Встроенный ethernet. Отличительные особенности технологии Ethernet

Ethernet - это самый распространенный на сегодняшний день стандарт локальных сетей. Общее количество сетей, использующих в настоящее время

Fast Ethernet

Технология Fast Ethernet во многом совпадает с традиционной технологией Ethernet, но быстрее ее в 10 раз. Fast Ethernet или 100BASE-T работает со скоростью 100 мегабит в секунду (Mbps) вместо 10 для традиционного варианта Ethernet. Технология 100BASE-T использует кадры того же формата и длины, как Ethernet и не требует изменения протоколов высших уровней, приложений или сетевых ОС на рабочих станциях. Вы можете маршрутизировать и коммутировать пакеты между сетями 10 Mbps и 100 Mbps без трансляции протоколов и связанных с ней задержек. Технология Fast Ethernet использует протокол CSMA/CD подуровня MAC для обеспечения доступа к среде передачи. Большинство современных сетей Ethernet построены на основе топологии "звезда", где концентратор является центром сети, а кабели от концентратора тянутся к каждому компьютеру. Такая же топология используется в сетях Fast Ethernet, хотя диаметр сети несколько меньше по причине более высокой скорости. Fast Ethernet использует неэкранированный кабель из скрученных пар проводников (UTP), как указано в спецификации IEEE 802.3u для 100BASE-T. Стандарт рекомендует использовать кабель категории 5 с двумя или четырьмя парами проводников, помещенных в пластиковую оболочку. Кабели категории 5 сертифицированы для полосы пропускания 100 MHz. В 100BASE-TX одна пара используется для передачи данных, вторая - для обнаружения коллизий и приема.

Стандарт Fast Ethernet определяет три модификации для работы с разными видами кабелей: 100Base TX, 100Base T4 и 100Base FX. Модификации 100Base TX и 100Base T4 расчитаны на витую пару, а 100Base FX был разработан для оптического кабеля.

Стандарт 100Base TX требует применения двух экранированных или неэкранированных витых пар. Одна пара служит для передачи, другая для приёма. Этим требованиям отвечают два основных кабельных стандарта: на неэкранированную витую пару категории 5 (UTP-5) и экранированную витую пару типа 1 от IBM.

Стандарт 100Base T4 имеет менее ограничительные требования к кабелю, так как в нём задействуются все четыре пары восьмижильного кабеля: одна пара для передачи, другая для приёма, а оставшиеся две пары работают как на передачу, так и на приём. В результате, в стандарте 100Base T4 и приём и передача данных могут осуществляться по трём парам. Для реализации сетей 100Base T4 подойдут кабели с неэкранированной витой парой категории 3-5 и экранированной типа 1.

Преемственность технологий Fast Ethernet и Ethernet позволяет легко выработать рекомендации по применению: Fast Ethernet целесообразно применять в тех организациях, которые широко использовали классический Ethernet, но на сегодняшний день испытывают потребность в увеличении пропускной способности. При этом сохраняется весь накопленный опыт работы с Ethernet и, частично, сетевая инфраструктура.

Для классического Ethernet время прослушивания сети определяется максимальным расстоянием, которое 512-битный кадр может пройти по сети за время, равное времени обработки этого кадра на рабочей станции. Для сети Ethernet это расстояние равно 2500 метров. В сети Fast Ethernet этот же самый 512-битный кадр за время, необходимое на его обработку на рабочей станции, пройдёт всего 250 метров.

Основная область работы Fast Ethernet сегодня - это сети рабочих групп и отделов. Целесообразно совершать переход к Fast Ethernet постепенно, оставляя Ethernet там, где он хорошо справляется с поставленными задачами. Одним из очевидных случаев, когда Ethernet не следует заменять технологией Fast Ethernet, является подключение к сети старых персональных компьютеров с шиной ISA.

Gigabit Ethernet/

эта технология использует тот же формат кадров, тот же метод доступа к среде передачи CSMA/CD, те же механизмы контроля потоков и те же управляющие объекты, все же Gigabit Ethernet отличается от Fast Ethernet больше, чем Fast Ethernet от Ethernet. В частности, если для Ethernet было характерно разнообразие поддерживаемых сред передачи, что давало повод говорить о том, что он может работать хоть по колючей проволоке, то в Gigabit Ethernet волоконно-оптические кабели становятся доминирующей средой передачи (это, конечно, далеко не единственное отличие, но с остальными мы подробнее познакомимся ниже). Кроме того, Gigabit Ethernet ставит несравнимо более сложные технические задачи и предъявляет гораздо более высокие требования к качеству проводки. Иными словами, он гораздо менее универсален, чем его предшественники.

СТАНДАРТЫ GIGABIT ETHERNET

Основные усилия рабочей группы IEEE 802.3z направлены на определение физических стандартов для Gigabit Ethernet. За основу она взяла стандарт ANSI X3T11 Fibre Channel, точнее, два его нижних подуровня: FC-0 (интерфейс и среда передачи) и FC-1 (кодирование и декодирование). Зависимая от физической среды спецификация Fibre Channel определяет в настоящее время скорость 1,062 гигабод в секунду. В Gigabit Ethernet она была увеличена до 1,25 гигабод в секунду. С учетом кодирования по схеме 8B/10B мы получаем скорость передачи данных в 1 Гбит/с.

Рассмотрение принципов работы любой технологии, стоит начинать с истории ее создания. Технология Ethernet появилась как один многих из проектов корпорации Xerox PARC. В 1973 году сотрудником исследовательского центра компании Xerox Робертом Меткалфом была составлена докладная записка, описывающая принципы работы технологии Ethernet. Технология Ethernet основывалась на принципе «множественного доступа с контролем несущей и обнаружением коллизий» (CSMA/CD). В этом же году совместно Дэвидом Боггсом он создал первую сеть, объединявшую два компьютера на скорости 2,944 Мбит/с.

