Дискретные вейвлет-преобразования.

12.3 Алгоритм дискретного вейвлет-преобразования

С целью построения алгоритма дискретного вейвлет-преобразования введем некоторые линейные преобразования. Прежде всего, обозначим для всех сумму чисел по модулю s следующим образом: , а также положим, что есть некоторый вектор, в котором s четно. Тогда вводимые преобразования положим имеющим вид:

,

для всех . Очевидно, данные выражения являют собой аналоги высокочастотного и низкочастотного фильтров (12.1), (12.2) с учетом периодического дополнения данных при помощи суммирования по модулю. Ясно, что преобразования , осуществляют разделение исходного вектора длиной s на два вектора половинной длины.

Итак, алгоритм вейвлет-преобразования сводится к реализации итеративной процедуры - и -преобразований, применяемых к вектору . Результатом таких преобразований служат векторы , коэффициентов аппроксимации и детализации.

Иначе говоря, рекурсивно данный алгоритм выглядит следующим образом:

, (12.12)
. (12.13)

Отметим, введенные обозначения для коэффициентов разложения являются весьма схожими с обозначениями коэффициентов , тогда как рекурсии (12.12), (12.13) - с каскадным алгоритмом. Дело в том, что построение алгоритма дискретного преобразования полностью основывается на теории дискретного преобразования в базисе вейвлет-функций (см. предыдущий параграф). Основным отличием здесь является то обстоятельство, что в статистических приложениях коэффициенты лишь приближенно соответствуют коэффициентам разложения .

Отметим, рекурсии (12.12), (12.13) могут см успехом применяться к расчету коэффициентов аппроксимации и детализации также для случаев : дело в том, что дополненные последовательности являются периодическими, причем

,

.

Алгоритм обратного дискетного преобразования сводится к реализации выражения (12.11) также при условии периодизации данных. Алгоритм начинается с восстановления векторов

,

и продолжается до восстановления вектора , пока не станет . Рекурсивное выражение для восстановления данных в этом случае имеет вид:

12.4 Статистический дискретный вейвлет-анализ

Разбиение данных

Итак, расчет вейвлет-оценок основывается на дискретном вейвлет-преобразовании, описанном выше. Как было показано, такой анализ подразумевает работу с данными, длина которых равна , где К - некоторое целое. Однако на практике длина исследуемых данных весьма часто оказывается не равной степени числа 2, в связи с чем возникает необходимость натяжения таких данных на эквидистантную сетку с числом узлов . Сказанное при этом является справедливым как для задач оценивания плотности распределения, так и для задач регрессионного сглаживания данных.

Процедуры деления данных на интервалы для оценивания плотности и регрессионного анализа введены в параграфах 10.2, 10.8 соответственно. В данном месте обсуждается эффект, вносимый подобным разбиением на качество синтезируемых оценок. Примеры, используемые для обсуждения эффекта, взяты из гл. 10, рис. 10.1 - 10.11.

Для взятых в качестве примера данных длиной исследован эффект деления на интервалы, состоящие из точек. Интегральные среднеквадратичные ошибки построения оценок приведены в таблице 12.1.

Таблица 12.1

Интегральные среднеквадратические ошибки

для интервалов разбиения различной длины

m

S8 жесткий

S8 мягкий

H жесткий

H мягкий

Как видно из таблицы, интегральная СКО достигает своего минимума при . График данной ошибки показан на рис. 12.1.

Несмотря на тот факт, что для подобных оценок можно определить оптимальный размер интервала, следует быть весьма осторожным в его статистической интерпретации. Дело в том, что разбиение данных на интервалы есть своего рода предварительное сглаживание, которое в теории достаточно часто в расчет не принимается. Очевидно, с ростом числа интервалов разбиения теряется большая часть вычислительной эффективности быстрого алгоритма. Точки, показывающие значения СКО на рис. 12.1 представляют собой компромисс между скоростью вычисления оценки и качеством предварительного сглаживания.

Приближенное построение вейвлет-оценок

Алгоритм реализации дискретного вейвлет-преобразования для целей построения статистических оценок (12.6) - (12.8) выглядит следующим образом:

Интегральная СКО, построенная для симмлета S8

Сделаем в данном месте несколько замечаний по поводу приведенного алгоритма. Во-первых, определение дискретного преобразования подразумевает использование данных, периодически дополняемых на каждом шаге алгоритма. Иначе говоря, данные представляют собой результат диадического суммирования, в котором исходные данные дополняются периодически на Z таким образом, что для .

Во-вторых, как было подчеркнуто ранее, верхний уровень разложения в приводимом алгоритме не участвует: на практике полагается , причем процедуры пороговой обработки применяют к коэффициентам разложения всех уровней за исключением уровня K , содержащего лишь коэффициенты аппроксимации. Однако если предполагается исключение коэффициентов разложения уровней, старших , как это сделано в примере с линейной вейвлет-оценкой, определение (12.6) дополняется условием:

.

Подобно (12.3) действия 1 - 3 алгоритма могут быть представлены в матричной форме. С этой целью вектор исследуемых данных обозначим через . Тогда прямое преобразование примет вид:

, (12.17)

в котором представляет собой оператор размерностью . Легко показать, что данный оператор является ортогональным, поскольку содержит произведения конечного числа ортогональных матриц-операторов, соответствующих различным шагам алгоритма Малла .

Пусть оператор обозначает процедуру трешолдинга вектора :

тогда как оператор обратного преобразования - , или в силу ортогональности . Следовательно, результат последовательного приложения действий 1 - 3, выражаемый вектором , может быть получен следующим образом:

В том случае, если решаемой задачей является построение линейной вейвлет-оценки и в качестве уровня принимается уровень , трешолдинг сводится к преобразованию идентичности, обеспечивающему в итоге . Дело в том, что сохранение коэффициентов разложения на каждом из уровней в данном случае позволяет итоговой оценке лишь повторить исходные данные.

