Парольная защита: прошлое, настоящее, будущее. Что такое есиа

В.Шрамко

PCWeek/RE № 45, 2004 г.

Предотвратить ущерб, связанный с утратой хранящейся в компьютерах конфиденциальной информации, — одна из важнейших задач для любой компании. Известно, что персонал предприятия нередко оказывается главным виновником этих потерь. По результатам исследования Computer Security Institute, на непреднамеренные ошибки сотрудников приходится 55% такого ущерба, на действия нечестных и обиженных коллег — соответственно 10% и 9%. Оставшуюся часть потерь связывают с проблемами физической защиты (стихийные бедствия, электропитание) — 20%, вирусами — 4% и внешними атаками — 2%.

Основным способом защиты информации от злоумышленников считается внедрение так называемых средств ААА, или 3А (authentication, authorization, administration — аутентификация, авторизация, администрирование). Среди средств ААА значимое место занимают аппаратно-программные системы идентификации и аутентификации (СИА) и устройства ввода идентификационных признаков (термин соответствует ГОСТ Р 51241-98), предназначенные для защиты от несанкционированного доступа (НСД) к компьютерам.

При использовании СИА сотрудник получает доступ к компьютеру или в корпоративную сеть только после успешного прохождения процедуры идентификации и аутентификации. Идентификация заключается в распознавании пользователя по присущему или присвоенному ему идентификационному признаку. Проверка принадлежности пользователю предъявленного им идентификационного признака осуществляется в процессе аутентификации.

В состав аппаратно-программных СИА входят идентификаторы, устройства ввода-вывода (считыватели, контактные устройства, адаптеры, платы доверенной загрузки, разъемы системной платы и др.) и соответствующее ПО. Идентификаторы предназначены для хранения уникальных идентификационных признаков. Кроме того, они могут хранить и обрабатывать разнообразные конфиденциальные данные. Устройства ввода-вывода и ПО пересылают данные между идентификатором и защищаемым компьютером.

На мировом рынке информационной безопасности сегмент ААА стабильно растет. Эта тенденция подчеркивается в аналитических обзорах и прогнозах Infonetics Research, IDC, Gartner и других консалтинговых компаний.

В нашей статье основное внимание будет уделено комбинированным системам идентификации и аутентификации. Такой выбор обусловлен тем, что в настоящее время системы этого класса обеспечивают наиболее эффективную защиту компьютеров от НСД.

Классификация систем идентификации и аутентификации

Современные СИА по виду используемых идентификационных признаков разделяются на электронные, биометрические и комбинированные (см. рис. 1).

Рисунок 1 — Классификация СИА по виду идентификационных признаков

В электронных системах идентификационные признаки представляются в виде цифрового кода, хранящегося в памяти идентификатора. Такие СИА разрабатываются на базе следующих идентификаторов:

  • контактных смарт-карт;
  • бесконтактных смарт-карт;
  • USB-ключей (другое название — USB-токенов);
  • идентификаторов iButton.

В биометрических системах идентификационными признаками являются индивидуальные особенности человека, называемые биометрическими характеристиками. В основе идентификации и аутентификации этого типа лежит процедура считывания предъявляемого биометрического признака пользователя и его сравнение с предварительно полученным шаблоном. В зависимости от вида используемых характеристик биометрические системы делятся на статические и динамические.

Статическая биометрия (также называемая физиологической) основывается на данных, получаемых из измерений анатомических особенностей человека (отпечатки пальцев, форма кисти руки, узор радужной оболочки глаза, схема кровеносных сосудов лица, рисунок сетчатки глаза, черты лица, фрагменты генетического кода и др.).

Динамическая биометрия (также называемая поведенческой) основывается на анализе совершаемых человеком действий (параметры голоса, динамика и форма подписи).

Несмотря на многочисленность биометрических характеристик, разработчики СИА основное внимание уделяют технологиям распознавания по отпечаткам пальцев, чертам лица, геометрии руки и радужной оболочки глаза. Так, например, согласно отчету International Biometric Group, на мировом рынке биометрической защиты в 2004 г. доля систем распознавания по отпечаткам пальцев составила 48%, по чертам лица — 12%, геометрии руки — 11%, радужке глаза — 9%, параметрам голоса — 6%, подписи — 2%. Оставшаяся доля (12%) относится к промежуточному ПО.

В комбинированных системах для идентификации используется одновременно несколько идентификационных признаков. Такая интеграция позволяет воздвигнуть перед злоумышленником дополнительные преграды, которые он не сможет преодолеть, а если и сможет, то со значительными трудностями. Разработка комбинированных систем осуществляется по двум направлениям:

  • интеграция идентификаторов в рамках системы одного класса;
  • интеграция систем разного класса.

В первом случае для защиты компьютеров от НСД используются системы, базирующиеся на бесконтактных смарт-картах и USB-ключах, а также на гибридных (контактных и бесконтактных) смарт-картах. Во втором случае разработчики умело «скрещивают» биометрические и электронные СИА (далее в статье такой конгломерат называется биоэлектронной системой идентификации и аутентификации).

Особенности электронных систем идентификации и аутентификации

С электронными СИА и анализом их ключевых характеристик, позволяющим сделать выбор в пользу того или иного продукта, можно познакомиться в моем обзоре «Защита компьютеров: электронные системы идентификации и аутентификации» (см. PC Week/RE, № 12/2004, с. 18). Приведу лишь основные особенности электронных СИА, знание которых помогает понять структуру и принцип работы комбинированных систем.

В состав комбинированных СИА могут входить электронные контактные и бесконтактные смарт-карты и USB-ключи. Основным элементом этих устройств являются одна или более встроенных интегральных микросхем (чипов), которые могут представлять собой микросхемы памяти, микросхемы с жесткой логикой и микропроцессоры (процессоры). В настоящее время наибольшей функциональностью и степенью защищенности обладают идентификаторы с процессором.

Основу чипа микропроцессорной контактной смарт-карты составляют центральный процессор, специализированный криптографический процессор (опционально), оперативная память (RAM), постоянная память (ROM), энергонезависимая программируемая постоянная память (PROM), датчик случайных чисел, таймеры, последовательный коммуникационный порт.

Оперативная память используется для временного хранения данных, например, результатов вычислений, произведенных процессором. Ее емкость составляет несколько килобайтов.

В постоянной памяти хранятся команды, исполняемые процессором, и другие неизменяемые данные. Информация в ROM записывается при производстве карты. Емкость памяти может составлять десятки килобайтов.

В контактных смарт-картах используется два типа памяти PROM: однократно программируемая память EPROM и чаще встречающаяся многократно программируемая память EEPROM. Память PROM служит для хранения пользовательских данных, которые могут считываться, записываться и модифицироваться, и конфиденциальных данных (например, криптографических ключей), недоступных для прикладных программ. Емкость PROM составляет десятки и сотни килобайтов.

