Что такое отладка ядра. Принцип работы отладчика ядра операционной системы

Достойных отладчиков ядерного уровня и под Windows немного, а в Linux их можно пересчитать по пальцам одной руки, да и те большей частью сырые, недоделанные или же заброшенные и мхом заросшие… Сегодня мы поговорим о самом популярном и наиболее интересном из них -
Linice .

Введение

Как уже можно догадаться по названию, Linice – это неофициальный «порт» легендарного
SoftICE под Linux , сохранивший интерфейс, систему команд и большинство возможностей последнего: всплытие по горячей клавише (в Linice это ); установка аппаратных точек останова на все функции и системные вызовы; просмотр GDT/LDT/IDT, физических страниц памяти; возможности, позаимствованные из GDB (вызов произвольной функции командой CALL, сохранение/восстановление контекста регистров, внутренние переменные и т.д.).

В отличие от большинства других отладчиков, работающих через нереентерабельный и легко обнаруживаемый защитами механизм ptrace (Windows-аналогом которого является DEBUG_PROCESS, используемый прикладными отладчиками), Linice использует нативную трассировку, такую же, как в SoftICE, что позволяет обоим отладчикам отлаживать круто защищенные программы, с которыми другие уже не справляются.

На самом деле, это никакой не порт (отсюда и кавычки), а независимый проект, написанный с нуля и распространяющийся в исходных текстах на бесплатной основе (от SoftICE там только вдохновение). Основная часть кода, предназначенная для ядра 2.4, была написана немецким хакером Гораном Девиком, однако поддержкой ядра 2.6 занимались уже совсем другие люди: Daniel Reznick, Peter K. и Carlos Manuel Duclos Vergara. А наш соотечественник - Олег Худаков - переписал ассемблерные файлы с nasm"а на
gcc.

Исходные тексты лежат на официальном сайте проекта -
Linice%0A.com">www.Linice.com , там же находится документация, короткий FAQ и ссылка на форум
Linice%0A">groups.google.com/group/Linice . Готовые бинарные сборки отсутствуют.
Создатели проекта открыли свой собственный аккаунт на SourceForge, но поленились выложить на него какие бы то ни было файлы, представив на обозрение всего лишь 3 screenshot"а весьма низкого качества:
.

Системные требования

Последняя версия Linice носит номер 2.6 и датируется 28 июлем 2005 года, полностью поддерживая ядро 2.4.x и консольный VGA-режим. С более новыми ядрами наблюдаются серьезные проблемы, и ядро 2.6.x поддерживается лишь в ограниченном режиме.
Отладчик разрабатывался и тестировался под Debian 2.6. Его совместимость с остальными дистрибутивами не гарантируется, что вынуждает нас прибегать к бубну, но в некоторых случаях не помогает и бубен. Вообще-то, держать на своей машине Debian только для того, чтобы работать с Linice , – это вполне нормально. Давным-давно, когда реализации SoftICE для NT еще не существовало, многие хакеры инсталлировали Win 9x только для того, чтобы ломать программы, хотя сами сидели под
NT. Поскольку охватить все тонкости установки Linice в рамках одной статьи практически не реально, я ограничусь описанием процесса компиляции и запуска Linice под одним конкретным дистрибутивом - Knoppix 3.7 с ядром 2.4.1 в консольном VGA-режиме.
Linice поддерживает ACPI и многопроцессорные машины, но плохо дружит с X"ми, особенно на видеокартах, отличных от nVidia. 24-битную глубину цветности он вообще не воспринимает, «переваривая» только 8, 16 и 32 бита, поэтому отладку X-приложений удобнее вести через удаленный терминал, подключенный через COM-порт по протоколу VT100. При этом локальная клавиатура также будет работать с
Linice !

