Вычисление определителей н го порядка. Перестановки и подстановки

Очевидно, что для системы из n линейных уравнений с n неизвестными получим матрицу коэффициентов размером :

Введем понятие определителя n -го порядка.

Определение 4.1:

Определителем n -го порядка называется число равное

Сумме n ! слагаемых;

Каждое слагаемое есть произведение n элементов матрицы, взятых по одному из каждой строки и каждого столбца;

Каждое слагаемое берется со знаком «+», если перестановка из вторых индексов четная, и со знаком «-», если перестановка из вторых индексов нечетная, при условии, что первые индексы образуют натуральный ряд чисел.

Т.о.

Здесь å берется по всем возможным перестановкам , составленным из чисел 1,2,…,n .

5. Основные свойства определителей.

Установим основные свойства определителей, которые для простоты будем показывать на определителе 2-го порядка.

1. При замене строк соответствующими столбцами (именуемой транспони­рованием ) определитель остается неизменным. Действительно:

Следовательно, , что и требовалось доказать.

Примечание : Полученный выше результат дает нам право утверждать, что строки и столбцы определителя, именуемые в дальней­шем рядами, равноправны.

2. При перестановке двух рядов определитель меняет знак на противоположный.

Действительно, Поменяем местами строки и вычислим определитель

что и требовалось доказать.

3. Если в определителе два параллельных ряда одинаковы, то он равен нулю. Действительно, поменяем местами две одинаковых строки. Тогда величина определителя не изменится, а знак в силу свойства 2. поменяется. Единственное число, которое не меняется при изменении знака – ноль.

4. Общий множитель членов любого ряда можно вынести за знак определителя.

Что и требовалось доказать.

5. Если все элементы любого ряда являются суммами одинакового числа слагаемых, то определитель равен сумме определителей, в которых элементами рассматриваемого ряда служат отдельные слагаемые.

что и требовалось доказать.

6. Определитель не изменится, если к элементам любого ряда прибавить соответствующие элементы параллельного ряда, умноженные на не­которое число.



Умножим вторую строку на и прибавим ее к первой строке:

Действительно, в силу свойств 3,4,5

=

что и требовалось доказать.

6. Миноры и алгебраические дополнения элементов оп­ределителя.

Рассмотрим определитель n -го порядка:

.

Выделим в определителе i -ю строку и j -й столбец. На пересечении этих рядов стоит элемент

Если в определителе мы вычеркнем i -юстроку и j -йстолбец, то получим определитель по­рядка п -1 (т. е. имеющий порядок, на единицу меньший по сравнению с исходным определителем), называемый мино­ром элемента определителя . Будем обозначать мино­р элемента символом .

Определение 6.1. А лгебраическим дополнением эле­мента определителя называется минор , взятый со знаком , и обозначается символом . Согласно определению получим

.

Пример 6.1. Найти минор и алгебраическое дополнение определителя

Методы вычисления определителей n-го порядка.

Пусть дано упорядоченное множество n элементов. Всякое расположение n элементов в определённом порядке называется перестановкой из этих элементов.

Так как каждый элемент определяется своим номером, то будем говорить, что дано n натуральных чисел.

Число различных перестановок из n чисел равно n!

Если в некоторой перестановке из n чисел число i стоит раньше j , но i > j , т. е. большее число стоит раньше меньшего, то говорят, что пара i , j составляет инверсию .

Пример 1. Определить число инверсий в перестановке (1, 5, 4, 3, 2)

Решение.

Числа 5 и 4, 5 и 3, 5 и 2, 4 и 3, 4 и 2, 3 и 2 образуют инверсии. Общее число инверсий в данной перестановке равно 6.

Перестановка называется чётной , если общее число инверсий в ней чётное, в противном случае она называется нечётной . В рассмотренном выше примере дана чётная перестановка.

Пусть дана некоторая перестановка …, i , …, j , … (*) . Преобразование, при котором числа i и j меняются местами, а остальные остаются на своих местах, называется транспозицией . После транспозиции чисел i и j в перестановке (*) получится перестановка …, j , …, i , …, где все элементы, кроме i и j , остались на своих местах.

От любой перестановки из n чисел можно перейти к любой другой перестановке из этих чисел с помощью нескольких транспозиций.

Всякая транспозиция меняет чётность перестановки.

При n ≥ 2 число чётных и нечётных перестановок из n чисел одинаково и равно .

Пусть М – упорядоченное множество из n элементов. Всякое биективное преобразование множества М называется подстановкой n -й степени .