Центральный процессор смарт-карты (обычно это RISC-процессор) обеспечивает реализацию разнообразных процедур обработки данных, контроль доступа к памяти и управление ходом выполнения вычислительного процесса.

На специализированный процессор возлагается реализация различных процедур, необходимых для повышения защищенности СИА:

  • генерация криптографических ключей;
  • реализация криптографических алгоритмов (ГОСТ 28147-89, DES, 3DES, RSA, SHA-1 и др.);
  • выполнение операций с электронной цифровой подписью (генерация и проверка);
  • выполнение операций с PIN-кодом и др.

Бесконтактные смарт-карты разделяются на идентификаторы Proximity и смарт-карты, базирующиеся на международных стандартах ISO/IEC 15693 и ISO/IEC 14443. В основе функционирования большинства СИА на базе бесконтактных смарт-карт лежит технология радиочастотной идентификации. Конструктивно радиочастотные идентификаторы (см. табл. 1) изготавливаются в виде пластиковых карточек, брелоков, жетонов, дисков, меток и т. п.

Таблица 1 — Радиочастотные идентификаторы

Основные компоненты бесконтактных смарт-карт — чип и антенна. Внутри идентификаторов также может находиться литиевая батарея. Идентификаторы с батареей называются активными, без батареи — пассивными. Каждый идентификатор имеет уникальный 32/64-разрядный серийный номер.

Идентификаторы Proximity функционируют на частоте 125 кГц. В состав чипа входит микросхема памяти (или микросхема с жесткой логикой) со вспомогательными блоками: модулем программирования, модулятором, блоком управления и др. Емкость памяти составляет от 8 до 256 байт. В Proximity в основном используется однократно программируемая постоянная память EPROM, но встречается и перезаписываемая EEPROM. В памяти содержатся уникальный номер идентификатора, код устройства и служебная информация (биты четности, биты начала и конца передачи кода и т. д.).

Обычно идентификаторы Proximity являются пассивными и не содержат химического источника питания — литиевой батареи. В этом случае питание микросхемы происходит посредством электромагнитного поля, излучаемого считывателем. Чтение данных считыватель осуществляет со скоростью 4 кбит/с на расстоянии до 1 м.

Системы идентификации и аутентификации на базе Proximity криптографически не защищены (за исключением заказных систем).

Бесконтактные смарт-карты функционируют на частоте 13,56 МГц и разделяются на два класса, которые базируются на международных стандартах ISO/IEC 15693 и ISO/IEC 14443.

Стандарт ISO/IEC 14443 включает в себя версии А и В, различающиеся способами модуляции передаваемого радиосигнала. Стандарт поддерживает обмен (чтение-запись) данными со скоростью 106 кбит/с (возможно увеличение скорости до 212, 424 или 848 кбит/с), дистанция чтения — до 10 см.

Для реализации функций шифрования и аутентификации в идентификаторах стандарта ISO/IEC 14443 могут применяться чипы трех видов: микросхема с жесткой логикой MIFARE, процессор или криптографический процессор. Технология MIFARE является разработкой компании Philips Electronics и представляет собой расширение ISO/IEC 14443 (версии А).

Стандарт ISO/IEC 15693 увеличивает дистанцию применения бесконтактного идентификатора до 1 м. На этом расстоянии обмен данными осуществляется со скоростью 26,6 Кбит/с.

USB-ключи (см. табл. 2) предназначаются для работы с USB-портом компьютера. Они конструктивно изготавливаются в виде брелоков, которые выпускаются в цветных корпусах, имеют световые индикаторы работы и легко размещаются на связке с ключами. Каждый идентификатор имеет прошиваемый при изготовлении уникальный 32/64-разрядный серийный номер.

Таблица 2 — Характеристики USB-ключей

На российском рынке наибольшей популярностью пользуются следующие USB-ключи:

  • серии iKey 10xx, iKey 20xx, iKey 3000 — разработка компании Rainbow Technologies;
  • eToken R2, eToken Pro фирмы Aladdin Knowledge Systems;
  • ePass1000, ePass2000 фирмы Feitian Technologies;
  • ruToken — совместная разработка компании «Актив» и фирмы «АНКАД» .

USB-ключи являются преемниками контактных смарт-карт. Поэтому структуры USB-ключей и смарт-карт, как и объемы аналогичных запоминающих устройств, практически идентичны. В состав USB-ключей могут входить:

  • процессор — управление и обработка данных;
  • криптографический процессор — реализация алгоритмов ГОСТ 28147-89, DES, 3DES, RSA, DSA, MD5, SHA-1 и других криптографических преобразований;
  • USB-контроллер — обеспечение интерфейса с USB-портом компьютера;
  • RAM — хранение изменяемых данных;
  • EEPROM — хранение ключей шифрования, паролей, сертификатов и других важных данных;
  • ROM — хранение команд и констант.

Комбинированные системы

Внедрение комбинированных СИА (см. табл. 3) в систему информационной безопасности компании увеличивает количество идентификационных признаков, позволяя таким образом более эффективно защитить компьютеры и корпоративную сеть от НСД. Кроме того, некоторые типы систем способны управлять физическим доступом в здания и помещения и контролировать его.

Таблица 3 — Основные функции комбинированных СИА

Сегодня на рынке компьютерной безопасности присутствуют комбинированные системы идентификации и аутентификации следующих типов:

  • системы на базе бесконтактных смарт-карт и USB-ключей;
  • системы на базе гибридных смарт-карт;
  • биоэлектронные системы.

Бесконтактные смарт-карты и USB-ключи

Аппаратная интеграция USB-ключей и бесконтактных смарт-карт предполагает, что в корпус брелока встраиваются антенна и микросхема, поддерживающая бесконтактный интерфейс. Это позволяет с помощью одного идентификатора организовать управление доступом и к компьютеру, и в помещения офиса. Для входа в служебное помещение сотрудник использует свой идентификатор в качестве бесконтактной карты, а при допуске к защищенным компьютерным данным — в качестве USB-ключа. Кроме того, при выходе из помещения он извлекает идентификатор из USB-разъема (чтобы потом войти обратно) и тем самым автоматически блокирует работу компьютера.

В 2004 г. на российском рынке появились два комбинированных идентификатора такого типа:

  • RFiKey — разработка компании Rainbow Technologies;
  • eToken PRO RM — разработка компании Aladdin Software Security R.D. .

Идентификатор RFiKey (рис. 2) представляет собой USB-ключ iKey со встроенной микросхемой Proximity, разработанной HID Corporation.

Рисунок 2 — Идентификатор RFiKey

Изделие RFiKey поддерживает интерфейс USB 1.1/2.0 и функционирует со считывателями HID Corporation (PR5355, PK5355, PR5365, MX5375, PP6005) и российской компании Parsec (APR-03Hx, APR-05Hx, APR-06Hx, APR-08Hx, H-Reader).