По прошествии лет благодаря стараниям Роберта Меткалфа ведущие компании Intel, Xerox, DEC начинают стандартизировать протокол Ethernet. Вскоре технология Ethernet начинает конкурировать с ведущими в то время технологиями Token Ring и Arcnet.

В 1985 году публикуется документ IEEE 802.3, который описывает стандарт передачи данных на скорости 10 Мбит/с. В первых стандартах Ethernet в качестве среды передачи использовался коаксиальный кабель. То есть не было еще тогда привычных для нас коммутаторов. Для соединения с сетевой картой компьютера использовались специальные трансиверы, либо коннекторы. Коаксиальный кабель выступал в роли общей шины. На обеих концах шины устанавливались терминаторы — сетевые окончания. Существовали две разновидности первого Ethernet: 10Base5 (толстый коаксиальный кабель) и 10Base2 (тонкий коаксиальный кабель).

В 1991 году был принят стандарт 10Base-T, который использует в качестве среды передачи двойную неэкранированную витую пару. Используется кабель 3 категории (Cat 3). Соединения конечных станций осуществлялись по топологии «точка-точка» со специальным устройством — многопортовым повторителем (концентратором). Принцип работы концентратора достаточно прост. Он принимает сигнал на одном из портов, после чего повторяет его на все остальные. Таким образом, реализуется свойственная для Ethernet топология «общая шина» с разделением пропускной способности между всеми хостами сети.

26 октября 1995 года в институте IEEE был официально принят стандарт 802.3u, описывающий технологию Fast Ethrenet. Fast Ethernet отличался высокой скоростью передачи данных — 100 Мбит/с. От традиционного Ethernet сохранили метод случайного доступа CSMA/CD, формат кадра, звездообразную топологию. Все отличия от Ethernet сосредоточены на физическом уровне. В организации Fast Ethernet используется три типа кабелей: оптический многоволоконный кабель (100Base-FX), витая пара 5-ой категории (100Base-TX), витая пара 3-ей категории (100Base-T4).

Со временем требования к скорости передачи данных возрастают. Следующим шагом в развитие было стандартизация стандарта Gigabit Ethernet, имеющего официальное название IEEE 802.3z. Данный стандарт был опубликован в июле 1998 года. IEEE 802.3z включал в себя три вида кабелей: 1000BASE-SX - для передачи сигнала по многомодовому оптоволокну, 1000BASE-LX - по одномодовому оптоволокну, и почти вышедший из употребления 1000BASE-CX - по экранированному сбалансированному медному кабелю.

После краткого исторического очерка перейдем непосредственно к принципам работы технологии Ethernet. В начале статьи было упомянуто, что Ethernet использует метод «множественного доступа с контролем несущей и обнаружением коллизий» (CSMA/CD). Именно этот принцип является «фундаментом» всей технологии. Что же он из себя представляет?

Все станции подключены к общей шине. Каждая из них прослушивает среду на наличие несущей. Наличие несущей означает, что какая-то из станций в данный момент передает кадр. Для получения доступа к среде передачи станция должна обнаружить отсутствия несущей, выждать технологическую паузу и, если несущей нет, то может начать передавать свой кадр. Кадр передается по общей шине и доходит до всех станций. Если адрес назначения совпадает, то станция принимает кадр, в противном случае она его отбрасывает.

Если станции будут передавать кадры одновременно, то возникнет коллизия .

Коллизия — наложение двух и более кадров

После обнаружения коллизии все станции обязаны прекратить передачу кадров и ожидать в течении короткого случайного промежутка времени для того, чтобы снова получить доступ к среде передачи.

Из описания метода видно, что он носит вероятностный характер. Предполагается, что любая станция в любой момент времени может начать передачу кадров. С увеличением станций вероятность возникновения коллизий увеличивается, вследствие чего стандарт Ethrenet устанавливает ограничение не более 1024 узлов в одной сети. При этом максимальное расстояние между любыми двумя узлами должно составлять не более 2500 м.

Стандарт 802.3 определяет формат кадра Ethrenet.

Рассмотрим формат кадра:

  • Преамбула — представляет из себя последовательность битов 10101010… , состоящую из 7 байтов. Преамбула предназначена для синхронизации приемопередатчиков.
  • SA (Start Delititer) — начальный ограничитель. Состоит из одного байта и представляет из себя последовательность 10101011. Эта комбинация указывает на начало кадра.
  • Destination address — адрес назначения. Состоит из 6 байт и обозначает MAC-адрес получателя.
  • Source address — адрес источника. Обозначает MAC-адрес отправителя.
  • L (Length) — длина. Указывает на длину фрейма для того, что получатель мог правильно предсказать окончание кадра.
  • DSAP - Destination Service Access Point. 1 байтовое поле. Это точка доступа к сервису системы получателя, которая указывает на то, в каком месте системы получателя буферов памяти следует разместить данные фрейма.
  • SSAP - Source Service Access Point - так же 1 байтовое поле. Это точка доступа к сервису системы отправителя, которая указывает на то, в каком месте системы отправителя буферов памяти следует разместить данные фрейма.
  • Control - Управление. Размер поля 1-2 байта. Это поле указывает на тип сервиса, который необходим для данных. В зависимости от того, какой сервис нужно предоставить, поле может быть как 1 так и 2 байта.
  • Data — данные. Непосредственно сами передаваемые данные. Могут занимать длину от 46 до 1500 байт.
  • FCS — проверка на наличие ошибок. Представляет из себя контрольную сумму.

Ethernet (читается эзернет , от лат. aether - эфир) - пакетная технология передачи данных преимущественно локальных
.

Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат
кадров и протоколы управления доступом к среде - на канальном уровне модели OSI. Ethernet в основном
описывается стандартами IEEE группы 802.3. Ethernet стал самой распространённой технологией ЛВС в середине
90-х годов прошлого века, вытеснив такие устаревшие технологии, как Arcnet, FDDI и Token ring.

История создания

Технология Ethernet была разработана вместе со многими первыми проектами корпорации Xerox PARC.
Общепринято считать, что Ethernet был изобретён 22 мая 1973 года, когда Роберт Меткалф (Robert Metcalfe)
составил докладную записку для главы PARC о потенциале технологии Ethernet. Но законное право на
технологию Меткалф получил через несколько лет. В 1976 году он и его ассистент Дэвид Боггс (David Boggs)
издали брошюру под названием «Ethernet: Distributed Packet-Switching For Local Computer Networks».

Меткалф ушёл из Xerox в 1979 году и основал компанию 3Com для продвижения компьютеров и локальных
вычислительных сетей (ЛВС). Ему удалось убедить DEC, Intel и Xerox работать совместно и разработать
стандарт Ethernet (DIX). Впервые этот стандарт был опубликован 30 сентября 1980 года. Он начал
соперничество с двумя крупными запатентованными технологиями: token ring и ARCNET, - которые вскоре были похоронены под накатывающимися волнами продукции Ethernet. В процессе борьбы 3Com стала основной компанией в этой отрасли.

Технология

В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды
используется коаксиальный кабель, в дальнейшем появилась возможность использовать витую пару и оптический
кабель.

Причинами перехода на были:

  • возможность работы в дуплексном режиме;
  • низкая стоимость кабеля «витой пары»;
  • более высокая надёжность сетей при неисправности в кабеле;
  • большая помехозащищенность при использовании дифференциального сигнала;
  • возможность питания по кабелю маломощных узлов, например IP-телефонов (стандарт Power over Ethernet, POE);
  • отсутствие гальванической связи (прохождения тока) между узлами сети. При использовании коаксиального кабеля в российских условиях, где, как правило, отсутствует заземление компьютеров, применение коаксиального кабеля часто сопровождалось пробоем сетевых карт, и иногда даже полным «выгоранием» системного блока.

Причиной перехода на оптический кабель была необходимость увеличить длину сегмента без повторителей.

Метод управления доступом (для сети на ) - множественный доступ с контролем несущей и
обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи
данных 10 Мбит/с, размер пакета от 72 до 1526 байт, описаны методы кодирования данных. Режим работы
полудуплексный, то есть узел не может одновременно передавать и принимать информацию. Количество узлов в
одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации
физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала
может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала - не более 100). Однако
сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения
предельного значения количества узлов, в основном по причине полудуплексного режима работы.

В 1995 году принят стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с и появилась возможность
работы в режиме полный дуплекс. В 1997 году был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью
1000 Мбит/с для передачи по оптическому волокну и ещё через два года для передачи по витой паре.

Разновидности Ethernet

В зависимости от скорости передачи данных и передающей среды существует несколько вариантов технологии.
Независимо от способа передачи стек сетевого протокола и программы работают одинаково практически во
всех ниже перечисленных вариантах.

Большинство Ethernet-карт и других устройств имеет поддержку нескольких скоростей передачи данных,
используя автоопределение (autonegotiation) скорости и дуплексности, для достижения наилучшего
соединения между двумя устройствами. Если автоопределение не срабатывает, скорость подстраивается под
партнёра, и включается режим полудуплексной передачи. Например, наличие в устройстве порта Ethernet
10/100 говорит о том, что через него можно работать по технологиям 10BASE-T и 100BASE-TX, а порт
Ethernet 10/100/1000 - поддерживает стандарты 10BASE-T, 100BASE-TX и 1000BASE-T.
Ранние модификации Ethernet

  • Xerox Ethernet - оригинальная технология, скорость 3Мбит/с, существовала в двух вариантах Version 1 и Version 2, формат кадра последней версии до сих пор имеет широкое применение.
  • 10BROAD36 - широкого распространения не получил. Один из первых стандартов, позволяющий работать на больших расстояниях. Использовал технологию широкополосной модуляции, похожей на ту, что используется
    в кабельных модемах. В качестве среды передачи данных использовался коаксиальный кабель.
  • 1BASE5 - также известный, как StarLAN, стал первой модификацией Ethernet-технологии, использующей витую пару. Работал на скорости 1 Мбит/с, но не нашёл коммерческого применения.

10 Мбит/с Ethernet

  • 10BASE5, IEEE 802.3 (называемый также «Толстый Ethernet») - первоначальная разработка технологии со скоростью передачи данных 10 Мбит/с. Следуя раннему стандарту IEEE использует коаксиальный кабель с волновым сопротивлением 50 Ом (RG-8), с максимальной длиной сегмента 500 метров.
  • 10BASE2, IEEE 802.3a (называемый «Тонкий Ethernet») - используется кабель RG-58, с максимальной длиной сегмента 185 метров, компьютеры присоединялись один к другому, для подключения кабеля к сетевой
    карте нужен T-коннектор, а на кабеле должен быть BNC-коннектор. Требуется наличие терминаторов на каждом
    конце. Многие годы этот стандарт был основным для технологии Ethernet.
  • StarLAN 10 - Первая разработка, использующая витую пару для передачи данных на скорости 10 Мбит/с.

В дальнейшем эволюционировал в стандарт 10BASE-T.

Несмотря на то, что теоретически возможно подключение к одному кабелю (сегменту) витой пары более чем
двух устройств, работающих в симплексном режиме, такая схема никогда не применяется для Ethernet, в
отличие от работы с . Поэтому, все сети на витой паре используют топологию «звезда»,
в то время как, сети на коаксиальном кабеле построены на топологии «шина». Терминаторы для работы по
витой паре встроены в каждое устройство, и применять дополнительные внешние терминаторы в линии не нужно.