Далее, алгоритм, представленный действиями 1 - 3, является общим правилом построения вейвлет-оценок. Отметим, данный алгоритм является более быстрым по сравнению с БПФ, поскольку требует выполнения лишь операций. Вообще говоря, алгоритм позволяет скорее строить аппроксимацию данных, нежели их оценку. Исключением здесь является разложение данных в базис Хаара. К сожалению, данный факт не обсуждается в литературе.

Остановимся на данном вопросе несколько подробнее. Рассмотрим с этой целью линейную оценку, положив для любых и k . Предположим также, что исходные данные удовлетворяют требованию:

. (12.18)

Известно, что рекурсии (12.9), (12.10) позволяют рассчитать оценки коэффициентов , тогда как выражения рекурсии (12.12), (12.13) - примерно те же коэффициенты в предположении, что исходные данные для рекурсии абсолютно те же. Однако в том случае, если требование (12.18) выполняется, исходные данные для (12.12), (12.13) в действии 3 алгоритма становятся отличными от аналогичных им данных обратной рекурсии (12.9), (12.10) на некоторый множитель . Следовательно, линейность алгоритма влечет за собой необходимость введения в прямое преобразование поправку:

,

.

Более того, поправке подвергается основное выражение для прямого преобразования:

, (12.19)

причем оператор приобретает вид:

Объединяя выражения (12.17) и (12.19), можно записать, что теперь

Появление недорогих цифровых фотоаппаратов привело к тому, что значительная часть жителей нашей планеты, вне зависимости от возраста и пола, приобрела привычку запечатлевать каждый свой шаг и выставлять полученные изображения на всеобщее обозрение в социальных сетях. Кроме того, если раньше семейный фотоархив помещался в одном альбоме, то сегодня он состоит из сотен снимков. Для того чтобы облегчить их хранение и передачу по сетям, требуется уменьшение веса цифрового изображения. С этой целью применяются методы, основанные на различных алгоритмах, включая вейвлет-преобразование. Что это такое, расскажет наша статья.

Что такое цифровое изображение

Визуальная информация в компьютере представляется в виде чисел. Говоря простым языком, фото, сделанное цифровым аппаратом, представляет собой таблицу, в ячейки которой вписаны значения цвета каждого из его пикселей. Если речь идет о монохромном изображении, то их заменяют значениями яркости из отрезка , где 0 используют для обозначения черного цвета, а 1 — белого. Остальные оттенки задаются дробными числами, но с ними неудобно работать, поэтому диапазон расширяют и значения выбирают из отрезка между 0 и 255. Почему именно из этого? Все просто! При таком выборе в двоичном представлении для кодирования яркости каждого пикселя требуется ровно 1 байт. Очевидно, что для хранения даже небольшого изображения требуется довольно много памяти. Например, фотография размером 256 х 256 пикселей займет 8 кБайт.

Несколько слов о методах сжатия изображений

Наверняка каждый видел снимки плохого качества, где присутствуют искажения в виде прямоугольников одного цвета, которые принято называть артефактами. Они возникают в результате так называемого сжатия с потерями. Оно позволяет значительно уменьшить вес изображения, однако неизбежно сказывается на его качестве.

К с потерями относятся:

  • JPEG. На данный момент это один из наиболее популярных алгоритмов. Он основан на применении дискретного косинусного преобразования. Справедливости ради нужно отметить, что существуют варианты JPEG, осуществляющие сжатие без потерь. К ним относятся Lossless JPEG и JPEG-LS.
  • JPEG 2000. Алгоритм используется на мобильных платформах и основан на применении дискретного вейвлет-преобразования.
  • Алгоритм фрактального сжатия. В некоторых случаях он позволяет получать изображения превосходного качества даже при сильном сжатии. Однако из-за проблем с патентованием этот метод продолжает оставаться экзотикой.

Без потерь сжатие осуществляют посредством алгоритмов:

  • RLE (используется в качестве основного метода в форматах TIFF, BMP, TGA).
  • LZW (применяется в формате GIF).
  • LZ-Huffman (используется для формата PNG).

Преобразование Фурье

Прежде чем перейти к рассмотрению вейвлетов, имеет смысл изучить связанную с ними функцию, описывающую коэффициенты при разложении исходной информации на элементарные составляющие, т. е. гармонические колебания с разными частотами. Иными словами, преобразование Фурье — уникальный инструмент, связывающий дискретные и непрерывные миры.

Оно выглядит так:

Формула обращения записывается следующим образом:

Что такое вейвлет

За этим названием скрывается математическая функция, которая позволяет проанализировать различные частотные компоненты исследуемых данных. Ее график представляет собой волнообразные колебания, амплитуда которых уменьшается до 0 вдали от начала координат. В общем случае интерес представляют вейвлет-коэффициенты, определяемые интегральным преобразованием сигнала.

Спектрограммы Wavelet отличаются от обычных спектров Фурье, так как связывают спектр различных особенностей сигналов с их временной компонентой.

Вейвлет-преобразование

Такой способ преобразования сигнала (функции) позволяет переводить его из временного в частотно-временное представление.

Для того чтобы вейвлет-преобразование было возможно, для соответствующей вейвлет-функции должны выполняться следующие условия:

  • Если для некой функции ψ (t) Фурье-преобразование имеет вид

то должно выполняться условие:

Кроме того:

  • вейвлет должен обладать конечной энергией;
  • он должен быть интегрируемым, непрерывным и иметь компактный носитель;
  • вейвлет должен быть локализованным как по частоте, так и во времени (в пространстве).

Виды

Непрерывное вейвлет-преобразование используется для соответствующих сигналов. Гораздо больший интерес представляет его дискретный аналог. Ведь он может использоваться для обработки информации в компьютерах. Однако при этом возникает проблема, связанная с тем, что формулы для дискретного ДВП нельзя получить путем простой дискретизацией соответствующих формул ДНП.