К основным характеристикам RFiKey можно отнести следующие показатели:

  • частота функционирования микросхемы Proximity — 125 кГц;
  • тактовая частота процессора — 12 МГц;
  • реализуемые криптографические алгоритмы — MD5, RSA-1024, DES, 3DES, RC2, RC4, RC5;
  • поддерживаемые стандарты — PKCS#11, MS Crypto API, PC/SC;
  • файловая система с тремя уровнями доступа к данным;
  • поддерживаемые операционные системы — Windows 95/98/ME/NT4 (SP3)/2000/XP/ 2003.

Идентификатор eToken RM представляет собой USB-ключ eToken Pro со встроенным чипом, поддерживающим бесконтактный интерфейс (рис. 3). Поставщика и тип микросхемы заказчик может выбирать в соответствии со своими потребностями. В настоящее время компанией предлагаются радиочипы производства HID Corporation, EM Microelectronic-Marin, Philips Electronics (технология MIFARE), Cotag International и ОАО «Ангстрем».

Рисунок 3 — Идентификатор eToken RM

Например, радиочастотный пассивный идентификатор БИМ-002 отечественной компании «Ангстрем» изготовлен в виде круглой метки. Он построен на базе микросхемы КБ5004ХК1, основой которой являются память EPROM емкостью 64 бит и блок программирования, используемый для записи уникального идентификационного кода.

К главным характеристикам eToken RM со встроенным идентификатором БИМ-002 можно отнести следующие показатели:

  • частота функционирования БИМ-002 — 13,56 МГц;
  • дальность чтения идентификационного кода — до 30 мм;
  • тактовая частота процессора — 6 МГц;
  • реализуемые криптографические алгоритмы — RSA-1024, DES, 3DES, SHA-1;
  • наличие аппаратного датчика случайных чисел;
  • поддерживаемые стандарты — PKCS#11, PKCS#15 (CRYPTOKI), MS Crypto API, PC/SC, X.509 v3, SSL v3, S/MIME, IPSec/IKE, GINA, RAS/Radius/PAP/CHAP/PAP;
  • поддерживаемые операционные системы — Windows 98/ME/NT/2000/XP/2003, ASP Linux 7.2, Red Hat Linux 8.0, SuSe Linux 8.2.

На отечественном рынке ориентировочные цены комбинированных идентификаторов составляют: RFiKey 1032 — от $41, RFiKey 2032 и RFiKey 3000 — от $57, eToken RM с 32 Кб защищенной памяти и БИМ-002 — от $52.

Разница между стоимостью комбинированных и обычных USB-ключей приблизительно соответствует цене смарт-карты Proximity. Отсюда следует, что интеграция бесконтактных смарт-карт и USB-ключей почти не ведет к росту затрат на аппаратную часть при переходе на комбинированную систему идентификации и аутентификации. Выигрыш же очевиден: один идентификатор вместо двух.

Гибридные смарт-карты

Гибридные смарт-карты содержат не связанные между собой разнородные чипы (рис. 4). Один чип поддерживает контактный интерфейс, другие (Proximity, ISO 14443/15693) — бесконтактный. Как и в случае интеграции USB-ключей и бесконтактных смарт-карт, СИА на базе гибридных смарт-карт решают двоякую задачу: защиту от НСД к компьютерам и в помещения компании, где они содержатся. Кроме этого на смарт-карте помещается фотография сотрудника, что позволяет идентифицировать его визуально.

Рисунок 4 — Структура гибридной смарт-карты

Стремление к интеграции радиочастотной бесконтактной и контактной смарт-карт-технологий находит отражение в разработках многих компаний: HID Corporation, Axalto, GemPlus, Indala, Aladdin Knowledge Systems и др.

Например, корпорация HID, ведущий разработчик СИА на базе бесконтактных идентификаторов, выпустила идентификаторы-карты, объединяющие в себе различные технологии считывания идентификационных признаков. Результатом этих разработок явилось создание гибридных смарт-карт:

  • Smart ISOProx II — интеграция Proximity-чипа и чипа с контактным интерфейсом (опционально);
  • iCLASS — интеграция чипа ISO/IEC 15693 и чипа с контактным интерфейсом (опционально);
  • iCLASS Prox — интеграция Proximity-чипа, чипа ISO/IEC 15693 и чипа с контактным интерфейсом (опционально).

На отечественном рынке цены на эти изделия составляют: iCLASS — от $5,1; Smart ISOProx II — от $5,7; iCLASS Prox — от $8,9.

В России компанией Aladdin Software Security R.D. разработана технология производства гибридных смарт-карт eToken Pro/SC RM. В них микросхемы с контактным интерфейсом eToken Pro встраиваются в бесконтактные смарт-карты. Фирма предлагает смарт-карты различных производителей: ОАО «Ангстрем» (БИМ-002), HID Corporation (ISOProx II), Cotag International (Bewator Cotag 958), Philips Electronics (технология MIFARE) и других. Выбор варианта комбинирования определяет заказчик.

Анализ финансовых затрат при переходе на применение гибридных смарт-карт, как и в случае комбинирования бесконтактных смарт-карт и USB-ключей, снова подтверждает торжество принципа «два в одном». Если же на идентификатор поместить фотографию сотрудника, то этот принцип трансформируется в «три в одном».

Биоэлектронные системы

Для защиты компьютеров от НСД биометрические системы обычно объединяются с двумя классами электронных СИА — на базе контактных смарт-карт и на базе USB-ключей.

Интеграция с электронными системами на базе бесконтактных смарт-карт главным образом используется в системах управления физическим доступом в помещения.

Как уже было замечено, технологии идентификации по отпечаткам пальцев сегодня лидируют на рынке биометрических средств защиты. Столь почетное место дактилоскопии вызвано следующими обстоятельствами:

  • это самый старый и наиболее изученный метод распознавания;
  • его биометрический признак устойчив: поверхность кожного покрова на пальце не меняется со временем;
  • высокие значения показателей точности распознавания (по заявлениям разработчиков дактилоскопических средств защиты, вероятность ложного отказа в доступе составляет 10-2, а вероятность ложного доступа -10-9);
  • простота и удобство процедуры сканирования;
  • эргономичность и малый размер сканирующего устройства;
  • самая низкая цена среди биометрических систем идентификации.

В связи с этим сканеры отпечатков пальцев стали наиболее используемой составной частью комбинированных СИА, применяемых для защиты компьютеров от НСД. На втором месте по распространенности на рынке компьютерной безопасности находятся СИА на базе контактных смарт-карт.