  • 10BASE-T, IEEE 802.3i - для передачи данных используется 4 провода кабеля витой пары (две скрученные пары) категории-3 или категории-5. Максимальная длина сегмента 100 метров.
  • FOIRL - (акроним от англ. Fiber-optic inter-repeater link). Базовый стандарт для технологии Ethernet, использующий для передачи данных оптический кабель. Максимальное расстояние передачи данных без повторителя 1 км.
  • 10BASE-F, IEEE 802.3j - Основной термин для обозначения семейства 10 Мбит/с ethernet-стандартов, использующих оптический кабель на расстоянии до 2 километров: 10BASE-FL, 10BASE-FB и 10BASE-FP. Из перечисленного только 10BASE-FL получил широкое распространение.
  • 10BASE-FL (Fiber Link) - Улучшенная версия стандарта FOIRL. Улучшение коснулось увеличения длины сегмента до 2 км.
  • 10BASE-FB (Fiber Backbone) - Сейчас неиспользуемый стандарт, предназначался для объединения повторителей в магистраль.
  • 10BASE-FP (Fiber Passive)- Топология «пассивная звезда», в которой не нужны повторители - никогдане применялся.

Быстрый Ethernet (Fast Ethernet, 100 Мбит/с)

  • 100BASE-T - общий термин для обозначения стандартов, использующих в качестве среды передачи данных . Длина сегмента до 100 метров. Включает в себя стандарты 100BASE-TX, 100BASE-T4 и 100BASE-T2.
  • 100BASE-TX, IEEE 802.3u - развитие стандарта 10BASE-T для использования в сетях топологии «звезда». Задействована витая пара категории 5, фактически используются только две неэкранированные пары проводников, поддерживается дуплексная передача данных, расстояние до 100 м.
  • 100BASE-T4 - стандарт, использующий витую пару категории 3. Задействованы все четыре пары проводников, передача данных идёт в полудуплексе. Практически не используется.
  • 100BASE-T2 - стандарт, использующий витую пару категории 3. Задействованы только две пары проводников. Поддерживается полный дуплекс, когда сигналы распространяются в противоположных направлениях по каждой паре. Скорость передачи в одном направлении - 50 Мбит/с. Практически не используется.
  • 100BASE-SX - стандарт, использующий многомодовое волокно. Максимальная длина сегмента 400 метров в полудуплексе (для гарантированного обнаружения коллизий) или 2 километра в полном дуплексе.
  • 100BASE-FX - стандарт, использующий одномодовое волокно. Максимальная длина ограничена только
    величиной затухания в оптическом кабеле и мощностью передатчиков, по разным материалам от 2х до 10
    километров
  • 100BASE-FX WDM - стандарт, использующий одномодовое волокно. Максимальная длина ограничена только
    величиной затухания в волоконно-оптическом кабеле и мощностью передатчиков. Интерфейсы бывают двух
    видов, отличаются длиной волны передатчика и маркируются либо цифрами (длина волны) либо одной латинской
    буквой A(1310) или B(1550). В паре могут работать только парные интерфейсы: с одной стороны передатчик
    на 1310 нм, а с другой - на 1550 нм.
Гигабитный Ethernet (Gigabit Ethernet, 1 Гбит/с)
  • 1000BASE-T, IEEE 802.3ab - стандарт, использующий витую пару категорий 5e. В передаче данных участвуют 4 пары. Скорость передачи данных - 250 Мбит/с по одной паре. Используется метод кодирования PAM5, частота основной гармоники 62,5 МГц. Расстояние до 100 метров
  • 1000BASE-TX был создан Ассоциацией Телекоммуникационной Промышленности (англ. Telecommunications
    Industry Association, TIA) и опубликован в марте 2001 года как «Спецификация физического уровня
    дуплексного Ethernet 1000 Мб/с (1000BASE-TX) симметричных кабельных систем категории 6
    (ANSI/TIA/EIA-854-2001)» (англ. «A Full Duplex Ethernet Specification for 1000 Mbis/s (1000BASE-TX)
    Operating Over Category 6 Balanced Twisted-Pair Cabling (ANSI/TIA/EIA-854-2001)»). Стандарт, использует
    раздельную приёмо-передачу (по одной паре в каждом направлении), что существенно упрощает конструкцию
    приёмопередающих устройств. Ещё одним существенным отличием 1000BASE-TX является отсутствие схемы
    цифровой компенсации наводок и возвратных помех, в результате чего сложность, уровень энергопотребления
    и цена процессоров становится ниже, чем у процессоров стандарта 1000BASE-T. Но, как следствие, для
    стабильной работы по такой технологии требуется кабельная система высокого качества, поэтому 1000BASE-TX
    может использовать только кабель 6 категории. На основе данного стандарта практически не было создано
    продуктов, хотя 1000BASE-TX использует более простой протокол, чем стандарт 1000BASE-T, и поэтому может
    использовать более простую электронику.
  • 1000BASE-X - общий термин для обозначения стандартов со сменными приёмопередатчиками GBIC или SFP.
  • 1000BASE-SX, IEEE 802.3z - стандарт, использующий многомодовое волокно. Дальность прохождения
    сигнала без повторителя до 550 метров.
  • 1000BASE-LX, IEEE 802.3z - стандарт, использующий одномодовое волокно. Дальность прохождения
    сигнала без повторителя до 5 километров.


  • используется.
  • 1000BASE-CX - стандарт для коротких расстояний (до 25 метров), использующий твинаксиальный кабель
    с волновым сопротивлением 75 Ом (каждый из двух волноводов). Заменён стандартом 1000BASE-T и сейчас не
    используется.
  • 1000BASE-LH (Long Haul) - стандарт, использующий одномодовое волокно. Дальность прохождения
    сигнала без повторителя до 100 километров.