Компиляция и конфигурирование Linice

Скачиваем gzip-архив исходных текстов www.Linice .devic.us/Linice -2.6.tar.gz, занимающий чуть меньше мегабайта, распаковываем его на диск, заходим в каталог./docs и из файла readme узнаем, что сборка отладчика под ядро 2.4 осуществляется так:

# cd build
# ./make_bin-2.4
# cd ../bin
# make clean; mak e

Однако перед запуском make необходимо открыть файл./bin-2.4/Makefile и отредактировать строку «TARGET» в соответствии с конфигурацией и архитектурой целевой платформы. В частности, на ACPI-машинах с многоядерными или HyperThreading-процессорами она будет выглядеть так:

TARGET = -DSMP -DIO_APIC

После завершения компиляции в каталоге./bin появится множество файлов и каталогов, но значимыми из них являются только:

linsym – загрузочный модуль отладчика;
linince.dat – файл конфигурации;
xice – поддержка X"ов, при работе в текстовом режиме его можно удалить;
./Linice_2.4.27/Linice.o – загружаемый модуль ядра, содержащий непосредственно сам отладчик.

Процесс сборки Linice

Собрав минимально работающий комплект, неплохо бы получить и все остальное - демонстрационные отладочные примеры, находящиеся в каталоге./test и компилируемые скриптом compile, а также модуль расширения (по-нашему, плагин), лежащий в каталоге./ext, собираемый командой make и загружаемый командой insmod. Никакой пользы от него нет, но, изучив исходный текст, мы сможем писать свои собственные модули, расширяющие функциональность
Linice .

При загрузке Knoppix"а в нижней строке экрана появляется приглашение «boot:» где необходимо ввести «knoppix 2 vga=normal». Cheat-код «knoppix» выбирает ядро 2.4 (автоматически загружаемое по умолчанию, поэтому «knoppix» можно опустить), «2» блокирует загрузку X"ов, а «vga=normal» устанавливает стандартный vga-режим с разрешением 80x25.

Дождавшись завершения загрузки, говорим «su», затем «passwd» и вводим новый пароль для root"a, под которым тут же заходим в систему, воспользовавшись командой login. Если этого не сделать, попытка запуска Linice закончится сокрушительным провалом с воплем «segmentation fault».

При загрузке Knoppix"а с жесткого диска (на который его можно установить командой «sudo knoppix-installer», набранной в окне терминала из-под LiveCD-сессии) появится стартовое меню со списком доступных ядер. Выбираем Linux(2.4)-1 и нажимаем для задания параметров загрузки - «2 vga=normal». Слово «knoppix» писать не нужно, поскольку ядро уже и так выбрано. После завершения загрузки даем команду login и входим в систему под root"ом (предполагается, что аккаунт был создан ранее).

Запуск отладчика осуществляется командой./linsym –i, после чего тот немедленно появляется на экране. Если же этого не происходит, попробуй указать ключ "--verbose 3" для вывода диагностических сообщений.
Одной из причин отказа в загрузке может быть отсутствие файла /boot/System.map, содержащего адреса ядерных функций. Загрузка провалится и в том случае, если содержимое System.map не соответствует текущему ядру, что может произойти, например, при его рекомпиляции. Некоторые составители дистрибутивов либо вообще не включают System.map (полагая, что это усилит безопасность системы, так как rootkit"ам будет сложнее осуществить перехват syscall"ов), либо помещают сюда что-то совершенно левое и вообще непонятно откуда взявшееся. В таких случаях достаточно просто перекомпилировать ядро, указав отладчику путь к файлу System.map с помощью ключа "-m", если он расположен не в /boot, а где-нибудь в другом месте. Таким образом, и безопасность не пострадает, и Linice сможет работать!
Возврат из отладчика в систему происходит по или с помощью команды «x ». Комбинация вызывает отладчик из любой программы. Однако вовсе не факт, что мы очутимся в ее контексте, ведь Linux - многозадачная система, переключающая процессы один за другим, а команды ADDR (переключающей контексты) в «лексиконе» Linice все еще не существует, и когда она появится - неизвестно. Поэтому приходится хитрить, устанавливая точки останова на системные вызовы, используемые конкретной программой, или врываясь в процесс по методу INT 03h, о чем мы сейчас и поговорим.

За выгрузку отладчика (если его действительно хочется выгрузить) отвечает ключ "-x", переданный все тому же linsym"у.

Основы работы с Linice

Для тех, кто уже работал с SoftICE, освоение Linice не представит никакой проблемы. Здесь используются все те же команды: D – дамп памяти, E – редактирование памяти, T – пошаговая трассировка, P – трассировка без захода в функции, R – просмотр/модификация регистров, BPM/BPX – установка точки останова на доступ/исполнение памяти и т.д. Полный перечень команд содержится как во встроенной справке, вызываемой по HELP (кстати, «HELP имя_команды» выдает дополнительную информацию по команде), так и в штатной документации.