Примером такого рода интеграции служат изделия Precise 100 MC (рис. 5) и AET60 BioCARDKey (рис. 6) компаний Precise Biometrics AB и Advanced Card Systems соответственно. Чтобы получить доступ к информационным ресурсам компьютера с помощью этих средств, пользователю необходимо вставить в считыватель смарт-карту и приложить палец к сканеру. Шаблоны отпечатков пальцев хранятся в зашифрованном виде в защищенной памяти смарт-карты. При совпадении изображения отпечатка с шаблоном разрешается доступ к компьютеру. Пользователь очень доволен: не надо запоминать пароль или PIN-код, процедура входа в систему значительно упрощается.

Рисунок 5 — Изделие Precise 100 MC

Рисунок 6 — Изделие AET60 BioCARDKey

Изделия Precise 100 MC и AET60 BioCARDKey — это USB-устройства, работающие в среде Windows. Считыватели смарт-карт поддерживают все типы микропроцессорных карточек, удовлетворяющих стандарту ISO 7816-3 (протоколы T=0, T=1). Дактилоскопические считыватели представляют собой сканеры емкостного типа со скоростями сканирования 4 и 14 отпечатков пальцев в секунду у Precise 100 MC и AET60 BioCARDKey соответственно.

Чтобы уменьшить число периферийных устройств, можно интегрировать дактилоскопический сканер и считыватель смарт-карт в USB-клавиатуру защищаемого компьютера. Примерами таких устройств служат изделия KBPC-CID (рис. 7) альянса Fujitsu Siemens Computers , Precise 100 SC Keyboard (рис. 8) и Precise 100 MC Keyboard компании Precise Biometrics AB.

Рисунок 7 — Изделие KBPC-CID

Рисунок 8 — Изделие Precise 100 SC Keyboard

Для доступа к информационным ресурсам компьютера, как и в предыдущем варианте, пользователю необходимо поместить смарт-карту в считыватель и к сканеру приложить палец. Представляется интересным и перспективным решение разработчиков комбинированных систем защиты объединить USB-ключ с дактилоскопической системой идентификации (далее такое устройство будем именовать USB-биоключом). Примером этого решения могут служить USB-биоключи FingerQuick (рис. 9) японской корпорации NTT Electronics и ClearedKey (рис. 10) американской компании Priva Technologies.

Рисунок 9 — USB-биоключ FingerQuick

Рисунок 10 — USB-биоключ ClearedKey

В ближайшем будущем USB-биоключи могут получить широкое распространение благодаря своим достоинствам:

  • высокий уровень защищенности (наличие дактилоскопического сканера, хранение секретных данных, в частности шаблонов отпечатков пальцев, в защищенной энергонезависимой памяти идентификатора, шифрование обмена данными с компьютером);
  • аппаратная реализация криптографических преобразований;
  • отсутствие аппаратного считывателя;
  • уникальность признака, малые размеры и удобство хранения идентификаторов.

Главным недостатком USB-биоключей является их высокая цена. Например, приблизительная стоимость FingerQuick составляет $190.

Заключение

На первый взгляд комбинированные системы идентификации и аутентификации представляют собой какие-то дорогостоящие, экзотические продукты. Но мировой опыт разработок систем компьютерной безопасности показывает, что все используемые в настоящий момент средства защиты тоже когда-то были такими вот экзотическими изделиями. А сейчас они — норма безопасной жизни. Отсюда с высокой вероятностью можно утверждать, что подобная судьба ожидает и комбинированные системы.

Одним из важнейших методов защиты для соблюдения конфиденциальности является разграничение доступа. Практически с момента создания первых многопользовательских операционных систем для ограничения доступа используются пароли. Вспомним историю.

Операционные системы Windows 95/98 сохраняли пароль в PWL-файле (как правило, USERNAME.PWL) в каталоге Windows. Вместе с тем стоит отметить, что несмотря на то, что содержимое PWL-файла было зашифровано, извлечь из него пароли было довольно просто. Первый алгоритм шифрования версии Windows 95 позволял создавать программы для расшифровки PWL-файлов. Однако в версии Windows 95 OSR2 этот недостаток был устранен. Тем не менее система защиты паролей в OSR2 содержала несколько серьезных недостатков, а именно:

  • все пароли были преобразованы к верхнему регистру, что значительно уменьшало количество возможных паролей;
  • применяемые для шифрования алгоритмы MD5 и RC4 позволяли реализовать более быстрое шифрование пароля, но достоверный пароль Windows должен был иметь длину не менее девяти символов.
  • система кэширования пароля, по существу, была ненадежна. Пароль мог быть сохранен только в том случае, если никто из персонала без соответствующего разрешения не имел доступа к вашему компьютеру.

В операционных системах, используемых в настоящее время (Windows XP/2000/2003), применяется более надежная защита парольного метода аутентификации. Но в то же время необходимо выполнять следующие рекомендации Microsoft:

  • длина пароля должна составлять не менее восьми символов;
  • в пароле должны встречаться большие и маленькие буквы, цифры и спецсимволы;
  • время действия пароля должно составлять не более 42 дней;
  • пароли не должны повторяться.

В дальнейшем эти требования будут только ужесточаться. К чему это приведет, вернее, увы, уже привело? Чем сложнее пароли, чем больше приложений требуют ввод пароля, тем выше вероятность того, что пользователи для всех приложений, в том числе и для аутентификации в ОС, будут использовать один и тот же пароль, к тому же записывая его на бумаге. Хорошо это или плохо? Допустимо ли?

С одной стороны - явно недопустимо, так как резко возрастает риск компрометации пароля, с другой - слишком сложный пароль (типа PqSh*98+) трудно удержать в голове. Пользователи явно будут или выбирать простой пароль, или постоянно забывать сложный и отвлекать администратора от более важных дел. Исследования Gartner показывают, что от 10 до 30% звонков в службу технической поддержки компаний составляют просьбы сотрудников по поводу восстановления забытых ими паролей.

По данным IDC, каждый забытый пароль обходится организации в 10-25 долл. Добавим сюда еще необходимость его постоянной смены и требование неповторяемости паролей. Что делать? Каков выход?

На самом деле уже сегодня существует несколько вариантов решения этой нелегкой проблемы.

Первый вариант. На видном месте в комнате (на стене, на столе) вывешивается плакат с лозунгом. После этого в качестве пароля используется текст, содержащий, предположим, каждый третий символ лозунга, включая пробелы и знаки препинания. Не зная алгоритма выбора знаков, подобный пароль подобрать довольно сложно.

Второй вариант. В качестве пароля выбирается (генерируется с помощью специального ПО) случайная последовательность букв, цифр и специальных символов. При этом указанный пароль распечатывается на матричном принтере на специальных конвертах, которые нельзя вскрыть, не нарушив их целостность. Примером такого конверта может служить конверт с PIN-кодом к платежной карте. Эти конверты хранятся в сейфе начальника подразделения или в сейфе службы информационной безопасности. Единственной сложностью при таком способе является необходимость немедленной смены пароля сразу после вскрытия конверта и изготовления другого подобного конверта с новым паролем, а также организация учета конвертов. Однако если принять во внимание экономию времени администраторов сети и приложений, то эта плата не является чрезмерной.