10-гигабитный Ethernet

Новый стандарт 10-гигабитного Ethernet включает в себя семь стандартов физической среды для LAN, MAN и
WAN. В настоящее время он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию
стандарта IEEE 802.3.

  • 10GBASE-CX4 - Технология 10-гигабитного Ethernet для коротких расстояний (до 15 метров), используется медный кабель CX4 и коннекторы InfiniBand.
  • 10GBASE-SR - Технология 10-гигабитного Ethernet для коротких расстояний (до 26 или 82 метров, в
    зависимости от типа кабеля), используется многомодовое волокно. Он также поддерживает расстояния до 300
    метров с использованием нового многомодового волокна (2000 МГц/км).
  • 10GBASE-LX4 - использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому волокну. Также поддерживает расстояния до 10 километров при использовании одномодового
    волокна.
  • 10GBASE-LR и 10GBASE-ER - эти стандарты поддерживают расстояния до 10 и 40 километров
    соответственно.
  • 10GBASE-SW, 10GBASE-LW и 10GBASE-EW - Эти стандарты используют физический интерфейс, совместимый
    по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET/SDH. Они подобны стандартам 10GBASE-SR,
    10GBASE-LR и 10GBASE-ER соответственно, так как используют те же самые типы кабелей и расстояния передачи.
  • 10GBASE-T, IEEE 802.3an-2006 - принят в июне 2006 года после 4 лет разработки. Использует
    экранированную витую пару. Расстояния - до 100 метров.
  • Tutorial
  • Что такое домен коллизий?
  • Сколько пар используется для Ethernet и почему?
  • По каким парам идет прием, а по каким передача?
  • Что ограничивает длину сегмента сети?
  • Почему кадр не может быть меньше определенной величины?

Если не знаешь ответов на эти вопросы, а читать стандарты и серьезную литературу по теме лень - прошу под кат.

Кто-то считает, что это очевидные вещи, другие скажут, что скучная и ненужная теория. Тем не менее на собеседованиях периодически можно услышать подобные вопросы. Мое мнение: о том, о чем ниже пойдет речь, нужно знать всем, кому приходится брать в руки «обжимку» 8P8C (этот разъем обычно ошибочно называют RJ-45). На академическую глубину не претендую, воздержусь от формул и таблиц, так же за бортом оставим линейное кодирование. Речь пойдет в основном о медных проводах, не об оптике, т.к. они шире распространены в быту.

Технология Ethernet описывает сразу два нижних уровня модели OSI . Физический и канальный. Дальше будем говорить только о физическом, т.е. о том, как передаются биты между двумя соседними устройствами.

Технология Ethernet - часть богатого наследия исследовательского центра Xerox PARC . Ранние версии Ethernet использовали в качестве среды передачи коаксиальный кабель, но со временем он был полностью вытеснен оптоволокном и витой парой. Однако важно понимать, что применение коаксиального кабеля во многом определило принципы работы Ethernet. Дело в том, что коаксиальный кабель - разделяемая среда передачи. Важная особенность разделяемой среды: ее могут использовать одновременно несколько интерфейсов, но передавать в каждый момент времени должен только один. С помощью коаксиального кабеля можно соединит не только 2 компьютера между собой, но и более двух, без применения активного оборудования. Такая топология называется шина . Однако если хотябы два узла на одной шине начнут одновременно передавать информацию, то их сигналы наложатся друг на друга и приемники других узлов ничего не разберут. Такая ситуация называется коллизией , а часть сети, узлы в которой конкурируют за общую среду передачи - доменом коллизий . Для того чтоб распознать коллизию, передающий узел постоянно наблюдает за сигналов в среде и если собственный передаваемый сигнал отличается от наблюдаемого - фиксируется коллизия. В этом случае все узлы перестают передавать и возобновляют передачу через случайный промежуток времени.

Диаметр коллизионного домена и минимальный размер кадра

Теперь давайте представим, что будет, если в сети, изображенной на рисунке, узлы A и С одновременно начнут передачу, но успеют ее закончить раньше, чем примут сигнал друг друга. Это возможно, при достаточно коротком передаваемом сообщении и достаточно длинном кабеле, ведь как нам известно из школьной программы, скорость распространения любых сигналов в лучшем случае составляет C=3*10 8 м/с. Т.к. каждый из передающих узлов примет встречный сигнал только после того, как уже закончит передавать свое сообщение - факт того, что произошла коллизия не будет установлен ни одним из них, а значит повторной передачи кадров не будет. Зато узел B на входе получит сумму сигналов и не сможет корректно принять ни один из них. Для того, чтоб такой ситуации не произошло необходимо ограничить размер домена коллизий и минимальный размер кадра. Не трудно догадаться, что эти величины прямо пропорциональны друг другу. В случае же если объем передаваемой информации не дотягивает до минимального кадра, то его увеличивают за счет специального поля pad, название которого можно перевести как заполнитель.

Таким образом чем больше потенциальный размер сегмента сети, тем больше накладных расходов уходит на передачу порций данных маленького размера. Разработчикам технологии Ethernet пришлось искать золотую середину между двумя этими параметрами, и минимальным размером кадра была установлена величина 64 байта.