Подстановки записывают так: https://pandia.ru/text/78/456/images/image005_119.gif" width="27" height="19"> и все ik различны.

Подстановка называется чётной , если обе её строки (перестановки) имеют одинаковые чётности, т. е. либо обе чётные, либо обе нечётные. В противном случае подстановка называется нечётной .

При n ≥ 2 число чётных и нечётных подстановок n степени одинаково и равно .

Определителем квадратной матрицы А второго порядка А= называется число, равное =а11а22–а12а21.

Определитель матрицы называют также детерминантом . Для определителя матрицы А используют следующие обозначения: det A, ΔA.

Определителем квадратной матрицы А=третьего порядка называют число, равное │А│=а11а22а33+а12а23а31+а21а13а32‑а13а22а31‑а21а12а33‑а32а23а11

Каждое слагаемое алгебраической суммы в правой части последней формулы представляет собой произведение элементов матрицы, взятых по одному и только одному из каждого столбца и каждой строки. Для определения знака произведения полезно знать правило (его называют правилом треугольника), схематически изображённое на рис.1:

«+» «-»

https://pandia.ru/text/78/456/images/image012_64.gif" width="73" height="75 src=">.

Решение.

Пусть А – матрица n-го порядка с комплексными элементами:

А=https://pandia.ru/text/78/456/images/image015_54.gif" width="112" height="27 src=">(1) ..gif" width="111" height="51">(2) .

Определителем n-го порядка, или определителем квадратной матрицы А=(aij) при n>1, называется алгебраическая сумма всевозможных произведений вида (1) , причём произведение (1) берётся со знаком «+», если соответствующая ему подстановка (2) чётная, и со знаком «‑», если подстановка нечётная.

Минором М ij элемента aij определителя называется определитель, полученный из исходного вычёркиванием i -й строки и j - го столбца.

Алгебраическим дополнением А ij элемента aij определителя называют число А ij =(–1) i + j М ij , где М ij минор элемента aij .

Свойства определителей

1. Определитель не изменяется при замене всех строк соответствующими столбцами (определитель не изменится при транспонировании).

2. При перестановке двух строк (столбцов) определитель меняет знак.

3. Определитель с двумя одинаковыми (пропорциональными) строками (столбцами) равен нулю.

4. Общий для всех элементов строки (столбца) множитель можно вынести за знак определителя.

5. Определитель не изменится, если к элементам некоторой строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число, отличное от нуля.

6. Если все элементы некоторой строки (столбца) определителя равны нулю, то он равен нулю.

7. Определитель равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения (свойство разложения определителя по строке (столбцу)).

Рассмотрим некоторые способы вычисления определителей порядка n .

1. Если в определителе n-го порядка хотя одна строка (или столбец) состоят из нулей, то определитель равен нулю.

2. Пусть в определителе n-го порядка какая-то строка содержит отличные от нуля элементы. Вычисление определителя n-го порядка можно свести в этом случае к вычислению определителя порядка n-1. Действительно, используя свойства определителя, можно все элементы какой-либо строки, кроме одного, сделать нулями, а затем разложить определитель по указанной строке. Например, переставим строки и столбцы определителя так, чтобы на месте а11 стоял отличный от нуля элемент.

https://pandia.ru/text/78/456/images/image018_51.gif" width="32 height=37" height="37">.gif" width="307" height="101 src=">

Заметим, что переставлять строки (или столбцы) не обязательно. Можно нули получать в любой строке (или столбце) определителя.

Общего метода вычисления определителей порядка n не существует, если не считать вычисление определителя заданного порядка непосредственно по определению. К определителю того или иного специального вида применяются различные методы вычисления, приводящие к более простым определителям.

3. Приведем к треугольному виду. Пользуясь свойствами определителя, приводим его к так называемому треугольному виду, когда все элементы, стоящие по одну сторону от главной диагонали равны нулю. Полученный определитель треугольного вида равен произведению элементов, стоящих на главной диагонали. Если удобнее получить нули по одну сторону от побочной диагонали, то он будет равен произведению элементов побочной диагонали, взятому со знаком https://pandia.ru/text/78/456/images/image022_48.gif" width="49" height="37">.

Пример 3. Вычислить определитель разложением по строке

https://pandia.ru/text/78/456/images/image024_44.gif" width="612" height="72">

Пример 4. Вычислить определитель четвёртого порядка

https://pandia.ru/text/78/456/images/image026_45.gif" width="373" height="96 src=">.