Третий вариант - использование многофакторной аутентификации на базе новейших технологий аутентификации. В качестве примера рассмотрим двухфакторную аутентификацию. Основным преимуществом такой аутентификации является наличие физического ключа и PIN-кода к нему, что обеспечивает дополнительную устойчивость к взлому. Ведь утрата аппаратного ключа не влечет за собой компрометацию пароля, поскольку, кроме ключа, для доступа к системе нужен еще PIN-код к ключу.

Отдельно стоит рассмотреть системы с применением разовых паролей, которые получают все большее распространение в связи с широким развитием интернет-технологий, и системы биометрической аутентификации.

В настоящее время основным способом защиты информации от несанкционированного доступа (НСД) является внедрение так называемых средств AAA (Authentication, Authorization, Accounting - аутентификация, авторизация, управление правами пользователей). При использовании этой технологии пользователь получает доступ к компьютеру лишь после того, как успешно прошел процедуры идентификации` и аутентификации.

Стоит учесть, что на мировом рынке ИТ-услуг сегмент ААА постоянно растет. Эта тенденция подчеркивается в аналитических обзорах IDC, Gartner и других консалтинговых фирм. Такой же вывод можно сделать, внимательно просмотрев ежегодный обзор компьютерной преступности Института компьютерной безопасности США и ФБР за 2005 год (рис. 1).

Рис. 1. Данные по объему потерь от разных видов атак за 2005 год, долл.
Суммарный объем потерь за 2005 год - 130 104 542 долл.
Количество предприятий-респондентов (США) - 700

Как видно из диаграммы, ущерб от кражи конфиденциальной информации значительно увеличился. То есть каждая из опрошенных компаний потеряла в среднем более 350 тыс. долл. вследствие кражи конфиденциальной информации. Это исследование подтверждает тенденции, наметившиеся в последние несколько лет. Согласно отчету Института компьютерной безопасности США и ФБР за 2004 год, кража чувствительных данных уже тогда входила в число опаснейших угроз - ущерб от нее составлял около 40% от общего объема ущерба всех его угроз. При этом средний объем потерь был равен более 300 тыс. долл., а максимальный объем - 1,5 млн долл.

Исходя из этого, можно сделать вывод, что кража конфиденциальной информации имеет один из наиболее высоких рейтингов среди всех ИТ-угроз в США. Стоит отметить, что найти виновного без решения вопросов идентификации и аутентификации невозможно!

Среди основных сервисов безопасности:

  • идентификация и аутентификация;
  • контроль защищенности;
  • контроль целостности и аутентичности информации;
  • межсетевое экранирование;
  • построение VPN;
  • протоколирование/аудит;
  • разграничение доступа;
  • управление безопасностью;
  • фильтрация контента;
  • шифрование.

Отметим, что вопросы разграничения доступа решаются в обязательном порядке при создании любой информационной системы. В наше время, когда системы становятся все более распределенными, трудно переоценить важность корректного разграничения доступа. При этом требуется все более надежная защита систем аутентификации как от внешних, так и от внутренних злоумышленников. Стоит понимать, что пользователи не склонны усложнять себе жизнь и стараются пользоваться как можно менее сложными паролями. А следовательно, для устранения этого в дальнейшем все чаще будут применяться программно-аппаратные средства аутентификации, которые постепенно придут на смену традиционным паролям (рис. 2).

Рис. 2. Рост рынка средств информационной безопасности

Классификация средств идентификации и аутентификации

Современные программно-аппаратные средства идентификации и аутентификации по виду идентификационных признаков можно разделить на электронные, биометрические и комбинированные (рис. 3). В отдельную подгруппу в связи с их специфическим применением можно выделить входящие в состав электронных средств системы одноразовых паролей.

Рис. 3. Классификация программно-аппаратных систем идентификации
и аутентификации

В электронных системах идентификационные признаки представляются в виде кода, хранящегося в защищенной области памяти идентификатора (носителя) и, за редким исключением, фактически не покидающего ее. Идентификаторы в этом случае бывают следующие:

  • контактные смарт-карты;
  • бесконтактные смарт-карты;
  • USB-ключи (USB-token);
  • iButton.

В биометрических системах идентификационными являются индивидуальные особенности человека, которые в данном случае называются биометрическими признаками. Идентификация производится за счет сравнения полученных биометрических характеристик и хранящихся в базе шаблонов. В зависимости от характеристик, которые при этом используются, биометрические системы делятся на статические и динамические.

Статическая биометрия основывается на данных (шаблонах), полученных путем измерения анатомических особенностей человека (отпечатки пальцев, узор радужки глаза и т.д.), а динамическая - на анализе действий человека (голос, параметры подписи, ее динамика).

На мой взгляд, биометрические системы аутентификации не получили широкого распространения по нескольким причинам:

  • высокая стоимость подобных систем;
  • отсутствие хорошо подготовленного профессионального персонала;
  • сложность настройки таких систем;
  • противодействие со стороны сотрудников, так как руководство получает возможность контролировать все их перемещения и фактически производить контроль рабочего времени.

В комбинированных системах применяется одновременно несколько признаков, причем они могу принадлежать как к системам одного класса, так и к разным.

Электронные системы идентификации и аутентификации

В состав электронных систем идентификации и аутентификации входят контактные и бесконтактные смарт-карты и USB-ключи (USB-token).

Контактные смарт-карты и USB-ключи

USB-ключи работают с USB-портом компьютера и изготавливаются в виде брелоков. Что такое USB-ключ, мы рассмотрим на примере eToken от компании Aladdin.

eToken - персональное средство аутентификации и хранения данных, аппаратно поддерживающее работу с цифровыми сертификатами и электронными цифровыми подписями (ЭЦП). eToken может быть выполнен в виде стандартной смарт-карты или USB-ключа:

  • смарт-карта требует для подключения к компьютеру PC/SC-совместимого устройства чтения смарт-карт. Она может применяться как средство визуальной идентификации (на смарт-карте eToken PRO/SC может быть размещена информация о ее владельце и фотография (ID-бэдж) для использования службой безопасности предприятия). Смарт-карты могут быть изготовлены из белого пластика для последующей печати (фотографии, персональных данных и т.д.) с предварительной надпечаткой, а также с наклеенной магнитной полосой либо в виде эмбосированных карт (с выдавленными символами);
  • USB-ключ - напрямую подключается к компьютеру через порт USB (Universal Serial Bus), совмещая в себе функции смарт-карты и устройства для ее считывания.

Если сравнивать две эти технологии, то становится очевидно, что выбор одной из них зависит от технологии безопасности, принятой в компании. Так, если планируется введение автоматизированного пропускного режима и при этом на пропусках должны быть фотография, имя владельца и прочая информация, то предпочтительно воспользоваться смарт-картами. Однако стоит учесть, что потребуется купить также устройства чтения смарт-карт.