Витая пара и дуплексный режим рабты
Витая пара в качестве среды передачи отличается от коаксиального кабеля тем, что может соединять только два узла и использует разделенные среды для передачи информации в разных направлениях. Одна пара используется для передачи (1,2 контакты, как правило оранжевый и бело-оранжевый провода) и одна пара для приема (3,6 контакты, как правило зеленый и бело-зеленый провода). На активном сетевом оборудовании наоборот. Не трудно заметить, что пропущена центральная пара контактов: 4, 5. Эту пару специально оставили свободной, если в ту же розетку вставить RJ11, то он займет как раз свободные контакты. Таким образом можно использовать один кабели и одну розетку, для LAN и, например, телефона. Пары в кабеле выбраны таким образом, чтоб свести к минимуму взаимное влияние сигналов друг на друга и улучшить качество связи. Провода одной пару свиты между собой для того, чтоб влияние внешних помех на оба провода в паре было примерно одинаковым.
Для соединения двух однотипных устройств, к примеру двух компьютеров, используется так называемый кроссовер-кабель(crossover) , в котором одна пара соединяет контакты 1,2 одной стороны и 3,6 другой, а вторая наоборот: 3,6 контакты одной стороны и 1,2 другой. Это нужно для того, чтоб соединить приемник с передатчиком, если использовать прямой кабель, то получится приемник-приемник, передатчик-передатчик. Хотя сейчас это имеет значение только если работать с каким-то архаичным оборудованием, т.к. почти всё современное оборудование поддерживает Auto-MDIX - технология позволяющая интерфейсу автоматически определять на какой паре прием, а на какой передача.

Возникает вопрос: откуда берется ограничение на длину сегмента у Ethernet по витой паре, если нет разделяемой среды? Всё дело в том, первые сети построенные на витой паре использовали концентраторы. Концентратор (иначе говоря многовходовый повторитель) - устройство имеющее несколько портов Ethernet и транслирующее полученный пакет во все порты кроме того, с которого этот пакет пришел. Таким образом если концентратор начинал принимать сигналы сразу с двух портов, то он не знал, что транслировать в остальные порты, это была коллизия. То же касалось и первых Ethernet-сетей использующих оптику (10Base-FL).

Зачем же тогда использовать 4х-парный кабель, если из 4х пар используются только две? Резонный вопрос, и вот несколько причин для того, чтобы делать это:

  • 4х-парный кабель механически более надежен чем 2х-парный.
  • 4х-парный кабель не придется менять при переходе на Gigabit Ethernet или 100BaseT4, использующие уже все 4 пары
  • Если перебита одна пара, можно вместо нее использовать свободную и не перекладывать кабель
  • Возможность использовать технологию Power over ethernet

Не смотря на это на практике часто используют 2х-парный кабель, подключают сразу 2 компьютера по одному 4х-парному, либо используют свободные пары для подключения телефона.

Gigabit Ethernet

В отличии от своих предшественников Gigabit Ethernet всегда использует для передачи одновременно все 4 пары. Причем сразу в двух направлениях. Кроме того информация кодируется не двумя уровнями как обычно (0 и 1), а четырьмя (00,01,10,11). Т.е. уровень напряжения в каждый конкретный момент кодирует не один, а сразу два бита. Это сделано для того, чтоб снизить частоту модуляции с 250 МГц до 125 МГц. Кроме того добавлен пятый уровень, для создания избыточности кода. Он делает возможной коррекцию ошибок на приеме. Такой вид кодирования называется пятиуровневым импульсно-амплитудным кодированием (PAM-5). Кроме того, для того, чтоб использовать все пары одновременно для приема и передачи сетевой адаптер вычитает из общего сигнала собственный переданный сигнал, чтоб получить сигнал переданный другой стороной. Таким образом реализуется полнодуплексный режим по одному каналу.

Дальше - больше

10 Gigabit Ethernet уже во всю используется провайдерами, но в SOHO сегменте не применяется, т.к. судя по всему там вполне хватает Gigabit Ethernet. 10GBE качестве среды распространения использует одно- и многомодовое волокно, с или без уплотнением по длине волны , медные кабели с разъемом InfiniBand а так же витую пару в стандарте 10GBASE-T или IEEE 802.3an-2006.

40-гигабитный Ethernet (или 40GbE ) и 100-гигабитный Ethernet (или 100GbE ). Разработка этих стандартов была закончена в июле 2010 года. В настоящий момент ведущие производители сетевого оборудования, такие как Cisco, Juniper Networks и Huawei уже заняты разработкой и выпуском первых маршрутизаторов поддерживающих эти технологии.

В заключении стоит упомянуть о перспективной технологии Terabit Ethernet . Боб Меткалф, создатель предположил, что технология будет разработана к 2015 году, и так же сказал:

Чтобы реализовать Ethernet 1 ТБит/с, необходимо преодолеть множество ограничений, включая 1550-нанометровые лазеры и модуляцию с частотой 15 ГГц. Для будущей сети нужны новые схемы модуляции, а также новое оптоволокно, новые лазеры, в общем, все новое

UPD : Спасибо хабраюзеру Nickel3000 , что подсказал, про то что разъем, который я всю жизнь называл RJ45 на самом деле 8P8C .
UPD2: : Спасибо пользователю Wott , что объяснил, почему используются контакты 1,2,3 и 6.

Теги: Добавить метки

Он и его ассистент Дэвид Боггс (David Boggs) издали брошюру под названием «Ethernet: Distributed Packet-Switching For Local Computer Networks» .

Преимущества использования витой пары по сравнению с коаксиальным кабелем:

Причиной перехода на оптический кабель была необходимость увеличить длину сегмента без повторителей.

Метод управления доступом (для сети на коаксиальном кабеле) - множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных 10 Мбит/с, размер пакета от 72 до 1526 байт , описаны методы кодирования данных. Режим работы полудуплексный, то есть узел не может одновременно передавать и принимать информацию. Количество узлов в одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала - не более 100). Однако сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов, в основном по причине полудуплексного режима работы.

MAC-адреса

При проектировании стандарта Ethernet было предусмотрено, что каждая сетевая карта (равно как и встроенный сетевой интерфейс) должна иметь уникальный шестибайтный номер (MAC-адрес), прошитый в ней при изготовлении. Этот номер используется для идентификации отправителя и получателя кадра, и предполагается, что при появлении в сети нового компьютера (или другого устройства, способного работать в сети) сетевому администратору не придётся настраивать MAC-адрес.