2-й способ (вычисление определителя путём разложения его по строке):

Вычислим этот определитель разложением по строке, предварительно преобразовав его так, чтобы в какой-то его строке все элементы кроме одного обратились в ноль. Для этого прибавим первую строку определителя к третьей. Затем умножим третий столбец на (‑5) и сложим с четвёртым столбцом. Преобразованный определитель раскладываем по третьей строке. Минор третьего порядка приводим к треугольному виду относительно главной диагонали.

https://pandia.ru/text/78/456/images/image028_44.gif" width="202" height="121 src=">

Решение.

Вычтем из первой строки вторую, из второй – третью и т. д., наконец, из предпоследней последнюю (последняя строка остается без изменений).

https://pandia.ru/text/78/456/images/image030_39.gif" width="445" height="126 src=">

Первый определитель в сумме – треугольного вида относительно главной диагонали, поэтому он равен произведению диагональных элементов, т. е. (n–1)n. Второй определитель в сумме преобразуем, прибавив последнюю строку ко всем предыдущим строкам определителя. Полученный при этом преобразовании определитель будет треугольного вида относительно главной диагонали, поэтому он будет равен произведению диагональных элементов, т. е. nn-1:

=(n–1)n+(n–1)n + nn-1.

4. Вычисление определителя с помощью теоремы Лапласа. Если в определителе выделить k строк (или столбцов) (1£k£n-1), то определитель равен сумме произведений всех миноров k-ого порядка, расположенных в выделенных k строках (или столбцах), на их алгебраические дополнения.

Пример 6. Вычислить определитель

https://pandia.ru/text/78/456/images/image033_36.gif" width="538" height="209 src=">

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ №2

«ВЫЧИСЛЕНИЕ ОПРЕДЕЛИТЕЛЕЙ N-ГО ПОРЯДКА»

Вариант 1

Вычислить определители

https://pandia.ru/text/78/456/images/image035_39.gif" width="114" height="94 src=">

Рассмотрим квадратную таблицу А.

Определение. Определителем n-го порядка называется число, полученное из элементов данной таблицы по следующему правилу:

1 .Определитель n-го порядка равен алгебраической сумме n! членов.

Каждый член представляет собой произведение n-элементов взятых по одному из каждой строки и каждого столбца таблицы.

2 .Член берется со знаком плюс, если перестановки образованные первыми и вторыми индексами элементов , входящие в произведения одинаковой четности (либо обе четные, либо нечетные) и со знаком минус в противоположном случае.

Определитель обозначается символом:

или краткоdet A=.(детерминант А)

Согласно определению = -.

Правило вычисления определителя 3ого порядка:

=

Миноры и алгебраические дополнения

Пусть дан определитель n-го порядка (n>1)

Определение 1. Минором элементаопределителяn-го порядка называется определитель (n-1)-ого порядка полученный из А вычеркиванием i-й строки и j-го столбца, на пересечении которых стоит данный элемент .

Например:

=

Определение 2 . Алгебраическим дополнением элемента называется число

Основные свойства определителей n-го порядка

1.О равносильности строк и столбцов.

Величина определителя n-го порядка не меняется, если у него заменить строки соответствующими столбцами.

2.Если у определителей поменять местами две строки (столбца), то определитель изменит знак на противоположный.

= k

Если все элементы какой-либо строки (или столбца) определителя имеют общий множитель, то этот общий множитель можно вынести за знак определителя.

4.Величина определителя равна нулю, если все элементы какой-либо его строки нули (или столбца).

5.Определитель с двумя пропорциональными строками равен 0.

Например:

6.Величина определителя не изменится, если к его элементам какой-либо строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.

7.Если элементы какой-либо строки i определителя представлены в виде суммы двух слагаемых, то определитель равен сумме двух определителей, в которых все строки кроме i-й такие же, как в заданном определителе, а i-я строка одного определителя состоит из первых слагаемых, а второго из вторых.

8.Определитель равен сумме произведений всех элементов какой-либо его строки на их алгебраические дополнения.

=

9.Сумма произведений всех элементов какой-либо строки определителя на алгебраические дополнения соответствующих элементов другой строки равна нулю.

Например:

=

Теорема Лапласа

Теорема. Пусть в определителе d порядка n произвольно выбраны k строк (или k столбцов), 1.Тогда сумма произведений всех миноровk-го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю d.

Следствие . Частный случай теоремы Лапласа - разложение определителя по строке или столбцу. Он позволяет представить определитель квадратной матрицы в виде суммы произведений элементов любой её строки или столбца на их алгебраические дополнения.