Если пропускной режим уже введен и необходимо лишь обеспечить дополнительный контроль и ужесточить режим входа в некоторые помещения - стоит обратить внимание на eToken PRO со встроенными радиометками. Ведь службе физической безопасности, отвечающей за пропускной режим, гораздо проще контролировать пропуска при наличии на них фотографии, фамилии и имени владельца, хотя eToken PRO со встроенным RFID-чипом и аналогичная смарт-карта одинаковы по функциональности.

Основные области применения eToken (рис. 4):

Рис. 4. Возможности eToken

  • двухфакторная аутентификация пользователей при доступе к серверам, базам данных, приложениям, разделам веб-сайтов;
  • безопасное хранение секретной информации: паролей, ключей ЭЦП и шифрования, цифровых сертификатов;
  • защита электронной почты (цифровая подпись и шифрование, доступ);
  • защита компьютеров от несанкционированного доступа (НСД);
  • защита сетей и каналов передачи данных (VPN, SSL);
  • клиент-банк, системы типа e-banking и e-commerce.

При работе с многофакторной аутентификацией пользователь получает целый ряд преимуществ. В частности, ему требуется помнить всего один пароль к eToken вместо нескольких паролей к приложениям. Кроме того, теперь отпадает необходимость в регулярной смене паролей. Да и в случае утери eToken ничего страшного не произойдет. Ведь для того, чтобы воспользоваться найденным (украденным) eToken, необходимо еще знать его пароль. Все это существенно повышает уровень безопасности организации. Вместе с тем стоит понимать, что eToken поддерживает работу и интегрируется со всеми основными системами и приложениями, использующими технологии смарт-карт или PKI (Public Key Infrastructure), - так называемыми PKI-ready-приложениями.

Основное назначение eToken:

  • строгая двухфакторная аутентификация пользователей при доступе к защищенным ресурсам (компьютерам, сетям, приложениям);
  • безопасное хранение закрытых ключей цифровых сертификатов, криптографических ключей, профилей пользователей, настроек приложений и пр. в энергонезависимой памяти ключа;
  • аппаратное выполнение криптографических операций в доверенной среде (генерация ключей шифрования, симметричное и асимметричное шифрование, вычисление хеш-функции, формирование ЭЦП).

В качестве средства аутентификации eToken поддерживается большинством современных операционных систем, бизнес-приложений и продуктов по информационной безопасности и может применяться для решения следующих задач:

  • строгая аутентификация пользователей при доступе к информационным ресурсам: серверам, базам данных, разделам веб-сайтов, защищенным хранилищам, зашифрованным дискам и пр.;
  • вход в операционные системы, службы каталога, гетерогенные сети (операционные системы Microsoft, Linux, UNIX, Novell) и бизнес-приложения (SAP R/3, IBM Lotus Notes/Domino);
  • внедрение систем PKI (Entrust, Microsoft CA, RSA Keon, а также в удостоверяющих центрах и системах с использованием отечественных криптопровайдеров «Крипто-Про», «Сигнал-Ком» и т.д.) - хранение ключевой информации, аппаратная генерация ключевых пар и выполнение криптографических операций в доверенной среде (на чипе смарт-карты);
  • построение систем документооборота, защищенных почтовых систем (на основе Microsoft Exchange, Novell GroupWise, Lotus Notes/Domino) - ЭЦП и шифрование данных, хранение сертификатов и закрытых ключей;
  • организация защищенных каналов передачи данных с использованием транспорта Интернет (технология VPN, протоколы IPSec и SSL) - аутентификация пользователей, генерация ключей, обмен ключами;
  • межсетевые экраны и защита периметра сети (продукты Cisco Systems, Check Point) - аутентификация пользователей;
  • шифрование данных на дисках (в продуктах типа Secret Disk NG) - аутентификация пользователей, генерация ключей шифрования, хранение ключевой информации;
  • единая точка входа пользователя в информационные системы и порталы (в продуктах eTrust SSO, IBM Tivoli Access Manager, WebSphere, mySAP Enterprise Portal) и приложения под управлением СУБД Oracle - строгая двухфакторная аутентификация;
  • защита веб-серверов и приложений электронной коммерции (на основе Microsoft IIS, Apache Web Server) - аутентификация пользователей, генерация ключей, обмен ключами;
  • управление безопасностью корпоративных информационных систем, интеграция систем защиты информации (Token Management System) - eToken является единым универсальным идентификатором для доступа к различным приложениям;
  • поддержка унаследованных приложений и разработка собственных решений в области ИБ.

Характеристики USB-ключей приведены в табл. 1 .

Сегодня на рынке представлены следующие типы USB-ключей:

  • eToken R2, eToken PRO - компания Aladdin;
  • iKey10xx, iKey20xx,iKey 3000 - компания Rainbow Technologies;
  • ePass 1000, ePass 2000 - фирма Feitian Technologies;
  • ruToken - разработка компании «Актив» и фирмы АНКАД;
  • uaToken - компания ООО «Технотрейд».

USB-ключи - это преемники смарт-карт, в силу этого структура USB-ключей и смарт-карт идентична.

Бесконтактные смарт-карты

Бесконтактные смарт-карты (БСК) широко используются в различных приложениях как для аутентификации (режим электронного пропуска, электронный ключ к двери и т.д.), так и для разного рода транспортных, идентификационных, расчетных и дисконтных приложений.

Важным свойством БСК, выделяющим ее из ряда других смарт-карт, является отсутствие механического контакта с устройством, обрабатывающим данные с карты. Фактически надежность технических элементов систем, использующих БСК, определяется надежностью микросхем. Последнее обстоятельство приводит к существенному снижению эксплуатационных расходов на систему по сравнению с аналогичными системами, применяющими смарт-карты с внешними контактами.

Порядок проведения операций с БСК и устройством чтения/записи памяти карты (в дальнейшем - считывателем) определяется программным приложением. При поднесении пользователем карты к считывателю происходит транзакция, то есть обмен данными между картой и считывателем, и возможное изменение информации в памяти карты. Максимальное расстояние для осуществления транзакций между считывателем и картой составляет 10 см. При этом карту можно и не вынимать из бумажника. С одной стороны, это позволяет пользователю удобно и быстро произвести транзакцию, а с другой - при попадании в поле антенны карта вовлекается в процесс обмена информацией независимо от того, желал этого пользователь или нет.

Типичная начальная последовательность команд для работы приложения с картой включает:

  • захват карты (выбирается первая находящаяся в поле антенны считывателя карта), если необходимо - включение антиколлизионного алгоритма (команда антиколлизии сообщает приложению уникальный серийный номер захваченной карты, точнее уникальный номер встроенной в карту микросхемы);
  • выбор карты с данным серийным номером для последующей работы с памятью карты или ее серийным номером.