Уникальность MAC-адресов достигается тем, что каждый производитель получает в координирующем комитете IEEE Registration Authority диапазон из шестнадцати миллионов (2^24) адресов, и по мере исчерпания выделенных адресов может запросить новый диапазон. Поэтому по трём старшим байтам MAC-адреса можно определить производителя. Существуют таблицы, позволяющие определить производителя по MAC-адресу; в частности, они включены в программы типа arpalert.

Мак адрес считывается один раз из ПЗУ при инициализации сетевой карты, в дальнейшем все пакеты генерируются операционной системой. Все современные операционные системы позволяют поменять его. Для Windows начиная как минимум с Windows 98 он менялся в реестре. Некоторые драйвера сетевых карт давали возможность изменить его в настройках, но смена работает абсолютно для любых карт.

Некоторое время назад, когда драйверы сетевых карт не давали возможность изменить свой MAC-адрес, а альтернативные возможности не были слишком известны, некоторые провайдеры Internet использовали его для идентификации машины в сети при учёте трафика. Программы из Microsoft Office, начиная с версии Office 97, записывали MAC-адрес сетевой платы в редактируемый документ в качестве составляющей уникального GUID-идентификатора. . MAC адрес роутера передавался Mail.Ru агентом на свой сервер открытым текстом при логине.

Разновидности Ethernet

В зависимости от скорости передачи данных, и передающей среды существует несколько вариантов технологии. Независимо от способа передачи стек сетевого протокола и программы работают одинаково практически во всех нижеперечисленных вариантах.

В этом разделе дано краткое описание всех официально существующих разновидностей. По некоторым причинам, в дополнение к основному стандарту многие производители рекомендуют пользоваться другими запатентованными носителями - например, для увеличения расстояния между точками сети используется волоконно-оптический кабель .

Большинство Ethernet-карт и других устройств имеет поддержку нескольких скоростей передачи данных, используя автоопределение (autonegotiation) скорости и дуплексности, для достижения наилучшего соединения между двумя устройствами. Если автоопределение не срабатывает, скорость подстраивается под партнёра, и включается режим полудуплексной передачи. Например, наличие в устройстве порта Ethernet 10/100 говорит о том, что через него можно работать по технологиям 10BASE-T и 100BASE-TX, а порт Ethernet 10/100/1000 - поддерживает стандарты 10BASE-T, 100BASE-TX и 1000BASE-T.

Ранние модификации Ethernet

  • Xerox Ethernet - оригинальная технология, скорость 3 Мбит/с, существовала в двух вариантах Version 1 и Version 2, формат кадра последней версии до сих пор имеет широкое применение.
  • 1BROAD36 - широкого распространения не получил. Один из первых стандартов, позволяющий работать на больших расстояниях. Использовал технологию широкополосной модуляции , похожей на ту, что используется в кабельных модемах . В качестве среды передачи данных использовался коаксиальный кабель.
  • 1BASE5 - также известный, как StarLAN , стал первой модификацией Ethernet-технологии, использующей витую пару. Работал на скорости 1 Мбит/с, но не нашёл коммерческого применения.

10 Мбит/с Ethernet

  • 10BASE5 , IEEE 802.3 (называемый также «Толстый Ethernet») - первоначальная разработка технологии со скоростью передачи данных 10 Мбит/с. Следуя раннему стандарту IEEE использует коаксиальный кабель с волновым сопротивлением 50 Ом (RG-8), с максимальной длиной сегмента 500 метров .
  • 10BASE2 , IEEE 802.3a (называемый «Тонкий Ethernet») - используется кабель RG-58, с максимальной длиной сегмента 185 метров , компьютеры присоединялись один к другому, для подключения кабеля к сетевой карте нужен T-коннектор , а на кабеле должен быть BNC-коннектор . Требуется наличие терминаторов на каждом конце. Многие годы этот стандарт был основным для технологии Ethernet.
  • StarLAN 10 - Первая разработка, использующая витую пару для передачи данных на скорости 10 Мбит/с. В дальнейшем эволюционировал в стандарт 10BASE-T .

Несмотря на то, что теоретически возможно подключение к одному кабелю (сегменту) витой пары более чем двух устройств, работающих в симплексном режиме, такая схема никогда не применяется для Ethernet, в отличие от работы с коаксиальным кабелем. Поэтому все сети на витой паре используют топологию «звезда», в то время как сети на коаксиальном кабеле построены на топологии «шина». Терминаторы для работы по витой паре встроены в каждое устройство, и применять дополнительные внешние терминаторы в линии не нужно.

  • 10BASE-T , IEEE 802.3i - для передачи данных используется 4 провода кабеля витой пары (две скрученные пары) категории-3 или категории-5 . Максимальная длина сегмента 100 метров.
  • FOIRL - (акроним от англ. Fiber-optic inter-repeater link ). Базовый стандарт для технологии Ethernet, использующий для передачи данных оптический кабель. Максимальное расстояние передачи данных без повторителя 1 км.
  • 10BASE-F , IEEE 802.3j - Основной термин для обозначения семейства 10 Мбит/с ethernet-стандартов, использующих оптический кабель на расстоянии до 2 километров: 10BASE-FL, 10BASE-FB и 10BASE-FP. Из перечисленного только 10BASE-FL получил широкое распространение.
  • 10BASE-FL (Fiber Link) - Улучшенная версия стандарта FOIRL. Улучшение коснулось увеличения длины сегмента до 2 км.
  • 10BASE-FB (Fiber Backbone) - Сейчас неиспользуемый стандарт, предназначался для объединения повторителей в магистраль.
  • 10BASE-FP (Fiber Passive) - Топология «пассивная звезда», в которой не нужны повторители - никогда не применялся.

