Arduino ide язык программирования. Ардуино язык программирования

Эта вводная статья для тех, кто уже успел распаковать со своим ребенком десяток-другой цветных коробок от конструкторов, построил сотни разнообразных конструкций и заполнил деталями от Лего все доступные емкости в чулане. Если вы готовы перейти на следующий уровень: с электроникой, микроконтроллерами, датчиками и умными устройствами – значит, пришло время для экспериментов с Ардуино!

В этой серии статей мы соберем самое главное, что нужно узнать об Ардуино, чтобы начать заниматься с детьми самостоятельно. Даже если вы никогда не брали в руки паяльник и слова «контроллер» и «контроллёр» для вас имеют примерно схожий смысл, можете быть уверенными – у вас все равно все получится! Мир электроники и робототехники сегодня полон простых и очень удобных решений, позволяющих практически с нуля создавать очень интересные проекты. Наш учебник поможет вам быстро сориентироваться и сделать первые шаги.

Говоря бытовым языком, Ардуино – это , в которую можно воткнуть множество разных устройств и заставить их работать вместе с помощью программы, написанной на языке Ардуино в специальной среде программирования.

Чаще всего плата выглядит вот так:

На рисунке показана одна из плат Ардуино – Arduino Uno. Мы изучим ее подробнее на следующих уроках.

В плату можно втыкать провода и подключать множество разных элементов. Чаще всего, для соединения используется макетная плата для монтажа без пайки. Можно добавлять светодиоды, датчики, кнопки, двигатели, модули связи, реле и создавать сотни вариантов интересных проектов умных устройств. Плата Ардуино – это умная розетка, которая будет включать и выключать все присоединенное в зависимости от того, как ее запрограммировали.




Вся работа над проектом разбивается на следующие этапы:

  1. Придумываем идею и проектируем.
  2. Собираем электрическую схему. Тут нам пригодится макетная плата, упрощающая монтаж элементов. Безусловно, понадобятся навыки работы с электронными приборами и умение .
  3. Подключаем к компьютеру через USB.
  4. и записываем ее в плату буквально нажатием одной кнопки на экране в .
  5. Отсоединяем от компьютера. Теперь устройство будет работать автономно – при включении питания оно будет управляться той программой, которую мы в него записали.

Программа и среда программирования выглядят вот так:

На экране показана программа (на сленге ардуинщиков текст программы называется “скетч”), которая будет мигать лампочкой, подсоединенной к 13 входу на плате Ардуино UNO. Как видим, программа вполне проста и состоит из понятных для знающих английский язык инструкций. В языке программирования Arduino используется свой диалект языка C++, но все возможности C++ поддерживаются.

Есть и другой вариант написания кода – визуальный редактор. Тут не нужно ничего писать – можно просто перемещать блоки и складывать из них нужный алгоритм. Программа загрузится в подключенную плату одним нажатием кнопки мыши!

В целом все выглядит довольно понятно, не так ли? Осталось разобраться в деталях.

Быстрый старт с Arduino

Для начала давайте поймем, с чем же и чем же мы собираемся заниматься. Что такое Ардуино и как его использовать? Если вы уже знакомы с темой – можете смело перескочить дальше. Если нет – давайте вместе выполним короткое погружение.

Ардуино – это…

Ардуино – это не бренд и не название поставщика конструкторов. Это общее название для целого семейства различных технологий и открытой платформы, в которую входят как аппаратные устройства (платы контроллеров и совместимое оборудование), так и софт, предназначенный для управления железками. По сути своей, Ардуино – это инфраструктура и среда, в которой можно собирать совместимые между собой электронные и механические компоненты в единое устройство, а потом через обычный компьютер за две минуты запрограммировать поведение этих самых железок так, как нам нужно.

Ардуино – это мостик из виртуального компьютерного мира в мир реальных вещей и устройств. Написав программу на обычном компьютере, мы управляем с ее помощью не виртуальными объектами, а вполне себе реальными датчиками, двигателями, экранами. Мы меняем мир вокруг себя – просто программируя на компьютере, используя бесплатный софт и множество уже готовых примеров библиотек.

Свое название технология получила, как это часто бывает, довольно случайно. Источником вдохновения послужил бар, в котором будущие создатели Ардуино любили выпить по кружечке чая. Называлось заведение именно так – Arduino, по имени главной исторической личности города Ивреа, короля Ардуино. Король какого-то яркого следа в истории не оставил и прослыл неудачником, но благодаря команде разработчиков новой платформы обрел новую популярность и сейчас известен миллионам людей по всему земному шару.

Почему Ардуино?