Давай нажмем и пороемся в списке процессов, выводимых на экран командой PROC, причем текущий процесс выделяется голубым цветом:

:PROC

1 0000 C1C3E000 SLEEPING 0 0 init
2 0000 F7EE8000 SLEEPING 0 0 keventd
3 0000 F7EE2000 SLEEPING 0 0 ksoftirqd_CPU0
4 0000 F7EE0000 SLEEPING 0 0 ksoftirqd_CPU1
5 0000 F7ED0000 SLEEPING 0 0 kswapd
6 0000 F7EAA000 SLEEPING 0 0 bdflush
7 0000 F7EA8000 SLEEPING 0 0 kupdated
56 0000 F6A36000 SLEEPING 0 0 kjournald
1006 0000 F7A34000 RUNNING 0 0 automount
1013 0000 F68E6000 SLEEPING 0 0 cupsd
...
1105 0000 F6DDE000 SLEEPING 0 0 mc
1106 0000 F6DD4000 SLEEPING 0 0 cons.saver

Процессы - это, конечно, хорошо, но как же все-таки нам отлаживать программы? Самое простое – воткнуть в точку входа машинную команду CCh, соответствующую инструкции INT 03h, предварительно записав содержимое оригинального байта. Это можно сделать любым hex-редактором, например, неоднократно упоминаемым мной
HTE.

Загрузив файл в редактор, нажимаем (mode), выбираем elf/image, подгоняем курсор к «entrypoint:», давим (edit) и изменяем первый байт на CCh, сохраняем изменения по (save) и выходим. При запуске пропатченной программы Linice немедленно всплывает, потревоженный исключением, сгенерированным CCh, после которого EIP указывает на конец
CCh.

Состояние программы c пропатченной точкой входа в момент всплытия отладчика

0023:080482C0 CC int 3
0023:080482C1 ED in eax, dx
0023:080482C2 5E pop esi
0023:080482C3 89E1 mov ecx, esp

Курсор указывает на инструкцию in eax,dx (EDh), представляющую собой осколок от пропатченной команды xor ebp,ebp (31h EDh). Теперь (по идее) мы должны восстановить оригинальный байт, поменяв CCh на 31h, уменьшить регистр EIP на единицу и продолжить трассировку в обычном режиме.

Да вот не тут-то было! Linice - это, конечно, порт, но только очень сырой, и модифицировать память страничного имиджа он не умеет, даже если предварительно открыть кодовый сегмент на запись. Ни E (редактирование), ни F (заполнение), ни M (копирование памяти) не работают! Зато работает запись в стек, и нам, хакерам, этого вполне достаточно.

Запоминаем текущее значение регистра EIP; копируем пропатченную машинную команду на вершину стека; восстанавливаем там байт CCh; передаем на нее управление, меняя значение EIP; выполняем ее, совершив единичный акт трассировки; и возвращаем EIP на место, то есть на следующую машинную команду:

Восстановление оригинального байта, замененного инструкцией INT 03h

; Смотрим, что находится на вершине стека (из чистого любопытства).
:d esp-10
0018:BFFFEFC0 C0 82 04 08 00 00 00 00 5D 0C 00 40 DC EF FF BF

; Копируем пропатченную машинную команду на вершину стека.
; Число 10h - максимально возможный размер машинной команды на x86.
:m eip-1 L 10 esp-10

; Смотрим, как изменился стек.
:d esp-10
0018:BFFFEFC0 CC ED 5E 89 E1 83 E4 F0 50 54 52 68 F0 85 04 08

; Ага! Стек действительно изменился, самое время исправлять CCh на 31h.
:e esp-10 31
Edit immediate data not implemented yet.

; Упс! Непосредственное присвоение данных в Linice не реализовано,
; но мы можем отредактировать дамп в интерактивном режиме (так же,
; как в SoftICE) или дать команду F esp-10 L 1 31, только учти,
; что, в отличие от SoftICE, отладчик Linice не обновляет окно дампа,
; поэтому после выполнения команды F может показаться, что
; результата нет; на самом деле, это не так, стоит только обновить
; дамп командой D esp-10, и все встанет на свои места.