Быстрый Ethernet (Fast Ethernet , 100 Мбит/с)

  • 100BASE-T - общий термин для обозначения стандартов, использующих в качестве среды передачи данных витую пару. Длина сегмента до 100 метров. Включает в себя стандарты 100BASE-TX, 100BASE-T4 и 100BASE-T2.
  • 100BASE-TX , IEEE 802.3u - развитие стандарта 10BASE-T для использования в сетях топологии «звезда». Задействована витая пара категории 5, фактически используются только две неэкранированные пары проводников, поддерживается дуплексная передача данных, расстояние до 100 м.
  • 100BASE-T4 - стандарт, использующий витую пару категории 3. Задействованы все четыре пары проводников, передача данных идёт в полудуплексе. Практически не используется.
  • 100BASE-T2 - стандарт, использующий витую пару категории 3. Задействованы только две пары проводников. Поддерживается полный дуплекс, когда сигналы распространяются в противоположных направлениях по каждой паре. Скорость передачи в одном направлении - 50 Мбит/с. Практически не используется.
  • 100BASE-FX - стандарт, использующий одномодовое волокно. Максимальная длина сегмента 400 метров в полудуплексе (для гарантированного обнаружения коллизий) или 2 километра в полном дуплексе.
  • 100BASE-SX - стандарт, использующий многомодовое волокно. Максимальная длина ограничена только величиной затухания в оптическом кабеле и мощностью передатчиков, по разным материалам от 2х до 10 километров.
  • 100BASE-FX WDM - стандарт, использующий одномодовое волокно. Максимальная длина ограничена только величиной затухания в волоконно-оптическом кабеле и мощностью передатчиков. Интерфейсы бывают двух видов, отличаются длиной волны передатчика и маркируются либо цифрами (длина волны) либо одной латинской буквой A(1310) или B(1550). В паре могут работать только парные интерфейсы: с одной стороны передатчик на 1310 нм, а с другой - на 1550 нм.

Гигабитный Ethernet (Gigabit Ethernet, 1 Гбит/с)

10-гигабитный Ethernet (Ethernet 10G, 10 Гбит/с)

Новый стандарт 10-гигабитного Ethernet включает в себя семь стандартов физической среды для LAN , MAN и WAN . В настоящее время он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию стандарта IEEE 802.3 .

  • 10GBASE-CX4 - Технология 10-гигабитного Ethernet для коротких расстояний (до 15 метров), используется медный кабель CX4 и коннекторы InfiniBand .
  • 10GBASE-SR - Технология 10-гигабитного Ethernet для коротких расстояний (до 26 или 82 метров , в зависимости от типа кабеля), используется многомодовое волокно. Он также поддерживает расстояния до 300 метров с использованием нового многомодового волокна (2000 МГц/км).
  • 10GBASE-LX4 - использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому волокну. Также поддерживает расстояния до 10 километров при использовании одномодового волокна.
  • 10GBASE-LR и 10GBASE-ER - эти стандарты поддерживают расстояния до 10 и 40 километров соответственно.
  • 10GBASE-SW , 10GBASE-LW и 10GBASE-EW - Эти стандарты используют физический интерфейс, совместимый по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET /SDH . Они подобны стандартам 10GBASE-SR, 10GBASE-LR и 10GBASE-ER соответственно, так как используют те же самые типы кабелей и расстояния передачи.
  • 10GBASE-T , IEEE 802.3an-2006 - принят в июне 2006 года после 4 лет разработки. Использует экранированную витую пару. Расстояния - до 100 метров.
  • 10GBASE-KR

Компания Harting заявила о создании первого в мире 10-гигабитного соединителя RJ-45, не требующего инструментов для монтажа - HARTING RJ Industrial 10G .

40-гигабитный и 100-гигабитный Ethernet

Согласно наблюдениям Группы 802.3ba , требования к полосе пропускания для вычислительных задач и приложений ядра сети растут с разными скоростями, что определяет необходимость двух соответствующих стандартов для следующих поколений Ethernet - 40 Gigabit Ethernet (или 40GbE) и 100 Gigabit Ethernet (или 100GbE). В настоящее время серверы , высокопроизводительные вычислительные кластеры , блэйд-системы , SAN и NAS используют технологии 1GbE и 10GbE, при этом в 2007 и 2008 гг. был отмечен значительный рост последней.

Перспективы

О Terabit Ethernet (так упрощенно называют технологию Ethernet со скоростью передачи 1 ТБит/с) стало известно в 2008 году из заявления создателя Ethernet Боба Меткалфа на конференции OFC который предположил, что технология будет разработана к 2015 году , правда, не выразив при этом какой-либо уверенности, ведь для этого придется решить немало проблем. Однако, по его мнению, ключевой технологией, которая может обслужить дальнейший рост трафика, станет одна из разработанных в предыдущем десятилетии - DWDM .

«Чтобы реализовать Ethernet 1 ТБит/с, необходимо преодолеть множество ограничений, включая 1550-нанометровые лазеры и модуляцию с частотой 15 ГГц. Для будущей сети нужны новые схемы модуляции, а также новое оптоволокно, новые лазеры, в общем, все новое, - сказал Меткалф. - Неясно также, какая сетевая архитектура потребуется для её поддержки. Возможно, оптические сети будущего должны будут использовать волокно с вакуумной сердцевиной или углеродные волокна вместо кварцевых. Операторы должны будут внедрять больше полностью оптических устройств и оптику в свободном пространстве (безволоконную). Боб Меткалф» .

См. также

Примечания

Ссылки

  • Стандарт IEEE 802.3 2008 (англ.)
  • Стандарт IEEE 802.3 2002 (англ.)