Решение данной задачи было найдено И. Добеши, который смог подобрать метод, позволяющий построить серию таких ортогональных вейвлетов, из которых каждый определяется конечным числом коэффициентов. Позже были созданы быстрые алгоритмы, например алгоритм Малла. При его применении для разложения или для восстановления требуется совершить порядка cN операций, где N - длина выборки, а с - число коэффициентов.

Вайвлет Хаара

Для того чтобы следует найти определенную закономерность среди его данных, а еще лучше, если это будут длинные цепочки нулей. Вот тут-то может пригодиться алгоритм вейвлет-преобразования. Однако продолжим рассмотрение метода по порядку.

Сначала нужно вспомнить, что у фотографий яркость соседних пикселей, как правило, отличается на небольшую величину. Если даже на реальных изображениях присутствуют участки с резкими, контрастными перепадами яркости, то они занимают только малую часть изображения. В качестве примера возьмем всем известное тестовое изображение Lenna в градациях серого. Если взять матрицу яркости его пикселей, то часть первой строки будет выглядеть как последовательность чисел 154, 155, 156, 157, 157, 157, 158, 156.

Для получения нулей к ней можно применить так называемый дельта-метод. Для этого сохраняют только первое число, а для остальных берут лишь отличия каждого числа от предыдущего со знаком «+» или «-».

В результате получится последовательность: 154,1,1,1,0,0,1,-2.

Недостатком дельта-кодирования является его нелокальность. Иными словами, невозможно брать только кусочек последовательности и выяснить, какие яркости в нем закодированы, если не декодированы все значения перед ним.

Для преодоления этого недостатка числа делят на пары и для каждой находят полусумму (об. a) и полуразность (об. d), т. е. для (154,155),(156,157),(157,157),(158,156) имеем (154.5,0.5),(156.5,0.5),(157,0.0),(157,-1.0). В таком случае в любой момент можно найти значение обоих чисел в паре.

В общем случае для дискретного вейвлет-преобразования сигнала S имеем:

Такой дискретный метод вытекает из непрерывного случая вейвлет-преобразования-Хаара и широко используется в разных областях обработки и сжатия информации.

Сжатие

Как уже было сказано, одной из сфер применения вейвлет-преобразования является алгоритм JPEG 2000. Сжатие с использованием метода Хаара основано на переводе вектора из двух пикселей X и Y в вектор (X + Y)/2 и (X - Y)/2. Для этого достаточно умножить исходный вектор на матрицу, представленную ниже.

Если точек больше, то берут матрицу побольше, по диагонали которой расположены матрицы H. Таким образом, исходный вектор независимо от своей длины обрабатывается парами.

Фильтры

Полученные «полусуммы» — это средние значения яркости в парах пикселей. То есть значения при конвертации в изображение должно дать его копию, уменьшенную в 2 раза. При этом полусуммы усредняют яркости, т. е. «отфильтровывают» случайные всплески их значений и играют роль частотных фильтров.

Теперь разберемся с тем, что показывают разности. Они «выделяют» межпиксельные «всплески», устраняя константную составляющую, т. е. «отфильтровывают» значения с низкими частотами.

Даже из приведенного выше хааровского вейвлет-преобразование для «чайников» становится очевидно, что оно представляет собой пару фильтров, которые разделяют сигнал на две составляющие: высокочастотную и низкочастотную. Для получения исходного сигнала достаточно просто вновь объединить эти составляющие.

Пример

Пусть мы хотим сжать фотопортрет (тестовое изображение Lenna). Рассмотрим пример вейвлет-преобразования его матрицы яркостей пикселов. Высокочастотная составляющая изображения отвечает за отображение мелких деталей и описывает шум. Что касается низкочастотной, то она несет в себе информацию о форме лица и плавных перепадах яркости.

Особенности человеческого восприятия фотографий таковы, что важнее последняя компонента. Это значит, что при сжатии определенная часть высокочастотных данных может быть отброшена. Тем более что она имеет меньшие значения и кодируется более компактно.

Для увеличения степени сжатия можно применить преобразование Хаара несколько раз к низкочастотным данным.

Применение к двумерным массивам

Как уже было сказано, цифровое изображение в компьютере представляют в виде матрицы значений интенсивностей его пикселей. Таким образом, нас должно интересовать хааровское двумерное вейвлет-преобразование. Для его осуществления необходимо просто выполнить одномерное его преобразование для каждой строки и каждого столбца матрицы интенсивностей пикселов изображения.

Значения, близкие к нулю, можно отбросить без существенного ущерба для декодированного рисунка. Такой процесс известен как квантование. И именно на этом этапе теряется часть информации. Кстати, число обнуляемых коэффициентов возможно изменять, тем самым регулируя степень сжатия.

Все описанные действия приводят к тому, что получается матрица, которая содержит большое количество 0. Ее следует записать построчно в текстовый файл и сжать любым архиватором.

Декодирование

Обратное преобразование в изображение производится по следующему алгоритму:

  • архив распаковывается;
  • применяется обратное преобразование Хаара;
  • декодированная матрица преобразуется в изображение.

Преимущества по сравнению с JPEG

При рассмотрении алгоритма Joint Photographic Experts Group было сказано, что он основан на ДКП. Такое преобразование осуществляется поблочно (8 х 8 пикселей). В результате, если сжатие сильное, то на восстановленном изображении становится заметной блочная структура. При сжатии с использованием вейвлетов такая проблема отсутствует. Однако могут появиться искажения другого типа, которые имеют вид ряби около резких границ. Считается, что подобные артефакты в среднем менее заметны, чем «квадратики», которые создаются при применении алгоритма JPEG.

Теперь вы знаете, что такое вейвлеты, какими они бывают и какое практическое применение для них нашлось в сфере обработки и сжатия цифровых изображений.