; Передаем управление на команду, скопированную в стек,
; запоминаем значение регистра EIP.
:r eip (esp-10)
reg: eip = BFFFEFC0

; Совершаем единичный акт трассировки.
:t
0023:BFFFEFC2 5E pop esi

; Как мы видим, регистр EIP увеличился на 2 (BFFFEFC2h - BFFFEFC0h) = 02h,
; следовательно, адрес следующей команды равен: 080482C1h - 01h + 02h = 080482C2h,
; где 080482C1h - начальное значение EIP при входе в программу, а 01h - размер INT 03h.

; Устанавливаем EIP на команду, следующую за пропатченной инструкцией.
:r eip 80482C2
reg: eip = 80482C2

Вот такие пляски с бубном приходится устраивать. А что поделать? Так, с загрузкой программ в отладчик мы разобрались, теперь растерзаем точки останова на системные вызовы и ядерные функции.

Команда exp выводит имена, экспортируемые ядром, любое из которых может фигурировать в выражениях, например, «bpx do_bkr» эквивалентно «bpx C012C9E8».

Вывод имен, экспортируемых ядром

:exp
kernel
C0320364 mmu_cr4_features
C02AC3A4 acpi_disabled
C02AC8A0 i8253_lock
...
C012BDA8 do_mmap_pgoff
C012C764 do_munmap
C012C9E8 do_brk
C011E990 exit_mm
C011E69C exit_files

С системными вызовами приходится сложнее. Непосредственной поддержки со стороны Linice здесь нет (а ведь ей полагается быть, учитывая специфику Linux), поэтому эту штуку приходится делать руками.

Таблица системных вызов, как известно, представляет собой массив двойных слов, начинающийся с адреса sys_call_table (эта переменная экспортируется ядром).

Таблица системных вызовов

; Переводим отладчик в режим отображения двойных слов.
:dd

; Выводим таблицу на экран.
:d sys_call_table
0018:C02AB6A8 C0126ACC F8932650 F89326A0 C013DC10
0018:C02AB6B8 C013DD18 C013D5C8 C013D724 C011F3BC
0018:C02AB6C8 C013D664 C014A8E0 C014A3B4 F893020C

Каждый элемент таблицы соответствует своему системному вызову, а каждый вызов имеет свой номер, который можно узнать, заглянув в файл /usr/include/sys/syscall.h, но лучше это делать не под Linux, где никаких непосредственных номеров нет, а позаимствовать тот же самый файл из BSD – все равно номера основных системных вызовов на всех системах совпадают. В частности, системный вызов open проходит под номером 5.

Чтобы установить точку останова на open, необходимо узнать его адрес, находящийся в пятом двойном слове таблицы системных вызовов, считая от нуля, и равный (в данном случае) C013D5C8h.

Установка точки останова на системный вызов open

; Устанавливаем точку останова на системный вызов open,
:bpx C013D5C8
; выходим из отладчика,
:x
...
# открываем какой-нибудь файл,
...
; отладчик тут же всплывает, сообщая нам об этом,
:Breakpoint due to BPX 01

; даем команду proc, чтобы убедиться, что мы вклинились в свой процесс.
:proс
PID TSS Task state uid gid name
1049 0000 F6364000 SLEEPING 0 0 getty
1145 0000 F61CC000 SLEEPING 0 0 mc
1146 0000 F614A000 SLEEPING 0 0 cons.saver

Таким путем легко вклиниваться в уже запущенные процессы, устанавливая точки останова на используемые ими системные вызовы, а также совершать множество других вещей, жизненно важных для взлома.

Заключение

Несмотря на свою откровенную сырость, Linice вполне пригоден для отладки защищенных приложений, хотя сплошь и рядом приходится прибегать к обходным решениям, которые в нормальных отладчиках выполняются на автомате. Поэтому Linice отнюдь не заменяет gdb, а всего лишь дополняет его.

Иногда у меня возникает ситуация, когда Windows ожидает время загрузки для отладчика ядра. Вы видите текст «Windows start», но не логотип.

Если я присоединяю отладчик сейчас, воспроизводится анимация логотипа Windows 7. После этого логотип начинает пульсировать. На этом этапе процесс загрузки больше не продвигается. Загрузка процессора снижается до минимума. Я жду обычно несколько минут, но ничего не происходит.