Вся прелесть Ардуино заключается в следующих простых преимуществах:

  1. Простота. Да, да – именно простота (хотя Лего и другие игрушки, без сомнения, привычнее, но мы сравниваем не с ними). Для юных разработчиков электроники Ардуино «прячет» огромное количество разнообразных технических вопросов. Многие достаточно сложные проекты можно создавать очень быстро, без длительного погружения в детали. А это ведь очень важно для ребенка – не утратить интерес до первого полученного своими руками результата.
  2. Популярность. Ардуино крайне популярна, вы сможете без труда найти ответы на любые вопросы на многочисленных форумах или сайтах. Сообщество Ардуино обширно и дружелюбно – там относительно мало прожженных жизнью снобов-инженеров и полно любителей и начинающих, с удовольствием делящихся своей радостью от найденного и узнанного. Это, конечно, откладывает отпечаток на качество советов, но как правило, даже самые сложные вопросы могут быть быстро решены с помощью форумов и сайтов.
  3. Доступность. И сама технология, и практически весь софт выпускаются под открытыми лицензиями и вы можете свободно использовать чужие наработки, схемы, причем во многих случаях даже для коммерческого использования. Это экономит много времени и позволяет двигаться большими шагами, опираясь на опыт предыдущих исследователей.
  4. Дешевизна. Комплект для первых занятий электроникой и программированием можно купить менее чем за 500 рублей. Полноценные курсы робототехники возможны при . Никакая другая технология не позволит вам так быстро и так эффективно войти в мир реальной учебной робототехники.

С чего начать?

Если вы хотите заниматься робототехникой с использованием Ардуино, то вам понадобится такой вот джентельменский набор:

  1. с USB кабелем для подключения к компьютеру.
  2. и провода.
  3. Комплект базовых электронных компонентов и переходник для батарейки типа крона.
  4. Установленная на компьютер среда

Все оборудование продается в наборах, называемых стартовыми –

В дальнейшем, если занятия действительно увлекут и будет желание продолжить эксперименты, то список оборудования будет расширяться:

  1. Экраны и индикаторы.
  2. Двигатели и , реле и .
  3. Модули связи.
  4. Разнообразные дополнительные модули и (шилды)

Если первые шаги дадут результат, со временем вы будете узнавать половину людей, стоящих в очереди на почте (если до сих пор вы их еще не знаете), а почтальоны при встрече будут узнавать вас в лицо и нервно перебегать на другую сторону дороги.

Как купить Ардуино?

Прежде чем узнать что-то полезное, надо сначала купить что-то полезное. Для экспериментов с электроникой вам понадобится та сама электроника в виде конструктора или отдельных плат. Рекомендуется купить не очень дорогой отечественный набор с основными компонентами и затем уже заказать себе с Алиэкспресса датчики, двигатели, контроллеры и другие сокровища. можно найти в инернете (не только на нашем сайте). Если вы живете в большом городе, то покупка всего необходимого займет максимум два дня. Найти нужный магазин легко в интернете.

Пару слов о . Сегодня их на совершенно легальных условиях может делать любой производитель: как крупный, такой как Intel, так и мелкие noname поставщики из Китая. Надежность и удобство «китайских» и «официальных» платы Ардуино в большинстве случаев одинаковые. Поэтому незачем переплачивать – для своих учебных проектов можете смело покупать аналоги, которые легко найти в интернете.

Как отличить «оригинал» от «совместимой платы»:

  1. «Китайские» платы не имеют права ставить логотип Ардуино.
  2. «Китайские» платы стоят гораздо дешевле.
  3. «Китайские» часто используют другой чип для обслуживания соединения с компьютером, на который нужны специальные драйвера. Драйвера устанавливаются за секунду и практически никогда не вызывают каких-либо проблем.

Еще раз подчеркнем, использование не оригинальных плат совершенно легально. Ардуино – открытая архитектура и разработчики дают возможность собрать свою версию платы всем желающим.

Нет возможности купить?

Если вы живете в Антарктиде или у вас действительно не хватает средств даже на самые простые наборы, то не отчаивайтесь – можно начать изучение Ардуино на виртуальных тренажерах. Самый мощный, простой и популярный сегодня вариант – это онлайн сервис Tinkercad от известной компании Autodesk. Вы сможете создавать электронные схемы, подключая множество разнообразных компонентов, а затем «включать» питание и измерять все электрические показатели. В библиотеке устройств есть и плата Ардуино, и даже встроенный редактор для программирования (включая визуальный!). Вы можете найти на нашем сайте отдельную статью

Первое, с чего следует начать работу по освоению Arduino – это приобрести отладочную плату (хорошо бы сразу приобрести монтажную плату и т.п.). Уже описывал, какие виды плат Arduino представлены на рынке. Кто еще не читал статью советую ознакомиться. Для изучения основ выбираем стандартную плату Arduino Uno (оригинал или хорошую китайскую копию — решать вам). При первом подключении оригинальной платы проблем возникнуть не должно, а вот с «китайцем» нужно будет немного поковыряться (не переживайте – всё покажу и расскажу).