Указанная последовательность команд выполняется за 3 мс, то есть практически мгновенно.

Далее следует аутентификация выбранной области памяти карты. Она основана на использовании секретных ключей и будет описана ниже. Если карта и считыватель узнали друг друга, то данная область памяти открывается для обмена данными и в зависимости от условий доступа могут быть выполнены команды чтения и записи, а также специализированные команды электронного кошелька (если, конечно, область соответствующим образом была размечена при персонализации карты). Команда чтения 16 байтов памяти карты выполняется за 2,5 мс, команды чтения и изменения баланса кошелька - за 9-10 мс. Таким образом, типичная транзакция, начинающаяся с захвата карты и приводящая к изменению 16 байтов памяти, совершается максимум за 16 мс.

Для аутентификации сектора памяти карты применяется трехпроходный алгоритм с использованием случайных чисел и секретных ключей согласно стандарту ISO/IEC DIS 9798-2.

В общих чертах процесс аутентификации можно представить так. Чипы карты и устройства для работы с ней обмениваются случайными числами. На первом шаге карта посылает считывателю сформированное ею случайное число. Считыватель добавляет к нему свое случайное число, шифрует сообщение и отправляет его карте. Карта расшифровывает полученное сообщение, сравнивает свое случайное число с числом, полученным в сообщении; при совпадении она заново зашифровывает сообщение и направляет его считывателю. Считыватель расшифровывает послание карты, сравнивает свое случайное число с числом, полученным в сообщении, и при совпадении чисел аутентификация сектора считается успешной.

Итак, работа с сектором памяти возможна только после успешной аутентификации сектора выбранной карты и пока карта находится в поле антенны считывателя. При этом все данные, передаваемые по радиочастотному каналу, всегда шифруются.

Начальные (так называемые транспортные) ключи, а также условия доступа к секторам задаются во время первичной персонализации карты на заводе-изготовителе и секретным образом сообщаются эмитенту. В дальнейшем, в процессе вторичной персонализации карточки эмитентом или пользователем приложения, ключи обычно меняются на другие, известные только эмитенту или пользователю. Также (это определяется конкретным приложением) при вторичной персонализации изменяются и условия доступа к секторам памяти карты.

Бесконтактные смарт-карты разделяются на идентификаторы PROximity и смарт-карты, базирующиеся на международных стандартах ISO/IEC 15693 и ISO/IEC 14443. В основе большинства устройств на базе бесконтактных смарт-карт лежит технология радиочастотной идентификации (табл. 2).

Основными компонентами бесконтактных устройств являются чип и антенна. Идентификаторы могут быть как активными (с батареями), так и пассивными (без источника питания). Идентификаторы имеют уникальные 32/64-разрядные серийные номера.

Системы идентификации на базе PROximity криптографически не защищены, за исключением специальных заказных систем.

Каждый ключ имеет прошиваемый 32/64-разрядный серийный номер.

Комбинированные системы

Внедрение комбинированных систем существенно увеличивает количество идентификационных признаков и тем самым повышает безопасность (табл. 3).

В настоящее время существуют комбинированные системы следующих типов:

  • системы на базе бесконтактных смарт-карт и USB-ключей;
  • системы на базе гибридных смарт-карт;
  • биоэлектронные системы.

В корпус брелока USB-ключа встраиваются антенна и микросхема для создания бесконтактного интерфейса. Это позволяет организовать управление доступом в помещение и к компьютеру, используя один идентификатор. Такая схема применения идентификатора исключает ситуацию, когда сотрудник, покидая рабочее место, оставляет USB-ключ в разъеме компьютера, что дает возможность работать под его идентификатором.

Сегодня наибольшее распространение получили два идентификатора подобного типа: RFiKey - от компании Rainbow Technologies и eToken PRO RM - от фирмы Aladdin Software Security R.D. Устройство RFiKey поддерживает интерфейс USB 1.1/2.0 и функционирует со считывателями HID Corporation (PR5355, PK5355, PR5365, MX5375, PP6005) и российской компании Parsec (APR-03Hx, APR-05Hx, APR-06Hx, APR-08Hx, H-Reader). eToken RM - USB-ключи и смарт-карты eToken PRO, дополненные пассивными RFID-метками.

Применение eToken для контроля физического доступа

RFID-технология (Radio Frequency IDentification - радиочастотная идентификация) является наиболее популярной сегодня технологией бесконтактной идентификации. Радиочастотное распознавание осуществляется с помощью закрепленных за объектом так называемых RFID-меток, несущих идентификационную и другую информацию.

Из семейства USB-ключей eToken RFID-меткой может быть дополнен eToken PRO/32K и выше. При этом надо учитывать ограничения, обусловленные размерами ключа: RFID-метка должна быть не более 1,2 см в диаметре. Такие размеры имеют метки, работающие с частотой 13,56 МГц, например производства «Ангстрем» и HID.

Помимо традиционных преимуществ RFID-технологий, комбинированные USB-ключи и смарт-карты eToken, используя единый «электронный пропуск» для контроля доступа в помещения и к информационным ресурсам, позволяют:

  • сократить расходы;
  • защитить инвестиции, сделанные в ранее приобретенные СКУД, за счет интеграции eToken с большинством типов RFID-меток;
  • уменьшить влияние человеческого фактора на уровень информационной безопасности организации: сотрудник не сможет покинуть помещение, оставив комбинированную карту на рабочем месте;
  • автоматизировать учет рабочего времени и перемещений сотрудников по офису;
  • провести поэтапное внедрение путем постепенной замены выходящих из эксплуатации идентификаторов.

Применение гибридных смарт-карт для контроля физического доступа

Гибридные смарт-карты содержат разнородные чипы: один чип поддерживает контактный интерфейс, другой - бесконтактный. Как и в случае гибридных USB-ключей, гибридные смарт-карты решают две задачи: контроль доступа в помещение и к компьютеру. Дополнительно на карту можно нанести логотип компании, фотографию сотрудника или магнитную полосу, что позволяет заменить на такие карты обычные пропуска и перейти к единому электронному пропуску.

Смарт-карты подобного типа предлагают следующие компании: HID Corporation, Axalto, GemPlus, Indala, Aladdin и др.

В России компанией Aladdin Software Security R.D. разработана технология производства гибридных смарт-карт eToken PRO/SC RM. В них микросхемы с контактным интерфейсом eToken PRO встраиваются в бесконтактные смарт-карты. Смарт-карты eToken PRO могут быть дополнены пассивными RFID-метками производства HID/ISOPROx II, EM-Marin (частота 125 кГц), Cotag (частота 122/66 кГц), «Ангстрем»/КИБИ-002 (частота 13,56 МГц), Mifare и других компаний. Выбор варианта комбинирования определяет заказчик. Дополнительно на карту можно нанести логотип компании, фотографию сотрудника или магнитную полосу, что позволяет отказаться от обычных пропусков и перейти к единому электронному пропуску.