Это происходит не всегда. Однако, если это произойдет, сброс VM не поможет. Для устранения этой проблемы мне нужно использовать ремонт при запуске. К сожалению, это длится вечно.

Любые идеи, что я могу сделать, кроме запуска ремонта при запуске?

Заранее спасибо!

3

2 ответы

Чтобы устранить проблему, с которой вы столкнулись, достаточно просто нажать F10 во время загрузки. И удалить/отладить и связанные параметры. Затем нажмите enter.

Предложение: Не используйте параметр/debug для параметра меню загрузки по умолчанию. Скопируйте конфигурацию загрузки в новую запись. Затем установите его в режим отладки. Windows не знает, когда вы будете использовать отладчик. Поэтому он должен ждать.

Термин «отладка ядра» означает изучение внутренней структуры данных ядра и (или) пошаговую трассировку функций в ядре. Эта отладка является весьма полезным способом исследования внутреннего устройства Windows, поскольку она позволяет получить отображения внутренней системной информации, недоступной при использовании каких-либо других средств, и дает четкое представление о ходе выполнения кода в ядре.

Прежде чем рассматривать различные способы отладки ядра, давайте исследуем набор файлов, который понадобится для осуществления любого вида такой отладки.

Символы для отладки ядра

Файлы символов содержат имена функций и переменных, а также схему и формат структур данных. Они генерируются программой-компоновщиком (linker) и используются отладчиками для ссылок на эти имена и для их отображения во время сеанса отладки. Эта информация обычно не хранится в двоичном коде, поскольку при выполнении кода она не нужна. Это означает, что без нее двоичный код становится меньше по размеру и выполняется быстрее. Но это также означает, что при отладке нужно обеспечить отладчику доступ к файлам символов, связанных с двоичными образами, на которые идут ссылки во время сеанса отладки.

Для использования любого средства отладки в режиме ядра с целью исследования внутреннего устройства структуры данных ядра Windows (списка процессов, блоков потоков, списка загруженных драйверов, информации об использовании памяти и т. д.) вам нужны правильные файлы символов и, как минимум, файл символов для двоичного образа ядра - Ntoskrnl.exe. Файлы таблицы символов должны соответствовать версии того двоичного образа, из которого они были извлечены. Например, если установлен пакет Windows Service Pack или какое-нибудь исправление, обновляющее ядро, нужно получить соответствующим образом обновленные файлы символов.

Загрузить и установить символы для различных версий Windows нетрудно, а вот обновить символы для исправлений удается не всегда. Проще всего получить нужную версию символов для отладки путем обращения к специально предназначенному для этого серверу символов Microsoft, воспользовавшись для этого специальным синтаксисом для пути к символам, указываемом в отладчике. Например, следующий путь к символам заставляет средства отладки загрузить символы с интернет-сервера символов и сохранить локальную копию в папке c:\symbols:srv*c:\symbols*http://msdl.microsoft.com/download/symbols

Подробные инструкции по использованию символьного сервера можно найти в файле справки средств отладки или в Интернете на веб-странице http://msdn.microsoft.com/en-us/windows/hardware/gg462988.aspx.

Отладчики режима ядра находятся между CPU и операционной системой. Это означает, что, когда вы останавливаете отладчик режима ядра, операционная система также полностью останавливается. Нетрудно сообразить, что переход операционной системы к резкому останову полезен, когда вы работаете с таймером и над проблемами синхронизации. Все-таки, за исключением одного отладчика, о котором будет рассказано ниже (в разделе "Отладчик SoftlCE" данной главы), нельзя отлаживать код пользовательского режима с помощью отладчиков режима ядра.

Отладчиков режима ядра не так много. Вот некоторые из них: Windows 80386 Debugger (WDEB386), Kernel Debugger (1386KD), WinDBG и SoftlCE. Каждый из этих отладчиков кратко описан в следующих разделах.

Отладчик WDEB386

WDEB386 - это отладчик режима ядра Windows 98, распространяемый в составе Platform SDK. Этот отладчик полезен только для разработчиков, пишущих драйверы виртуальных устройств Windows 98 (VxD). Подобно большинству отладчиков режима ядра для операционных систем Windows, отладчик WDEB386 требует для работы две машины и нуль-модемный кабель. Две машины необходимы потому, что часть отладчика, которая выполняется на целевой машине, имеет ограниченный доступ к ее аппаратным средствам, так что он посылает свой вывод и получает команды от другой машины.