Подключаем Arduino к компьютеру USB кабелем. На плате должен засветиться светодиод «ON «. В диспетчере устройств появится новое устройство «Неизвестное устройство «. Необходимо установить драйвер. Тут внесу небольшую неясность (кот отвлек – я не запомнил, какой из драйверов решил «проблему неизвестного устройства ».

Предварительно скачал и распаковал программную средy Arduino (arduino-1.6.6-windows ). Затем скачал этот . Он самораспаковывающейся. Запустил файл CH341SER.EXE . Выбрал установку (INSTALL) . После установки появилось сообщение, нажал «Ок » (прочитать не успел).

После перешёл в свойства все еще «неизвестного устройства» и выбрал кнопку «Update Driver». Выбрал вариант «Установка из указанного места» – указал папку с разархивированной программной средой Arduino. И о чудо – всё удачно заработало…

Запускаем программу Arduino (в моём случае 1.6.6) и разрешаем доступ.

Все проекты (программы) для Arduino состоят из двух частей: void setup и void loop . void setup выполняется всего один раз, а void loop выполняется снова и снова.

Прежде чем продолжим, необходимо выполнить две обязательные операции:

— указать в программной среде Arduino, какую плату вы используете. Tool->board-> Arduino Uno. Если отметка уже стоит на нужной вам плате – это хорошо, если нет – ставим отметку.

— указать в программной среде какой последовательный порт вы используете для связи с платой. Tool->port-> COM3. Если отметка уже стоит на порте – это хорошо, если нет – ставим отметку. Если у вас в разделе порты представлен больше, чем один порт, как же узнать, какой именно используется для соединения с платой? Берём плату и отсоединяем от неё провод. Снова заходим в порты и смотрим, какой из них исчез. В моём случае вкладка «порты» вообще стала не активной.

Снова подключаем провод USB.

Для первой программы никаких дополнительных модулей не нужно. Будем включать светодиод, который уже смонтирован на плате (на 13 выводе микроконтроллера).

Для начала сконфигурим 13 вывод (на вход или на выход).

Для этого вводим в блок «void setup » команду pinMode , в скобках указываем параметры (13, OUTPUT ) (Какой вывод задействован, Режим работы ). Программная среда выделяет слова/команды соответствующим цветом шрифта.

Переходим в блок «void loop » и вводим команду digitalWrite с параметрами (13, HIGH) .


Первая программа готова, теперь осталось загрузить её в микроконтроллер. Нажимаем кнопку UPLOAD.

Светодиод засветился. Но не стоит так скептически относиться к простоте первой программы. Вы только, что освоили первую управляющую команду. Вместо светодиода ведь можно подключить любую нагрузку (будь-то освещение в комнате или сервопривод, перекрывающий подачу воды), но об этом всём поговорим позже…

Светодиод мы включили, он немного посветил, пора его выключать. Для этого видоизменим написанную нами программу. Вместо «HIGH » напишем «LOW ».


Нажимаем кнопку UPLOAD. Светодиод погас.

Мы уже познакомились с понятием « », пора им воспользоваться. Дальнейшие программы будут становится все объёмнее и сложнее, а работы по их изменению будут занимать все больше и больше времени, если мы оставим подобный стиль написания кода.

Смотрим на программу (снова включим светодиод). Зададим номер вывода микроконтроллера не числом 13 , а переменной, которой будет присвоено значение соответствующего вывода (в нашем случае 13). В дальнейшем будет очень удобно изменять значения переменных в начале программы, вместо того, чтобы шарится по коду в поисках тех мест, где необходимо произвести замены значений.

Создаём глобальную переменную int LED_pin = 13; (тип переменной, имя переменной, присваиваемое ей значение ).


Нажимаем кнопку UPLOAD. Светодиод светится. Все работает отлично.

В этом уроке, кроме включения/выключения светодиода, мы еще научимся мигать им.

Для этого вводим вторую команду «digitalWrite » с параметрами (LED_pin, LOW ).


Нажимаем кнопку UPLOAD. И что мы видим? Светодиод светится «в пол наказа». Причина кроется в том, что время переключения двух состояний (HIGH и LOW ) ничтожно мало и человеческий глаз не может уловить эти переключения. Необходимо увеличить время нахождения светодиода в одном из состояний. Для этого пишем команду delay с параметром (1000 ) . Задержка в миллисекундах: 1000 миллисекунд – 1 секунда. Алгоритм программы следующий: включили светодиод – ждём 1 секунду, выключили светодиод – ждём 1 секунду и т.д.


