не более 300 циклов 100% разряда, но уже существуют аккумуляторы нового поколения, циклический ресурс которых составляет 600 циклов 100% разряда.

Сфера применения при циклическом режиме:

  • поломоечные машины
  • лодочные моторы
  • электромобили
  • погрузочная техника и т.д.