Отладчик WDEB386 имеет интересную историю. Он начинался как внутренний фоновый инструмент Microsoft в эпоху Windows 3.0. Его было трудно использовать, и он не имел достаточной поддержки для отладки исходного кода и других приятных свойств, которыми нас испортили отладчики Visual C++ и Visual Basic.

"Точечные" (DOT) команды - наиболее важная особенность WDEB386. Через прерывание INT 41 можно расширять WDEB386 с целью добавления команд. Эта расширяемость позволяет авторам VxD-драйверов создавать заказные отладочные команды, которые дают им свободный доступ к информации в их виртуальных устройствах. Отладочная версия Windows 98 поддерживает множество DOT-команд, которые позволяют наблюдать точное состояние операционной системы в любой точке процесса отладки.

Отладчик I386KD

Windows 2000 отличается от Windows 98 тем, что реально действующая часть отладчика режима ядра является частьюNTOSKRNL. EXE - файла главного ядра операционной системы Windows 2000. Этот отладчик доступен как в свободных (выпускных), так и в проверенных (отладочных) конфигурациях операционной системы. Чтобы включить отладку в режиме ядра, установите параметр загрузчика /DEBUG в BOOT. INI и, дополнительно, опцию загрузчика /DEBUGPORT, если необходимо установить значение коммуникационного порта отладчика режима ядра, отличающееся от умалчиваемого (СОМ1). I386KD выполняется на своей собственной машине и сообщается с машиной Windows 2000 через кабель нуль-модема.

Отладчик режима ядра NTOSKRNL. EXE делает только то, что достаточно для управления CPU, так чтобы операционная система могла быть отлажена. Большая часть отладочной работы - обработка символов, расширенные точки прерывания и дизассемблирование - выполняется на стороне 1386KD. Одно время Windows NT 4 Device Driver Kit (DDK) документировал протокол, используемый в кабеле нуль-модема. Однако Microsoft больше его не документирует.

Мощь 1386KD очевидна, если посмотреть на все команды, которые он предлагает для доступа к внутреннему состоянию Windows 2000. Знание механизма работы драйверов устройств в Windows 2000 поможет программисту следить за выводом многих команд. Не смотря на всю свою мощь, i386KD почти никогда не применяется, потому что это консольное приложение, которое очень утомительно использовать для отладок исходного уровня.

  • Авторы:

    Баринов С.С., Шевченко О.Г.

  • Год:
  • Источник:

    Информатика и компьютерные технологии / Материалы VI международной научно-технической конференции студентов, аспирантов и молодых ученых - 23-25 ноября 2010 г., Донецк, ДонНТУ. - 2010. - 448 с.

Аннотация

Приведен сравнительный анализ отладки режима пользователя и режима ядра применительно к операционной системе Microsoft Windows, выделены отличия и проблемы организации отладки последнего. На основе полученных результатов сформулированы основные требования к построению отладчиков режима ядра в случае аварийной и интерактивной отладки. Проведен анализ существующих решений на предмет соответствия требованиям. В частности, особое внимание уделено отладчику Microsoft Windows Debugger.

Основная часть

Отладка - это процесс определения и устранения причин ошибок в программном обеспечении. В некоторых проектах отладка занимает до 50 % общего времени разработки . Отладка может быть значительно упрощена при использовании специализированных инструментов, которые постоянно совершенствуются. Основным таким инструментом является отладчик, позволяющий контролировать выполнение ПО, наблюдать за его ходом и вмешиваться в него. Средства отладки ядра преимущественно используются разработчиками драйверов .

Инструментарий разработки прикладного программного обеспечения предлагает программисту широкий спектр возможностей. Любая интегрированная среда разработки включает в себя и возможность отладки без необходимости использования сторонних утилит. Если же речь идет о системном программном обеспечении и разработке драйверов в частности, то в силу его специфики процесс разработки чрезвычайно затруднен и мало автоматизирован. Все фазы разработки, в числе которых и отладка, являются раздельными. Для проведения каждой из них требуются особые условия: написание программного кода выполняется на полноценной компьютерной системе, отладка - на отладочной системе, тестирование - в зависимости от обстоятельств и т.д. Сам же отладчик режима ядра более сложен в освоении и, соответственно, менее дружественен.