Нажимаем кнопку UPLOAD. Светодиод начал мерцать. Все работает.

Доработаем программу создав переменную, которой будет присваиваться значение, отвечающее за длительность задержки.


Нажимаем кнопку UPLOAD. Светодиод мерцает, как и мерцал.

Доработаем написанную нами программу. Задачи следующие:

  • Светодиод включен 0,2 секунды и выключен 0,8 секунды;
  • Светодиод включен 0,7 секунды и выключен 0,3 секунды.

В программе созданы 2 переменные, что отвечают за временные задержки. Одна определяет время работы включенного светодиода, а вторая – время работы выключенного светодиода.

Спасибо за внимание. До скорой встречи!

Из чего состоит программа

Для начала стоит понять, что программу нельзя читать и писать как книгу: от корки до корки, сверху вниз, строку за строкой. Любая программа состоит из отдельных блоков. Начало блока кода в C/C++ обозначается левой фигурной скобкой { , его конец - правой фигурной скобкой } .

Блоки бывают разных видов и какой из них когда будет исполняться зависит от внешних условий. В примере минимальной программы вы можете видеть 2 блока. В этом примере блоки называются определением функции . Функция - это просто блок кода с заданным именем, которым кто-то затем может пользоваться из-вне.

В данном случае у нас 2 функции с именами setup и loop . Их присутствие обязательно в любой программе на C++ для Arduino. Они могут ничего и не делать, как в нашем случае, но должны быть написаны. Иначе на стадии компиляции вы получите ошибку.

Классика жанра: мигающий светодиод

Давайте теперь дополним нашу программу так, чтобы происходило хоть что-то. На Arduino, к 13-му пину подключён светодиод. Им можно управлять, чем мы и займёмся.

void setup() { pinMode(13 , OUTPUT) ; } void loop() { digitalWrite(13 , HIGH) ; delay(100 ) ; digitalWrite(13 , LOW) ; delay(900 ) ; }

Скомпилируйте, загрузите программу. Вы увидите, что каждую секунду светодиод на плате помигивает. Разберёмся почему этот код приводит к ежесекундному миганию.

Каждое выражение - это приказ процессору сделать нечто. Выражения в рамках одного блока исполняются одно за другим, строго по порядку без всяких пауз и переключений. То есть, если мы говорим об одном конкретном блоке кода, его можно читать сверху вниз, чтобы понять что делается.

Теперь давайте поймём в каком порядке исполняются сами блоки, т.е. функции setup и loop . Не задумывайтесь пока что значат конкретные выражения, просто понаблюдайте за порядком.

    Как только Arduino включается, перепрошивается или нажимается кнопка RESET , «нечто» вызывает функцию setup . То есть заставляет исполняться выражения в ней.

    Как только работа setup завершается, сразу же «нечто» вызывает функцию loop .

    Как только работа loop завершается, сразу же «нечто» вызывает функцию loop ещё раз и так до бесконечности.

Если пронумеровать выражения по порядку, как они исполняются, получится:

void setup() { pinMode(13 , OUTPUT) ; ❶ } void loop() { digitalWrite(13 , HIGH) ; ❷ ❻ ❿ delay(100 ) ; ❸ ❼ … digitalWrite(13 , LOW) ; ❹ ❽ delay(900 ) ; ❺ ❾ }

Ещё раз напомним, что не стоит пытаться воспринимать всю программу, читая сверху вниз. Сверху вниз читается только содержимое блоков. Мы вообще можем поменять порядок объявлений setup и loop .

void loop() { digitalWrite(13 , HIGH) ; ❷ ❻ ❿ delay(100 ) ; ❸ ❼ … digitalWrite(13 , LOW) ; ❹ ❽ delay(900 ) ; ❺ ❾ } void setup() { pinMode(13 , OUTPUT) ; ❶ }

Результат от этого не изменится ни на йоту: после компиляции вы получите абсолютно эквивалентный бинарный файл.

Что делают выражения

Теперь давайте попробуем понять почему написанная программа приводит в итоге к миганию светодиода.

Как известно, пины Arduino могут работать и как выходы и как входы. Когда мы хотим чем-то управлять, то есть выдавать сигнал, нам нужно перевести управляющий пин в состояние работы на выход. В нашем примере мы управляем светодиодом на 13-м пине, поэтому 13-й пин перед использованием нужно сделать выходом.

Это делается выражением в функции setup:

PinMode(13 , OUTPUT) ;

Выражения бывают разными: арифметическими, декларациями, определениями, условными и т.д. В данном случае мы в выражении осуществляем вызов функции . Помните? У нас есть свои функции setup и loop , которые вызываются чем-то, что мы назвали «нечто». Так вот теперь мы вызываем функции, которые уже написаны где-то.