Пусть - квадратная матрица размера . Пусть также задан некоторый номер строки i либо номер столбца j матрицы A. Тогда определитель A может быть вычислен по следующим формулам:

Разложение по i-й строке:

Разложение по j-й строке:

где - алгебраическое дополнение к минору, расположенному в строке с номером i и столбце с номером j.

Утверждение является частным случаем теоремы Лапласа. Достаточно в ней положить k равным 1 и выбрать -ую строку, тогда минорами, расположенными в этой строке будут сами элементы.

Примеры для самостоятельного решения .

1.Найти х из уравнений и проверить подстановкой корень в определитель.

а); б)

Пусть дана матрица

Определение: Определителем n-го порядка называется алгебраическая сумма n! слагаемых, каждое из которых является произведением n сомножителей, взятых по одному из каждой строки и каждого столбца матрицы А. Знак перед слагаемым определяется по правилу знаков:

Определение: Пусть – произвольная перестановка чисел 1,2,3...n. Говорят, что элементы и образуют инверсию (нарушение порядка), если, а. Перестановка чисел 1,2,3...n называется четной, если число инверсий, образованных ее элементами, четно, в противном случае она называется нечетной.

Чтобы определить знак перед слагаемым, нужно расположить сомножители, в него входящие, в порядке возрастания первых индексов и рассмотреть перестановку, образованную вторыми индексами. Если эта перестановка четная, то ставим ²+², если нечетная, то ²–².

Определение: Рассмотрим перестановку:

Поменяем местами и, получим перестановку:

Говорят, что перестановка В получается из А транспозицией элементов и.

Утверждение: Всякая транспозиция меняет четность перестановки на противоположную.

Доказательство: Частный случай: транспозиция соседних элементов меняет четность перестановки.

Все элементы перестановок А и В, кроме и, образуют одни и те же инверсии. Элемент с элементами и в перестановках А и В образует одни и те же инверсии. Элемент с элементами и в перестановках А и В образует одни и те же инверсии. Если элементы и в перестановке А не образовывали инверсии, то в В – образуют, если в А – образовывали, то в В уже не будут образовывать. Таким образом, в результате транспозиции соседних элементов число инверсий либо увеличилось, либо уменьшилось на единицу. Четность поменялась.

Общий случай. Чтобы совершить транспозицию двух произвольных элементов перестановки, будем последовательно переставлять соседние элементы. Для того, чтобы поменять местами элементы и, сначала k раз меняем элемент с, ..., затем раз меняем до. Таким образом, перестановка совершается раз. Четность меняется на противоположную.

Утверждение: Рассмотрим все перестановки n символов 1,2,3,...,n. Число четных перестановок равно числу нечетных перестановок и равно .

Доказательство: Выпишем все четные перестановки и зададим отображение с нечетными по правилу:

Все перестановки являются нечетными согласно предыдущей теореме.

Указанное нами отображение является биекцией множества всех четных перестановок на множество всех нечетных перестановок, в самом деле, по указанному правилу каждой четной перестановке ставится в соответствие единственная нечетная, т.е. это отображение, очевидно, инъективно: . Указанное отображение сюрьективно, в самом деле, каждая нечетная перестановка В является образом той четной перестановки А, которая получается из В заменой в В местами первого и второго символов, следовательно, отображение биективно, следовательно, число четных перестановок равно числу нечетных равно.



Определение: Всякое биективное отображение множества на себя называется подстановкой.

Подстановку, заданную на множестве 1,2,3,...,n удобно записывать виде: или, где первая и вторая строчки – подстановки.

Подстановка определяется с точностью до расположения столбцов: если в подстановке поменять местами любые два столбца, то получится та же подстановка.

Определение: Подстановка называется четной, если перестановки, записанные в первой и второй строчках либо обе четные, либо обе нечетные. В противном случае подстановка называется нечетной. Четность подстановки не изменится, если поменять в ней любые два столбца, следовательно, число четных подстановок равно числу нечетных, равно.

Теперь правило знаков в определении определителя можно сформулировать так: – произведение n сомножителей, взятых по одному из различных строчек и различных столбцов. Рассмотрим подстановку. Если она четная, то перед слагаемым ставится знак ²+², если нечетная, то ²–².

Пример:

1) Пусть дана матрица, тогда через обозначим транспонированную матрицу:

Докажем, что определитель равен определителю А. ().