Дискретные вейвлет-преобразования.

6.3.3.1. Общие сведения о вейвлет-преобразованиях.

Вейвлетное преобразование сигналов является обобщением спектрального анализа, типичный представитель которого – классическое преобразование Фурье.

Вейвлет-преобразования (WT) подразделяют на дискретное (DWT) и непрерывное (CWT). DWT используется для преобразований и кодирования сигналов, CWT – для анализа сигналов.

В вейвлет-анализе роль базисных функций играют функции особого рода, называемые вейвлетами. Термин «вейвлет» (wavelet) в переводе с английского означает «маленькая (короткая) волна». Вейвлеты – это обобщенное название семейств дтематических функций определенной формы, которые локальны во времени и по частоте, и в которых все функции получаются из одной базовой (порождающей) функции посредством ее сдвигов и растяжений по оси времени.

Вейвлет-преобразования рассматривают анализируемые временные функции в терминах колебаний, локализованных по времени и частоте.

Отличительной особенностью вейвлет-анализа является то, что в нем можно использовать семейства функций, реализующих различные варианты соотношения неопределенности. Соответственно, исследователь имеет возможность гибкого выбора между ними и применения тех вейвлетных функций, которые наиболее эффективно решают поставленные задачи.

Основная область применения вейвлетных преобразований – анализ и обработка сигналов и функций, нестационарных во времени, когда результаты анализа должны содержать не только частотную характеристику сигнала (распределение энергии сигнала по частотным составляющим), но и сведения о локальных координатах, на которых проявляют себя те или иные группы частотных составляющих или на которых происходят быстрые изменения частотных составляющих сигнала.

На рисунке 3.1 анализируемый сигнал состоит из двух модулированных деесианов. Преобразование вейвлетом Морлета четко показывает их пространственную и частотную локализацию, в то время как спектр Фурье дает только частотную локализацию.

Одна из главных и особенно плодотворных идей вейвлетного представления сигналов заключается в разделении функций приближения к сигналу на две группы: аппроксимирующую – грубую, с достаточно медленной временной динамикой изменений, и детализирующую – с локальной и быстрой динамикой изменений на фоне плавной динамики, с последующим их дроблением и детализацией на других уровнях декомпозиции сигналов. Это возможно как во временной, так и в частотной областях представления сигналов вейвлетами.

Рисунок

Рисунок 3.1 – вейвлет-преобразование сигнала

6.3.3.2. Базисные функции вейвлет-преобразований.

Вейвлеты имеют вид коротких волновых пакетов с нулевым средним дееюнем, локализованных по оси аргументов, инвариантных к сдвигу и линейных к операции масштабирования. По локализации во временном и частотном представлении вейвлеты занимают промежуточное положение между гармоническими функциями, локализованными по частоте, и функцией Дирака, локализованной во времени.

Базисная функция вейвлет представляет собой некоторое «короткое» колебание. Причем понятие частоты спектрального анализа заменено масштабом, и для перекрытия «короткими волнами» всей временной оси введен сдвиг функций во времени. Базис вейвлетов – это временные функции типа:

, (3.1)

где b – сдвиг;

а – масштаб.

Функция должна иметь нулевую площадь. Фурье-преобразование таких функций равно нулю на нулевой частоте и имеет вид полосового фильтра. Различные значениях масштабного параметра "a" это соответствуют набору полосовых фильтров. Семейства вейвлетов во временной или частотной области используются для представления сигналов и функций в виде суперпозиций вейвлетов на разных масштабных уровнях декомпозиции (разложения) сигналов.

Следующая функция

не зависит от параметров и . Вектор, заданный функцией , имеет постоянную длину в пространстве:

.

На практике, в качестве базовой функции часто используют функцию

называемую мексиканской шляпой.

6.3.3.3. Непрерывное вейвлет-преобразование.

Пусть имеется функция и некоторая функция - базисная функция. Непрерывное вейвлет-преобразование описывается выражением вида:

. (3.2)

Если базисная функция описывается выражением:

,

то в результате имеется обычное преобразование Фурье (в этом случае параметр не используется).

Для перекрытия функцией вейвлета всей временной оси пространства используется операция сдвига (смещения по временной оси): , где значение b для НВП является величиной непрерывной. Для перекрытия всего частотного диапазона используется операция временного масштабирования вейвлета с непрерывным изменением независимой переменной: . Таким образом, путем сдвига по независимой переменной (t-b) вейвлет имеет возможность перемещаться по всей числовой оси произвольного сигнала, а путем изменения масштабной переменной "а" (в фиксированной точке (t-b) оси) «просматривать» частотный спектр сигнала по определенному интервалу окрестностей этой точки.

Таким образом, непрерывное вейвлет-преобразование представляет собой разложение сигнала по всем возможным сдвигам и сжатиям/растяжениям некоторой локализованной финитной функции – вейвлета. При этом переменная "a" определяет масштаб вейвлета и эквивалентна частоте в преобразованиях Фурье, а переменная "b" – сдвиг вейвлета по сигналу от начальной точки в области его определения, шкала которого повторяет временную шкалу анализируемого сигнала.

Понятие масштаба ВП имеет аналогию с масштабом географических карт. Большие значения масштаба соответствуют глобальному представлению сигнала, а низкие значения масштаба позволяют различить детали. В терминах частоты низкие частоты соответствуют глобальной информации о сигнале, а высокие частоты – детальной информации и особенностям, которые имеют малую протяженность, т.е. масштаб вейвлета, как единица шкалы частотно-временного представления сигналов, обратен частоте. Масштабирование, как математическая операция, расширяет или сжимает сигнал. Большие значения масштабов соответствуют расширениям сигнала, а малые значения – сжатым версиям. В определении вейвлета коэффициент масштаба а стоит в знаменателе. Соответственно, а > 1 расширяет сигнал, а < 1 сжимает его.