Конкретно в нашем setup мы вызываем функцию с именем pinMode . Она устанавливает заданный по номеру пин в заданный режим: вход или выход. О каком пине и о каком режиме идёт речь указывается нами в круглых скобках, через запятую, сразу после имени функции. В нашем случае мы хотим, чтобы 13-й пин работал как выход. OUTPUT означает выход, INPUT - вход.

Уточняющие значения, такие как 13 и OUTPUT называются аргументами функции . Совершенно не обязательно, что у всех функций должно быть по 2 аргумента. Сколько у функции аргументов зависит от сути функции, от того как её написал автор. Могут быть функции с одним аргументом, тремя, двадцатью; функции могут быть без аргументов вовсе. Тогда для их вызова круглые скобка открывается и тут же закрывается:

NoInterrupts() ;

На самом деле, вы могли заметить, наши функции setup и loop также не принимают никакие аргументы. И загадочное «нечто» точно так же вызывает их с пустыми скобками в нужный момент.

Вернёмся к нашему коду. Итак, поскольку мы планируем вечно мигать светодиодом, управляющий пин должен один раз быть сделан выходом и затем мы не хотим вспоминать об этом. Для этого идеологически и предназначена функция setup: настроить плату как нужно, чтобы затем с ней работать.

Перейдём к функции loop:

void loop() { digitalWrite(13 , HIGH) ; delay(100 ) ; digitalWrite(13 , LOW) ; delay(900 ) ; }

Она, как говорилось, вызывается сразу после setup . И вызывается снова и снова как только сама заканчивается. Функция loop называется основным циклом программы и идеологически предназначена для выполнения полезной работы. В нашем случае полезная работа - мигание светодиодом.

Пройдёмся по выражениям по порядку. Итак, первое выражение - это вызов встроенной функции digitalWrite . Она предназначена для подачи на заданный пин логического нуля (LOW , 0 вольт) или логической единицы (HIGH , 5 вольт) В функцию digitalWrite передаётся 2 аргумента: номер пина и логическое значение. В итоге, первым делом мы зажигаем светодиод на 13-м пине, подавая на него 5 вольт.

Как только это сделано процессор моментально приступает к следующему выражению. У нас это вызов функции delay . Функция delay - это, опять же, встроенная функция, которая заставляет процессор уснуть на определённое время. Она принимает всего один аргумент: время в миллисекундах, которое следует спать. В нашем случае это 100 мс.

Пока мы спим всё остаётся как есть, т.е. светодиод продолжает гореть. Как только 100 мс истекают, процессор просыпается и тут же переходит к следующему выражению. В нашем примере это снова вызов знакомой нам встроенной функции digitalWrite . Правда на этот раз вторым аргументом мы передаём значение LOW . То есть устанавливаем на 13-м пине логический ноль, то есть подаём 0 вольт, то есть гасим светодиод.

После того, как светодиод погашен мы приступаем к следующему выражению. И снова это вызов функции delay . На этот раз мы засыпаем на 900 мс.

Как только сон окончен, функция loop завершается. По факту завершения «нечто» тут же вызывает её ещё раз и всё происходит снова: светодиод поджигается, горит, гаснет, ждёт и т.д.

Если перевести написанное на русский, получится следующий алгоритм:

    Поджигаем светодиод

    Спим 100 миллисекунд

    Гасим светодиод

    Спим 900 миллисекунд

    Переходим к пункту 1

Таким образом мы получили Arduino с маячком, мигающим каждые 100 + 900 мс = 1000 мс = 1 сек.

Что можно изменить

Давайте пользуясь только полученными знаниями сделаем несколько вариаций программы, чтобы лучше понять принцип.

Вы можете подключить внешний светодиод или другое устройство, которым нужно «мигать» на другой пин. Например, на 5-й. Как в этом случае должна измениться программа? Мы должны всюду, где обращались к 13-му пину заменить номер на 5-й:

Компилируйте, загружайте, проверяйте.

Что нужно сделать, чтобы светодиод мигал 2 раза в секунду? Уменьшить время сна так, чтобы в сумме получилось 500 мс:

void setup() { pinMode(5 , OUTPUT) ; } void loop() { digitalWrite(5 , HIGH) ; delay(50 ) ; digitalWrite(5 , LOW) ; delay(450 ) ; }

Как сделать так, чтобы светодиод при каждом «подмигивании» мерцал дважды? Нужно поджигать его дважды с небольшой паузой между включениями:

void setup() { pinMode(5 , OUTPUT) ; } void loop() { digitalWrite(5 , HIGH) ; delay(50 ) ; digitalWrite(5 , LOW) ; delay(50 ) ; digitalWrite(5 , HIGH) ; delay(50 ) ; digitalWrite(5 , LOW) ; delay(350 ) ; }