В целом можно говорить о недостатке средств отладки ядра. Хотя таковые средства имеются в наличии, зачастую говорить об альтернативах не приходится. Например, отладчик Microsoft Windows Debugger имеет слишком высокий порог вхождения. Многие программисты говорят о первом негативном опыте при знакомстве с ним, а большинство его возможностей остаются незатребованными.

Исходя из структуры виртуального адресного пространства, если в приложении допущена ошибка, вследствие которой приложение выполнит запись данных в произвольное место памяти, то приложение повредит только собственную память и не повлияет на работу других приложений и операционной систему. Тогда как программный код режима ядра в состоянии повредить важные структуры данных операционной системы, что неминуемо приведет к общему сбою. Неэффективно написанный драйвер также может стать причиной серьезной деградации всей операционной системы.

    Современные отладчики обеспечивают следующие базовые функции:
  • отладка на уровне исходного кода;
  • управление выполнением;
  • просмотр и изменение памяти;
  • просмотр и изменение содержимого регистров процессора;
  • просмотр стека вызовов.

Для облегчения работы с дизассемблированным кодом применяются т.н. отладочные символы. Во время работы компоновщика, кроме образа исполняемого файла также может быть создан файл данных, содержащий информацию, которая не требуется при выполнении программы, но чрезвычайно полезна при ее отладке: имена функций, глобальных переменных, описание структур. Отладочные символы доступны для всех исполняемых файлов операционной системы Windows .

Под управлением выполнением подразумевается способность прерывать и возобновлять выполнение программного кода по достижению заданной команды в программном коде. Если программный код исполняется в пошаговом режиме - прерывание возникает для каждой лексемы языка программирования или при выходе из подпрограммы. При свободном исполнении прерывание выполнения возникает в заранее оговоренных участках кода - местах, в которых установлены точки останова.

При прерывании кода режима ядра возникают следующая дилемма. Отладчик для взаимодействия с программистом использует интерфейс пользователя. Т.е. как минимум видимая часть отладчика выполняется в пользовательском режиме и для его построения естественно использует интерфейс прикладного программирования (Windows API), который в свою очередь опирается на модули режима ядра. Таким образом, приостановка кода режима ядра может привести к взаимной блокировке: система перестанет отвечать на запросы пользователя.

Для доступа к памяти ядра составные части отладчика также должны выполняться в режиме ядра. Это ведет к возникновению сразу двух проблем, являющиеся очевидным следствием организации памяти в защищенном режиме процессора.

Первая проблема касается трансляции виртуальных адресов памяти. Драйвера постоянно взаимодействуют с приложениями пользовательского режима, выполняя обращение к их памяти. Операционная система Windows транслирует виртуальные адреса в физические, руководствуясь понятием контекста потока. Контекст потока - структура, отражающая состояние потока и включающая, в частности, набор регистров и некоторую другую информацию. Когда управление передается другому потоку, возникает переключение контекста, при котором сохраняется информация об одном потоке и восстанавливается информации о другом. При переключении контекста потока на поток другого процесса переключается также и каталог страниц, используемый для трансляции виртуальных адресов в физические .

Особенность заключается в том, что при диспетчеризации системных вызовов операционная система Windows не переключает контекст. Благодаря этому код режима ядра может использовать виртуальные адреса пользовательского режима.

Иначе дело обстоит при диспетчеризации прерываний или выполнении системных потоков. Прерывание может произойти в любой момент, поэтому нельзя предугадать, какой контекст потока будет использоваться. Системные же потоки не принадлежат какому-либо процессу и не могут транслировать виртуальные адреса пользовательского режима . Отсюда следует, что в этих ситуациях нельзя обратиться к памяти пользовательского режима.

Второй проблемой является обращение к перемещаемой памяти. Большая часть информации в памяти является перемещаемой и в любой момент может быть перемещена из физической памяти на жесткий диск в страничный файл. Если обратиться к странице, которая отсутствует в физической памяти, в нормальной ситуации процессор сгенерирует прерывание Page Fault, которое будет обработано диспетчером памяти, и в результате страница будет прочитана из страничного файла и загружена в физическую память.