6.3.3.4. Дискретное вейвлет-преобразование.



В принципе, при обработке данных на ПК может выполняться дискретизированная версия непрерывного вейвлет-преобразования с заданием дискретных значений параметров (a, b) вейвлетов с произвольным шагом a и b. В результате получается избыточное количество коэффициентов, намного превосходящее число отсчетов исходного сигнала, которое не требуется для реконструкции сигналов.

Дискретное вейвлет-преобразование (ДВП) обеспечивает достаточно информации, как для анализа сигнала, так и для его синтеза, являясь вместе с тем экономным по числу операций и по требуемой памяти. ДВП оперирует с дискретными значениями параметров а и b , которые задаются, как правило, в виде степенных функций:

,

,

где ;

Целые числа;

Параметр масштаба;

Параметр сдвига.

Базис пространства в дискретном представлении:

Вейвлет-коэффициенты прямого преобразования:

. (3.5)

Значение "a" может быть произвольным, но обычно принимается равным 2, при этом преобразование называется диадным вейвлет-преобразованием . Для диадного преобразования разработан быстрый алгоритм вычислений, аналогичный быстрому преобразованию Фурье, что предопределило его широкое использование при анализе массивов цифровых данных.

Обратное дискретное преобразование для непрерывных сигналов при нормированном ортогональном вейвлетном базисе пространства:

. (3.6)

Число использованных вейвлетов по масштабному коэффициенту m задает уровень декомпозиции сигнала, при этом за нулевой уровень (m = 0) обычно принимается уровень максимального временного разрешения сигнала, т.е. сам сигнал, а последующие уровни (m < 0) образуют ниспадающее вейвлет-дерево . В программном обеспечении вычислений для исключения использования отрицательной нумерации по m знак "минус" обычно переносится непосредственно в следующее представление базисных функций:

6.3.3.5. Частотно-временная локализация вейвлет-анализа.

Реальные сигналы, как правило, конечны. Частотный спектр сигналов обратно пропорционален их длительности. Соответственно, достаточно точный низкочастотный анализ сигнала должен производиться на больших интервалах его задания, а высокочастотный – на малых. Если частотный состав сигнала претерпевает существенные изменения на интервале его задания, то преобразование Фурье дает только усредненные данные частотного состава сигнала с постоянным частотным разрешением. Определенная частотно-временная локализация анализа создается дееюниием оконного преобразования Фурье, что дает семейства частотных спектров, локализованных во времени, но в пределах постоянной ширины окна оконной функции, а, следовательно, также с постоянным значением и частотного, и временного разрешения.

В отличие от оконного преобразования Фурье, вейвлет-преобразование, при аналогичных дискретных значениях сдвигов b, дает семейства спектров масштабных коэффициентов а сжатия-растяжения:

. (3.8)

Если считать, что каждый вейвлет имеет определенную «ширину» своего временного окна, которому соответствует определенная «средняя» частота спектрального образа вейвлета, обратная его масштабному коэффициенту а , то семейства масштабных коэффициентов вейвлет-преобразования можно считать аналогичными семействам частотных спектров оконного преобразования Фурье, но с одним принципиальным отличием. Масштабные коэффициенты изменяют «ширину» вейвлетов и, соответственно, «среднюю» частоту их фурье-образов, а, следовательно, каждой частоте соответствует своя длительность временного окна анализа, и наоборот. Так малые значения параметра а , характеризующие быстрые составляющие в сигналах, соответствуют высоким частотам, а большие значения – низким частотам. За счёт изменения масштаба вейвлеты способны выявлять различия на разных частотах, а за счёт сдвига (параметр b ) проанализировать свойства сигнала в разных точках на всём исследуемом временном интервале. Многоразмерное временное окно вейвлет-преобразования адаптировано для оптимального выявления и низкочастотных, и высокочастотных характеристики сигналов.

Таким образом, на высоких частотах лучше разрешение по времени, а на низких – по частоте. Для высокочастотной компоненты сигнала мы можем точнее указать ее временную позицию, а для низкочастотной – ее значение частоты.

Высокочастотная (мелкомасштабная) информация вычисляется на основе длых интервалов сигналов, а низкочастотная – на основе больших. Поскольку анализируемые сигналы всегда конечны, то при вычислении коэффициентов на границах задания сигнала область достоверности выходит за пределы сигнала, и для уменьшения погрешности вычислений сигнал дополняется заданием начальных и конечных условий.

6.3.3.6. Достоинства и недостатки вейвлет-анализа.

К достоинствам вейвлет-анализа можно отнести:

Вейвлетные преобразования обладают всеми достоинствами преобразований Фурье;

Вейвлетные базисы могут быть хорошо локализованными как по частоте, так и по времени;

При выделении в сигналах хорошо локализованных разномасштабных процессов можно рассматривать только те масштабные уровни разложения, которые представляют интерес;

Вейвлетные базисы, в отличие от преобразования Фурье, имеют много разнообразных базовых функций, свойства которых ориентированы на решение различных задач.

Недостатком вейвлетных преобразований является их относительная сложность.

6.3.3.7. Свойства вейвлет-анализа.

Получение объективной информации о сигнале базируется на свойствах вейвлет-преобразования, общих для вейвлетов всех типов. Рассмотрим основные из этих свойств. Для обозначения операции вейвлет-преобразования произвольных функций х(t) будем применять индекс TW.

Линейность .

TW[α·x 1 (t)+β·x 2 (t)] = α·TW+β·TW.

Инвариантность относительно сдвига . Сдвиг сигнала во времени на t 0 приводит к сдвигу вейвлет-спектра также на t 0:

TW = X(a, b-t o).

Инвариантность относительно масштабирования . Растяжение (сжатие) сигнала приводит к сжатию (растяжению) вейвлет-спектра сигнала:

TW = (1/а о)·X(a/а о,b/а o).