Как сделать так, чтобы в устройстве были 2 светодиода, которые мигали бы каждую секунду поочерёдно? Нужно общаться с двумя пинами и работать в loop то с одним, то с другим:

void setup() { pinMode(5 , OUTPUT) ; pinMode(6 , OUTPUT) ; } void loop() { digitalWrite(5 , HIGH) ; delay(100 ) ; digitalWrite(5 , LOW) ; delay(900 ) ; digitalWrite(6 , HIGH) ; delay(100 ) ; digitalWrite(6 , LOW) ; delay(900 ) ; }

Как сделать так, чтобы в устройстве были 2 светодиода, которые переключались бы на манер железнодорожного светофора: горел бы то один то другой? Нужно просто не выключать горящий светодиод тут же, а дожидаться момента переключения:

void setup() { pinMode(5 , OUTPUT) ; pinMode(6 , OUTPUT) ; } void loop() { digitalWrite(5 , HIGH) ; digitalWrite(6 , LOW) ; delay(1000 ) ; digitalWrite(5 , LOW) ; digitalWrite(6 , HIGH) ; delay(1000 ) ; }

Можете проверить другие идеи самостоятельно. Как видите, всё просто!

О пустом месте и красивом коде

В языке C++ пробелы, переносы строк, символы табуляции не имеют большого значения для компилятора. Там где стоит пробел, может быть перенос строки и наоборот. На самом деле 10 пробелов подряд, 2 переноса строки и ещё 5 пробелов - это всё эквивалент одного пробела.

Пустое пространство - это инструмент программиста, с помощью которого можно или сделать программу понятной и наглядной, или изуродовать до неузнаваемости. Например, вспомним программу для мигания светодиодом:

void setup() { pinMode(5 , OUTPUT) ; } void loop() { digitalWrite(5 , HIGH) ; delay(100 ) ; digitalWrite(5 , LOW) ; delay(900 ) ; }

Мы можем изменить её так:

void setup( ) { pinMode(5 , OUTPUT) ; } void loop () { digitalWrite(5 ,HIGH) ; delay(100 ) ; digitalWrite(5 ,LOW) ; delay(900 ) ; }

Всё, что мы сделали - немного «поработали» с пустым пространством. Теперь можно наглядно видеть разницу между стройным кодом и нечитаемым.

Чтобы следовать негласному закону оформления программ, который уважается на форумах, при чтении другими людьми, легко воспринимается вами же, следуйте нескольким простым правилам:

1. Всегда, при начале нового блока между { и } увеличивайте отступ. Обычно используют 2 или 4 пробела. Выберите одно из значений и придерживайтесь его всюду.

Плохо:

void loop() { digitalWrite(5 , HIGH) ; delay(100 ) ; digitalWrite(5 , LOW) ; delay(900 ) ; }

Хорошо:

void loop() { digitalWrite(5 , HIGH) ; delay(100 ) ; digitalWrite(5 , LOW) ; delay(900 ) ; }

2. Как и в естественном языке: ставьте пробел после запятых и не ставьте до.

Плохо:

DigitalWrite(5 ,HIGH) ; digitalWrite(5 , HIGH) ; digitalWrite(5 ,HIGH) ;

Хорошо:

DigitalWrite(5 , HIGH) ;

3. Размещайте символ начала блока { на новой строке на текущем уровне отступа или в конце предыдущей. А символ конца блока } на отдельной строке на текущем уровне отступа:

Плохо:

void setup() { pinMode(5 , OUTPUT) ; } void setup() { pinMode(5 , OUTPUT) ; } void setup() { pinMode(5 , OUTPUT) ; }

Хорошо:

void setup() { pinMode(5 , OUTPUT) ; } void setup() { pinMode(5 , OUTPUT) ; }

4. Используйте пустые строки для разделения смысловых блоков:

Хорошо:

Ещё лучше:

void loop() { digitalWrite(5 , HIGH) ; delay(100 ) ; digitalWrite(5 , LOW) ; delay(900 ) ; digitalWrite(6 , HIGH) ; delay(100 ) ; digitalWrite(6 , LOW) ; delay(900 ) ; }

О точках с запятыми

Вы могли заинтересоваться: зачем в конце каждого выражения ставится точка с запятой? Таковы правила C++. Подобные правила называются синтаксисом языка . По символу; компилятор понимает где заканчивается выражение.

Как уже говорилось, переносы строк для него - пустой звук, поэтому ориентируется он на этот знак препинания. Это позволяет записывать сразу несколько выражений в одной строке:

void loop() { digitalWrite(5 , HIGH) ; delay(100 ) ; digitalWrite(5 , LOW) ; delay(900 ) ; }

Программа корректна и эквивалентна тому, что мы уже видели. Однако писать так - это дурной тон. Код гораздо сложнее читается. Поэтому если у вас нет 100% веских причин писать в одной строке несколько выражений, не делайте этого.