Описанное поведение нарушается, если программный код отладчика вынужден использовать высокий уровень запросов прерываний (interrupt request levels, IRQL). При IRQL, совпадающем с или превышающем IRQL диспетчера памяти последний не сможет загрузить отсутствующую страницу, т.к. операционная система будет блокировать прерывание Page Fault. Это приведет к краху операционной системы .

Отладку принято разделять на интерактивную и аварийную. При интерактивной локальной отладке отладчик выполняется в той же системе, что и объект отладки. При интерактивной удаленной отладке отладчик и объект отладки выполняется в разных системах. При отладке кода ядра система должна контролироваться, начиная с первых этапов ее загрузки, когда сеть еще не функционирует, поэтому для связи систем применяют простые последовательные интерфейсы, такие как COM, FireWire, USB. В последнее время, благодаря тенденциям развития виртуализации ПО на разных уровнях абстракций, все чаще привлекают виртуальные машины. Гостевая ОС выступает в качестве отлаживаемой, размещенная ОС включает интерфейс пользователя отладчика.

Таким образом, для аварийной отладки не требуется установка средства отладки на тестовом компьютере. В дистрибутив операционной системы Windows включены механизмы для реализации аварийной отладки. Перед перезагрузкой операционная система может сохранять информацию о своем состоянии, которую разработчик может проанализировать и выяснить причину. Такая информация, сохраненная в файл, называется дампом памяти.

Основные средства отладки режима ядра предоставляются самим производителем операционной системы Windows в рамках свободно распространяемого пакета «Debugging Tools for Windows». Средства включают графический и консольный отладчики WinDbg и KD соответственно (далее Windows Debugger). Работа этих отладчиков опирается на механизмы, предусмотренные разработчиками операционной системы и заложенные в ее ядре.

Основным режимом для Windows Debugger является режим интерпретатора команд. Благодаря модульной структуре, наряду с поставляемыми разработчиками командами Windows Debugger поддерживает сторонние модули, называемыми расширениями. В действительности большинство встроенных команд также оформлено в виде расширений.

Windows Debugger ориентирован на удаленную интерактивную и аварийные отладки, при использовании которых раскрываются все его возможности. В тоже время полноценная локальная интерактивная отладка не поддерживается: отладчик позволяет только просматривать некоторые структуры ядра.

Существует модуль расширения для Windows Debugger под названием LiveKD, созданный Марком Руссиновичем, который в некотором смысле реализует локальную интерактивную отладку. LiveKD на ходу создает дамп памяти рабочей системы и использует его для отладки.

Пакет инструментов «Debugging Tools for Windows» регулярно обновляется и поддерживает все современные операционный системы Windows.

Отладчик ядра SoftICE, выпускавшийся компанией Compuware в пакете программ DriverStudio, традиционно выступал альтернативой пакету «Debugging Tools for Windows». Отличительной чертой SoftICE являлась реализация локальной интерактивной отладки на поддерживаемом аппаратном обеспечении. Отладчик практически полностью мог контролировать работу операционной системы.

С 3 апреля 2006 года продажа продуктов семейства «DriverStudio» было прекращена по причине «множества технических и деловых проблем, а также общего состояния рынка». Последней версией операционной системы, поддержка которой была реализована, является Windows XP Service Pack 2. Как правило, пакеты сервисных обновлений не изменяют прикладной интерфейс операционной системы, но номера системных вызовов и другая недокументированная информация может претерпевать изменение. Отладчик SoftICE опирался на жестко-прописанные адреса внутренних структур данных. Как следствие - с выходом Service Pack 3 совместимость была нарушена. Очевидно, что более поздние версии операционной системы Windows также не поддерживаются.

Syser Kernel Debugger создан небольшой китайской компанией Sysersoft как замена отладчику SoftICE. Первая финальная версия была выпущена в 2007 году. Как и SoftICE, Syser Kernel Debugger способен выполнять интерактивную отладку на работающей системе. Поддерживаемыми являются только 32-разрядные редакции современных версий Windows.

На данный момент Windows Debugger является основным инструментом среди разработчиков модулей ядра. Его также использует команда разработчиков ядра операционной системы Windows.