Дифференцирование .

D n {TW}/dt n = TW.

TW = (-1) n x(t) dt.

Безразлично, дифференцировать функцию или анализирующий вейвлет. Если деелизирующий вейвлет задан формулой, то это может быть очень полезным для деелиза сигналов. Проанализировать особенности высокого порядка или мелкомасштабные вариации сигнала x(t) с игнорированием крупномасштабных полиномиальных составляющих (тренда и регионального фона) можно дифференцированием нужного числа раз либо вейвлета, либо самого сигнала. Это свойство особенно полезно, когда сигнал задан дискретным рядом.

Аналог теоремы Парсеваля для ортогональных и биортогональных вейвлетов.

X 1 (t)·x 2 *(t) = X ψ -1 a -2 X(a,b) X*(a,b) da db.

Отсюда следует, что энергия сигнала может вычисляться через коэффициенты вейвлет-преобразования.

Основы цифровой обработки сигналов: учебное пособие / Ю.А. Брюханов, А.А. Приоров, В.И. Джиган, В.В. Хрящев; Яросл. Гос. ун-т им. П.Г. Демидова. – Ярославль: ЯрГУ, 2013. – 344 с. (с. 270)

  • Tutorial

Вейвлеты сейчас на слуху. Даже неискушённые в математике люди наверняка слышали, что с их помощью удаётся сжимать изображения и видео сохраняя приемлемое качество. Но что же такое вейвлет? Википедия отвечает на этот вопрос целым ворохом формул за которыми не так-то легко увидеть суть.

Попробуем на простых примерах разобраться, откуда же вообще берутся вейвлеты и как их можно использовать при сжатии. Предполагается, что читатель знаком с основами линейной алгебры, не боится слов вектор и матрица, а также умеет их перемножать. (А во даже попробуем что-то запрограммировать.)

Сжатие изображений

Упрощённо, изображение представляют собой таблицу, в ячейках которой хранятся цвета каждого пикселя. Если мы работаем с чёрно-белым (или, точнее, серым) изображением, то вместо цвета в ячейки помещают значения яркости из отрезка . При этом 0 соответствует чёрному цвету, 1 - белому. Но с дробями работать неудобно, поэтому часто значения яркости берут целыми из диапазона от 0 до 255. Тогда каждое значение будет занимать ровно 1 байт.

Даже небольшие изображения требуют много памяти для хранения. Так, если мы кодируем яркость каждого пикселя одним байтом, то изображение одного кадра формата FullHD (1920×1080) займёт почти два мегабайта. Представьте, сколько памяти потребуется для хранения полуторачасового фильма!

Поэтому изображения стремятся сжать. То есть закодировать таким образом, чтобы памяти для хранения требовалось меньше. А во время просмотра мы декодируем записанные в память данные и получаем исходный кадр. Но это лишь в идеале.

Существует много алгоритмов сжатия данных. О их количестве можно судить по форматам, поддерживаемым современными архиваторами: ZIP, 7Z, RAR, ACE, GZIP, HA, BZ2 и так далее. Неудивительно, что благодаря активной работе учёных и программистов в настоящее время степень сжатия данных вплотную подошла к теоретическому пределу.

Плохая новость в том, что для изображения этот теоретический предел не так уж и велик. Попробуйте сохранить фотографию (особенно с большим количеством мелких деталей) в формате PNG - размер получившегося файла может вас расстроить.

Это происходит из-за того, что в изображениях из реального мира (фотографиях, например) значения яркости редко бывают одинаковыми даже у соседних пикселей. Всегда есть мельчайшие колебания, которые неуловимы человеческим глазом, но которые алгоритм сжатия честно пытается учесть.

Алгоритмы сжатия «любят», когда в данных есть закономерность. Лучше всего сжимаются длинные последовательности нулей (закономерность тут очевидна). В самом деле, вместо того, чтобы записывать в память 100 нулей, можно записать просто число 100 (конечно, с пометкой, что это именно количество нулей). Декодирующая программа «поймёт», что имелись в виду нули и воспроизведёт их.

Однако если в нашей последовательности в середине вдруг окажется единица, то одним числом 100 ограничится не удастся.

Но зачем кодировать абсолютно все детали? Ведь когда мы смотрим на фотографию, нам важен общий рисунок, а незначительные колебания яркости мы и не заметим. А значит, при кодировании мы можем немного изменить изображение так, чтобы оно хорошо кодировалось. При этом степень сжатия сразу вырастет. Правда, декодированное изображение будет незначительно отличаться от исходного, но кто заметит?

Преобразование Хаара

Итак, наша цель - преобразовать изображение так, чтобы оно хорошо сжималось классическими алгоритмами. Подумаем, как нужно изменить его, чтобы получить длинные цепочки нулей.

У «реальных» изображений, таких как фотографии, есть одна особенность - яркость соседних пикселей обычно отличается на небольшую величину. В самом деле, в мире редко можно увидеть резкие, контрастные перепады яркости. А если они и есть, то занимают лишь малую часть изображения.

Рассмотрим фрагмент первой строки яркостей из известного изображения «Lenna» (на рисунке).

154, 155, 156, 157, 157, 157, 158, 156

Видно, что соседние числа очень близки. Чтобы получить желаемые нули или хотя бы что-то близкое к ним, можно закодировать отдельно первое число, а потом рассматривать лишь отличия каждого числа от предыдущего.

Получаем:

154, 1, 1, 1, 0, 0, 1, -2.

Уже лучше! Такой метод в самом деле используется и называется дельта-кодированием. Но у него есть серьёзные недостаток - он нелокальный. То есть нельзя взять кусочек последовательности и узнать, какие именно яркости в нём закодированы без декодирования всех значений перед этим кусочком.

Попробуем поступить иначе. Не будем пытаться сразу получить хорошую последовательность, попробуем улучшить её хотя бы немного.