О комментариях

Одно из правил качественного программирования: «пишите код так, чтобы он был настолько понятным, что не нуждался бы в пояснениях». Это возможно, но не всегда. Для того, чтобы пояснить какие-то не очевидные моменты в коде его читателям: вашим коллегам или вам самому через месяц, существуют так называемые комментарии.

Это конструкции в программном коде, которые полностью игнорируются компилятором и имеют значение только для читателя. Комментарии могут быть многострочными или однострочными:

/* Функция setup вызывается самой первой, при подаче питания на Arduino А это многострочный комментарий */ void setup() { // устанавливаем 13-й пин в режим вывода pinMode(13 , OUTPUT) ; } void loop() { digitalWrite(13 , HIGH) ; delay(100 ) ; // спим 100 мс digitalWrite(13 , LOW) ; delay(900 ) ; }

Как видите, между символами /* и */ можно писать сколько угодно строк комментариев. А после последовательности / / комментарием считается всё, что следует до конца строки.

Итак, надеемся самые основные принципы составления написания программ стали понятны. Полученные знания позволяют программно управлять подачей питания на пины Arduino по определённым временны́м схемам. Это не так уж много, но всё же достаточно для первых экспериментов.

В этой статье я решал собрать полное пошаговое руководство для начинающих Arduino. Мы разберем что такое ардуино, что нужно для начала изучения, где скачать и как установить и настроить среду программирования, как устроен и как пользоваться языком программирования и многое другое, что необходимо для создания полноценных сложных устройств на базе семейства этих микроконтроллеров.

Тут я постараюсь дать сжатый минимум для того, что бы вы понимали принципы работы с Arduino. Для более полного погружения в мир программируемых микроконтроллеров обратите внимание на другие разделы и статьи этого сайта. Я буду оставлять ссылки на другие материалы этого сайта для более подробного изучения некоторых аспектов.

Что такое Arduino и для чего оно нужно?

Arduino — это электронный конструктор, который позволяет любому человеку создавать разнообразные электро-механические устройства. Ардуино состоит из программной и аппаратной части. Программная часть включает в себя среду разработки (программа для написания и отладки прошивок), множество готовых и удобных библиотек, упрощенный язык программирования. Аппаратная часть включает в себя большую линейку микроконтроллеров и готовых модулей для них. Благодаря этому, работать с Arduino очень просто!

С помощью ардуино можно обучаться программированию, электротехнике и механике. Но это не просто обучающий конструктор. На его основе вы сможете сделать действительно полезные устройства.
Начиная с простых мигалок, метеостанций, систем автоматизации и заканчивая системой умного дома, ЧПУ станками и беспилотными летательными аппаратами. Возможности не ограничиваются даже вашей фантазией, потому что есть огромное количество инструкций и идей для реализации.

Стартовый набор Arduino

Для того что бы начать изучать Arduino необходимо обзавестись самой платой микроконтроллера и дополнительными деталями. Лучше всего приобрести стартовый набор Ардуино, но можно и самостоятельно подобрать все необходимое. Я советую выбрать набор, потому что это проще и зачастую дешевле. Вот ссылки на лучшие наборы и на отдельные детали, которые обязательно пригодятся вам для изучения:

Базовый набор ардуино для начинающих: Купить
Большой набор для обучения и первых проектов: Купить
Набор дополнительных датчиков и модулей: Купить
Ардуино Уно самая базовая и удобная модель из линейки: Купить
Беспаечная макетная плата для удобного обучения и прототипирования: Купить
Набор проводов с удобными коннекторами: Купить
Комплект светодиодов: Купить
Комплект резисторов: Купить
Кнопки: Купить
Потенциометры: Купить

Среда разработки Arduino IDE

Для написания, отладки и загрузки прошивок необходимо скачать и установить Arduino IDE. Это очень простая и удобная программа. На моем сайте я уже описывал процесс загрузки, установки и настройки среды разработки. Поэтому здесь я просто оставлю ссылки на последнюю версию программы и на

Версия Windows Mac OS X Linux
1.8.2

Язык программирования Ардуино

Когда у вас есть на руках плата микроконтроллера и на компьютере установлена среда разработки, вы можете приступать к написанию своих первых скетчей (прошивок). Для этого необходимо ознакомиться с языком программирования.