Доказательство: Рассмотрим слагаемое входящее в det A. Элемент а является произведением сомножителей, принадлежащих разным строкам и столбцам матрицы А, и, следовательно, разным строкам и столбцам матрицы, следовательно, каждый элемент является слагаемым и в и наоборот. Знак элемента а в определителе определяется четностью подстановки, а в – четностью подстановки. Но эти две подстановки одновременно либо четные либо нечетные.

2) Если в определителе все элементы какой-либо, скажем i-ой строки равны 0, то этот определитель равен 0.

Доказательство: В самом деле, по определению определителя все элементы нулевой строки будут входить в каждое слагаемое, из которых состоит определитель, следовательно, определитель есть сумма n! нулей.

3) Если в определителе поменять местами i и j строчки, то его значение изменится на противоположный.

В самом деле, пусть получена из матрицы а заменой двух строк: i и j. Все слагаемые вида входят и в определитель матрицы А и в определитель матрицы, знак перед этим слагаемым определяется с помощью подстановки: , а знак перед этим же слагаемым в определяется с помощью подстановки

Эти подстановки различной четности.

Библиография:

1. Воеводин В.В. Линейная алгебра. СПБ.: Лань, 2008, 416 с.

2. Беклемишев Д. В. Курс аналитической геометрии и линейной алгебры. М.: Физматлит, 2006, 304 с.

3.Кострикин А.И. Введение в алгебру. часть II. Основы алгебры: учебник для вузов, -М. : Физико-математическая литература, 2000, 368 с

Лекция №8 (2 семестр)

Тема: Ранг матрицы. Базисные строки – база векторов – строк. Определитель Грамма и линейная зависимость.

Определение: Дана матрица

Пусть в А выделены строчки с номерами и столбцы. Элементы, стоящие на пересечении выбранных столбцов и строк образуют матрицу k-того порядка. Определитель М этой матрицы называется минором k-того порядка. Если в матрице А вычеркнуты выбранные строки и столбцы, то оставшиеся элементы образуют матрицу n-k-того порядка. Определитель этой матрицы называется дополнительным минором к минору М.

Определение: Пусть выбраны строки с номерами и столбцы с номерами. Выражение называется алгебраическим дополнением минора М.

Теорема Лапласа: Пусть в квадратной матрице А выбраны k строк с номерами , где . Сумма произведений всевозможных миноров k-того порядка, расположенных в выбранных строках на их алгебраические дополнения равны определителю матрицы А.

Определитель n-го порядка

Определителем или детерминантом n-го порядка называется число записываемое в виде

И вычисляемым по данным числам (действительным или комплексным) - элементам определителя

Схемы вычисления определителей 2-ого и 3-его порядков

Теорема Крамера.

Пусть (дельта)-определитель матрицы системы А,а (дельта)i-определитель матрицы,получается из матрицы А заменой j-го столбца столбцов свободных чисел.Тогда,если (дельта) не равна 0,то система имеет единственное решение,определяемое во формуле:

1.Определитель 2-го порядка вычисляется по формуле

2. Определитель третьего порядка вычисляется по формуле

Существует удобная схема для вычисления определителя третьего порядка (см. рис. 1 и рис. 2).

Свойство определителей

1.Если какая-либо строка (столбец) матрицы состоит из одних нулей,то её определитель равен 0.

2.Если все элементы какой-либо строки (столбца) матрицы умножить на чило (лямбда),то её определитель умножится на это число (лямбда).

3.При транспонировании матрицы её определитель не изменяется.

Транспонирование -в математике,это преобразование квадратной матрицы-замена столбцов на строки или наоборот.

4.При перестановки двух строк (столбцов) матрицы её определитель меняет знак на противоположный.

5.Если квадратная матрица содержит две одинаковые строки (столбца),то её определитель равен 0

6.Если элементы двух строк (столбцов)матрицы пропорциональны,то её определитель равен 0

7.Сумма произведений элементов какой-либо строки (столбца)матрицы на алгебраические дополнения элементов другой строки (столбца) этой матрицы равно 0

8.Определитель матрицы не изменяется,если к элементам какой-либо строки (столбца) матрицы прибавить элементы другой строки (столбца),предварительно умноженные на одно и то же число.

9.Сумма произведений чисел b1,b2,...,bn на алгебраические дополнение элементов любой строки (столбца) равна определителю матрицы,полученной из данной заменой элементов этой строки (столбца) b1,b2,...bn.

10.Определитель произведения двух квадратных матриц равен произведению их определителей |C|=|А|*|B|,где С=А*В;А и В-матрицы n-го порядка.