Для этого разобьём все числа на пары и найдём полусуммы и полуразности значений в каждой из них.

(154, 155), (156, 157), (157, 157), (158, 156)
(154.5, 0.5), (156.5, 0.5), (157, 0.0), (157, -1.0)

Почему именно полусуммы и полуразности? А всё очень просто! Полусумма - это среднее значение яркости пары пикселей. А полуразность несёт в себе информацию об отличиях между значениями в паре. Очевидно, зная полусумму a и полуразность d можно найти и сами значения:
первое значение в паре = a - d,
второе значение в паре = a + d.

Это преобразование было предложено в 1909 году Альфредом Хааром и носит его имя.

А где же сжатие?

Полученные числа можно перегруппировать по принципу «мухи отдельно, котлеты отдельно», разделив полусуммы и полуразности:

154.5, 156.5, 157, 157; 0.5, 0.5, 0.0, -1.0.

Числа во второй половине последовательности как правило будут небольшими (то, что они не целые, пусть пока не смущает). Почему так?

Как мы уже выяснили раньше, в реальных изображениях соседние пиксели редко отличаются друг от друга значительно. Если значение одного велико, то и другого велико. В таких случаях говорят, что соседние пиксели коррелированы.

В самом деле, рассмотрим первые 2000 пар соседних пикселей и каждую пару представим на графике точкой.

Все точки выстраиваются вдоль одной прямой линии. И так практически во всех реальных изображениях. Верхний левый и нижний правый углы изображения практически всегда пусты.

А теперь рассмотрим график, точками в котором будут полусуммы и полуразности.

Видно, что полуразности находятся в гораздо более узком диапазоне значений. А это значит, что на них можно потратить меньше одного байта. Какое-никакое, а сжатие.

Применим математику!

Попробуем записать математические выражения, описывающие преобразование Хаара.

Итак, у нас была пара пикселей (вектор) , а мы хотим получить пару .

Такое преобразование описывается матрицей .

В самом деле , что нам и требовалось.

Внимательный читатель наверняка заметил, что рисунки из точек на двух последних графиках одинаковы. Разница лишь в повороте на угол в 45°.

В математике повороты и растяжения называются аффинными преобразованиями и описываются как раз при помощи умножения матрицы на вектор. Что мы и получили выше. То есть, преобразование Хаара - это просто поворот точек таким образом, чтобы их можно было удобно и компактно закодировать.

Правда, тут есть один нюанс. При аффинных преобразованиях может меняться площадь фигуры. Не то, чтобы это было плохо, но как-то неаккуратненько. Как известно, коэффициент изменения площади равен определителю матрицы. Посмотрим, каков он для преобразования Хаара.

Для того, чтобы определитель стал равен единице достаточно умножить каждый элемент матрицы на . На угол поворота (а значит, и на «сжимающую способность» преобразования) это не повлияет.

Получаем в итоге матрицу

А как декодировать?

Как известно, если у матрицы определитель не равен нулю, то для неё существует обратная матрица, «отменяющая» её действие. Если мы найдём обратную матрицу для H, то декодирование будет заключаться просто в умножении векторов с полусуммами и полуразностями на неё.

Вообще говоря, поиск обратной матрицы - не такая простая задача. Но, может, удастся как-то эту задачу упростить?

Рассмотрим поближе нашу матрицу. Она состоит из двух вектор-строк: и . Назовём их v 1 и v 2 .

Они обладают интересными свойствами.

Во-первых, их длины равны 1, то есть . Здесь буква T означает транспонирование. Умножение вектор-строки на транспонированный вектор-строку - это скалярное произведение.

Во-вторых, они ортогональны, то есть .

Матрица, строки которой обладают указанными свойствами называется ортогональной. Чрезвычайно важным свойством таких матриц является то, что обратную матрицу для них можно получить простым транспонированием.

В справедливости этого выражения можно убедиться умножив H обратную матрицу. На диагонали мы получим скалярные произведения вектор-строк на самих себя, то есть 1. А вне диагоналей - скалярные произведения вектор-строк друг на друга, то есть 0. В итоге произведение будет равно единичной матрице.

Мы любим ортогональные матрицы!

Увеличиваем число точек

Всё сказанное хорошо работает для двух точек. Но что делать, если точек больше?

В этом случае тоже можно описать преобразование матрицей, но большей по размеру. Диагональ этой матрицы будет состоять из матриц H, таким образом в векторе исходных значений будут выбираться пары, к которым независимо будет применяться преобразование Хаара.

То есть. исходный вектор просто обрабатывается независимо по парам.

Фильтры

Итак, когда мы знаем, как выполнять преобразование Хаара, попробуем разобраться с тем, что же оно нам даёт.

Полученные «полусуммы» (из-за того, что делим не на 2, приходится использовать кавычки) - это, как мы уже выяснили, средние значения в парах пикселей. То есть, фактически, значения полусумм - это уменьшенная копия исходного изображения! Уменьшенная потому, что полусумм в два раза меньше, чем исходных пикселей.

Но что такое разности?

Полусуммы усредняют значения яркостей, то есть «отфильтровывают» случайные всплески значений. Можно считать, что это некоторый частотный фильтр.

Аналогично, разности «выделяют» среди значений межпиксельные «всплески» и устраняют константную составляющую. То есть, они «отфильтровывают» низкие частоты.

Таким образом, преобразование Хаара - это пара фильтров, разделяющих сигнал на низкочастотную и высокочастотную составляющие. Чтобы получить исходный сигнал, нужно просто снова объединить эти составляющие.

Что нам это даёт? Пусть у нас есть фотография-портрет. Низкочастотная составляющая несёт в себе информацию об общей форме лица, о плавных перепадах яркости. Высокочастотная - это шум и мелкие детали.