Для программирования Arduino используется упрощенная версия языка C++ с предопределенными функциями. Как и в других Cи-подобных языках программирования есть ряд правил написания кода. Вот самые базовые из них:

  • После каждой инструкции необходимо ставить знак точки с запятой (;)
  • Перед объявлением функции необходимо указать тип данных, возвращаемый функцией или void если функция не возвращает значение.
  • Так же необходимо указывать тип данных перед объявлением переменной.
  • Комментарии обозначаются: // Строчный и /* блочный */

Подробнее о типах данных, функциях, переменных, операторах и языковых конструкциях вы можете узнать на странице по Вам не нужно заучивать и запоминать всю эту информацию. Вы всегда можете зайти в справочник и посмотреть синтаксис той или иной функции.

Все прошивки для Arduino должны содержать минимум 2 функции. Это setup() и loop().

Функция setup

Для того что бы все работало, нам надо написать скетч. Давайте сделаем так, что бы светодиод загорался после нажатия на кнопку, а после следующего нажатия гас. Вот наш первый скетч:

// переменные с пинами подключенных устройств int switchPin = 8; int ledPin = 11; // переменные для хранения состояния кнопки и светодиода boolean lastButton = LOW; boolean currentButton = LOW; boolean ledOn = false; void setup() { pinMode(switchPin, INPUT); pinMode(ledPin, OUTPUT); } // функция для подавления дребезга boolean debounse(boolean last) { boolean current = digitalRead(switchPin); if(last != current) { delay(5); current = digitalRead(switchPin); } return current; } void loop() { currentButton = debounse(lastButton); if(lastButton == LOW && currentButton == HIGH) { ledOn = !ledOn; } lastButton = currentButton; digitalWrite(ledPin, ledOn); }

// переменные с пинами подключенных устройств

int switchPin = 8 ;

int ledPin = 11 ;

// переменные для хранения состояния кнопки и светодиода

boolean lastButton = LOW ;

boolean currentButton = LOW ;

boolean ledOn = false ;

void setup () {

pinMode (switchPin , INPUT ) ;

pinMode (ledPin , OUTPUT ) ;

// функция для подавления дребезга

boolean debounse (boolean last ) {

boolean current = digitalRead (switchPin ) ;

if (last != current ) {

delay (5 ) ;

current = digitalRead (switchPin ) ;

return current ;

void loop () {

currentButton = debounse (lastButton ) ;

if (lastButton == LOW && currentButton == HIGH ) {

ledOn = ! ledOn ;

lastButton = currentButton ;

digitalWrite (ledPin , ledOn ) ;

В этом скетче я создал дополнительную функцию debounse для подавления дребезга контактов. О дребезге контактов есть на моем сайте. Обязательно ознакомьтесь с этим материалом.

ШИМ Arduino

Широтно-импульсная модуляция (ШИМ) — это процесс управления напряжением за счет скважности сигнала. То есть используя ШИМ мы можем плавно управлять нагрузкой. Например можно плавно изменять яркость светодиода, но это изменение яркости получается не за счет уменьшения напряжения, а за счет увеличения интервалов низкого сигнала. Принцип действия ШИМ показан на этой схеме:

Когда мы подаем ШИМ на светодиод, то он начинает быстро зажигаться и гаснуть. Человеческий глаз не способен увидеть это, так как частота слишком высока. Но при съемке на видео вы скорее всего увидите моменты когда светодиод не горит. Это случится при условии что частота кадров камеры не будет кратна частоте ШИМ.

В Arduino есть встроенный широтно-импульсный модулятор. Использовать ШИМ можно только на тех пинах, которые поддерживаются микроконтроллером. Например Arduino Uno и Nano имеют по 6 ШИМ выводов: это пины D3, D5, D6, D9, D10 и D11. В других платах пины могут отличаться. Вы можете найти описание интересующей вас платы в

Для использования ШИМ в Arduino есть функция Она принимает в качестве аргументов номер пина и значение ШИМ от 0 до 255. 0 — это 0% заполнения высоким сигналом, а 255 это 100%. Давайте для примера напишем простой скетч. Сделаем так, что бы светодиод плавно загорался, ждал одну секунду и так же плавно угасал и так до бесконечности. Вот пример использования этой функции:

// Светодиод подключен к 11 пину int ledPin = 11; void setup() { pinMode(ledPin, OUTPUT); } void loop() { for (int i = 0; i < 255; i++) { analogWrite(ledPin, i); delay(5); } delay(1000); for (int i = 255; i > 0; i--) { analogWrite(ledPin, i); delay(5); } }

// Светодиод подключен к 11 пину

int ledPin = 11 ;

void setup () {

pinMode (ledPin , OUTPUT ) ;

void loop () {

for (int i = 0 ; i < 255 ; i ++ ) {

analogWrite (ledPin , i ) ;

delay (5 ) ;

delay (1000 ) ;

for (int i = 255 ; i > 0 ; i -- ) {