Обычно, когда мы смотрим на портрет, нас больше интересует низкочастотная составляющая, а значит при сжатии часть высокочастотных данных можно отбросить. Тем более, что, как мы выяснили, она обычно имеет меньшие значения, а значит более компактно кодируется.

Степень сжатия можно увеличить, применяя преобразование Хаара многократно. В самом деле, высокочастотная составляющая - это всего лишь половина от всего набора чисел. Но что мешает применить нашу процедуру ещё раз к низкочастотным данным? После повторного применения, высокачастотная информация будет занимать уже 75%.

Хоть мы пока и говорили об одномерных цепочках чисел, этот подход хорошо применим и для двумерных данных. Чтобы выполнить двумерное преобразование Хаара (или аналогичное ему), нужно лишь выполнить его для каждой строки и для каждого столбца.

После многократного применения к, например, фотографии замка Лихтенштейн, получим следующий рисунок.

Черные области соответствуют низкой яркости, то есть значениям, близким к нулю. Как показывает практика, если значение достаточно мало, то его можно округлить или вообще обнулить без особого ущерба для декодированного рисунка.

Этот процесс называется квантованием. И именно на этом этапе происходит потеря части информации. (К слову, такой же подход используется в JPEG, только там вместо преобразования Хаара используется дискретное косинус-преобразование.) Меняя число обнуляемых коэффициентов, можно регулировать степень сжатия!

Конечно, если обнулить слишком много, то искажения станут видны на глаз. Во всём нужна мера!

После всех этих действий у нас останется матрица, содержащая много нулей. Её можно записать построчно в файл и сжать каким-то архиватором. Например, тем же 7Z. Результат будет неплох.

Декодирование производится в обратном порядке: распаковывем архив, применяем обратное преобразование Хаара и записываем декодированную картинку в файл. Вуаля!

Где эффективно преобразование Хаара?

Когда преобразование Хаара будет давать наилучший результат? Очевидно, когда мы получим много нулей, то есть, когда изображение содержит длинные участки одинаковых значений яркости. Тогда все разности обнулятся. Это может быть, например, рентгеновский снимок, отсканированный документ.

Говорят, что преобразование Хаара устраняет константную составляющую (она же - момент нулевого порядка), то есть переводит константы в нули.

Но всё же в реальных фотографиях областей с одинаковой яркостью не так много. Попробуем усоврешенствовать преобразование, чтобы оно обнуляло ещё и линейную составляющую. Иными словами, если значения яркости будут увеличивать линейно, то они тоже обнулятся.

Эту задачу и более сложные (устранение моментов более высоких порядков) решила Ингрид Добеши - один из создателей теории вейвлетов.

Преобразование Добеши

Для нашего усовершенствованного преобразования уже будет мало двух точек. Поэтому будем брать по четыре значения, смещаясь каждый раз на два.

То есть, если исходная последовательность - 1, 2, 3, 4, 5, 6,…, N-1, N, то будем брать четвёрки (1, 2, 3, 4), (3, 4, 5, 6) и т. д. Последняя четвёрка «кусает последовательность за хвост»: (N-1, N, 1, 2).

Точно так же попробуем построить два фильтра: высокочастотный и низкочастотный. Каждую четвёрку будем заменять на два числа. Так как четвёрки перекрываются, то количество значений после преобразования не изменится.

Пусть значения яркостей в четвёрке равны x, y, z, t. Тогда первый фильтр запишем в виде

Четыре коэффициента, образующих вектор-строку матрицы преобразования, пока нам неизвестны.

Чтобы вектор-строка коэффициентов второго фильтра был ортогонален первому, возьмём те же коэффициенты но переставим их и поменяем знаки:

Матрица преобразования будет иметь вид.

Требование ортогональности выполняется для первой и второй строк автоматически. Потребуем, чтобы строки 1 и 3 тоже были ортогональны:

Векторы должны иметь единичную длину (иначе определитель будет не единичным):

Преобразование должно обнулять цепочку одинаковых значений (например, (1, 1, 1, 1)):

Преобразование должно обнулять цепочку линейно растущих значений (например, (1, 2, 3, 4)):

Кстати, если обнуляется эта четвёрка, то будут обнуляться и любые другие линейно растущие или линейно убывающие. В этом легко убедиться, записав соответствующее уравнение и разделив все коэффициенты на первый множитель.

Получили 4 уравнения, связывающие коэффициенты. Решая их, получаем:

Подставив их в матрицу, получаем искомое преобразования. После его применения к фотографиям получим больше нулей и малых коэффициентов, что позволит сжать изображение сильнее.

Другая приятная особенность - артефакты после квантования будут не так заметны.

Это преобразование получило название вейвлета D4 (читателю предлагается самостоятельно разгадать тайну этого буквенно-цифрового названия).

Другие вейвлеты

Мы, конечно, можем не остановиться на этом, и потребовать устранения параболической составляющей (момент 2-го порядка) и так далее. В результате получим вейвлеты D6, D8 и другие.

Чтобы не считать всё вручную, коэффициенты можно посмотреть в википедии .

Добеши открыла весьма интересный способ получения коэффициентов этих преобразований, но увы, это уже выходит за рамки нашей статьи.

Домашнее задание

Чтобы окончательно разобраться с основами, предлагаю написать на вашем любимом языке программу, которая открывает изображение, выполняет преобразование Хаара (или даже D4), квантует результат, а потом сохраняет результат в файл. Попробуйте сжать этот файл своим любимым архиватором. Хорошо сжимается?

Попробуйте выполнить обратное преобразование. Как вы объясните характер артефактов на изображении?

Заключение

Итак, мы кратко рассмотрели основные идеи дискретного вейвлет-преобразования.

Конечно, в этой статье не были рассмотрены очень многие интересные математические детали и практические применения вейвлет-преобразований. Но нельзя объять необъятное. Да и многое сложно объяснить не повышая градус матана. Надеюсь, что и написанное оказалось кому-то полезным. Добавить метки