Биоэлектронные системы

Как правило, для защиты компьютерных систем от несанкционированного доступа применяется комбинация из двух систем - биометрической и контактной на базе смарт-карт или USB-ключей.

Что скрывается за понятием «биометрия»? Фактически мы используем такие технологии каждый день, однако как технический способ аутентификации биометрия стала применяться относительно недавно. Биометрия - это идентификация пользователя по уникальным, присущим только ему одному биологическим признакам. Такие системы являются самыми удобными, с точки зрения самих пользователей, поскольку не нужно ничего запоминать, а потерять биологические характеристики весьма сложно.

При биометрической идентификации в базе данных хранится цифровой код, ассоциированный с определенным человеком. Сканер или другое устройство, используемое для аутентификации, считывает конкретный биологический параметр. Далее он обрабатывается по определенным алгоритмам и сравнивается с кодом, содержащимся в базе данных.

Просто? С точки зрения пользователя - безусловно. Однако у данного метода существуют как достоинства, так и недостатки.

К достоинствам биометрических сканеров обычно относят то, что они никак не зависят от пользователя (например, пользователь может ошибиться при вводе пароля) и пользователь не может передать свой биологический идентификатор другому человеку, в отличие от пароля. А, например, подделать узор, имеющийся на пальце у каждого человека, практически невозможно. Однако, как показали исследования, проведенные в США, биометрические сканеры, основанные на отпечатках пальцев, довольно легко вводили в заблуждение с помощью муляжа отпечатка пальца или даже пальца трупа. Распространен также отказ в доступе, осуществляемый на основании распознавания голоса, если человек просто простыл. Но самый большой недостаток биометрических систем - это их высокая цена.

Все биометрические технологии можно разделить на две группы:

  • статические методы, которые основываются на физиологической (статической) характеристике человека, то есть уникальном свойстве, присущем ему от рождения и неотъемлемом от него. К статическим биологическим признакам относятся форма ладони, отпечатки пальцев, радужная оболочка, сетчатка глаза, форма лица, расположение вен на кисти руки и т.д.(табл. 4);
  • динамические методы, которые основываются на поведенческой (динамической) характеристике человека - особенностях, характерных для подсознательных движений в процессе воспроизведения какого-либо действия (подписи, речи, динамики клавиатурного набора).

Идеальная биометрическая характеристика человека (БХЧ) должна быть универсальной, уникальной, стабильной и собираемой. Универсальность означает наличие биометрической характеристики у каждого человека. Уникальность - что не может быть двух человек, имеющих идентичные значения БХЧ. Стабильность - независимость БХЧ от времени. Собираемость - возможность получения биометрической характеристики от каждого индивидуума. Реальные БХЧ не идеальны, и это ограничивает их применение. В результате экспертной оценки таких источников БХЧ, как форма и термограмма лица, отпечатки пальцев, геометрия руки, структура радужной оболочки глаза (РОГ), узор сосудов сетчатки, подпись, особенности голоса, форма губ и ушей, динамика почерка и походки, было установлено, что ни один из них не удовлетворяет всем требованиям по перечисленным выше свойствам (табл. 5). Необходимым условием использования тех или иных БХЧ является их универсальность и уникальность, что косвенно может быть обосновано их взаимосвязью с генотипом или кариотипом человека.

Распознавание по отпечаткам пальцев

Это самый распространенный статический метод биометрической идентификации, в основе которого лежит уникальность для каждого человека рисунка папиллярных узоров на пальцах. Изображение отпечатка пальца, полученное с помощью специального сканера, преобразуется в цифровой код (свертку) и сравнивается с ранее введенным шаблоном (эталоном) или набором шаблонов (в случае аутентификации).

Ведущие производители сканеров отпечатков пальцев:

  • BioLink (http://www.biolink.ru/ , http://www.biolinkusa.com/);
  • Bioscrypt (http://www.bioscrypt.com/);
  • DigitalPersona (http://www.digitalpersona.com/);
  • Ethentica (http://www.ethentica.com/);
  • Precise Biometrics (http://www.precisebiometrics.com/);
  • Ведущие производители сенсоров (считывающих элементов для сканирующих устройств):
  • Atmel (http://www.atmel.com/ , http://www.atmel-grenoble.com/);
  • AuthenTec (http://www.authentec.com/);
  • Veridicom (http://www.veridicom.com/);

Распознавание по форме руки

Данный статический метод построен на распознавании геометрии кисти руки, также являющейся уникальной биометрической характеристикой человека. С помощью специального устройства, позволяющего получать трехмерный образ кисти руки (некоторые производители сканируют форму нескольких пальцев), делаются измерения, необходимые для получения уникальной цифровой свертки, идентифицирующей человека.

Ведущие производители такого оборудования:

  • Recognition Systems (http://www.recogsys.com/ , http://www.handreader.com/);
  • BioMet Partners (http://www.biomet.ch/).

Распознавание по радужной оболочке глаза

Данный метод распознавания основан на уникальности рисунка радужной оболочки глаза. Для реализации этого метода необходима камера, позволяющая получить изображение глаза человека с достаточным разрешением, и специализированное программное обеспечение, выделяющее из полученного изображения рисунок радужной оболочки глаза, по которому строится цифровой код для идентификации человека.

ZlodeiBaal 11 августа 2011 в 21:54

Современные биометрические методы идентификации

  • Информационная безопасность

В последнее время на Хабре появляется множество статей, посвящённых Гугловским системам идентификации по лицам. Если честно, то от многих из них так и несёт журналистикой и мягко говоря некомпетентностью. И захотелось мне написать хорошую статью по биометрии, оно же мне не в первой! Пара неплохих статей по биометрии на Хабре есть - но они достаточно короткие и неполные. Тут я попробую вкратце обрисовать общие принципы биометрической идентификации и современные достижения человечества в этом вопросе. В том числе и в идентификации по лицам.

У статьи есть , которое, по-сути, является её приквэлом.

В качестве основы для статьи будет использована совместная с коллегой публикация в журнале (БДИ, 2009), переработанная под современные реалии. Коллеги пока Хабре нет, но публикацию переработанной статьи тут он поддержал. На момент публикации статья являлась кратким обзором современного рынка биометрических технологий, который мы проводили для себя перед тем как выдвинуть свой продукт. Оценочные суждения о применимости, выдвинутые во второй части статьи основаны на мнениях людей, использовавших и внедрявших продукты, а так же на мнениях людей, занимающихся производством биометрических систем в России и Европе.

Общая информация

Начнём с азов. В 95% случаев биометрия по своей сути - это математическая статистика. А матстат это точная наука, алгоритмы из которой используются везде: и в радарах и в байесовских системах. В качестве двух основных характеристик любой биометрической системы можно принять ошибки первого и второго рода). В теории радиолокации их обычно называют «ложная тревога» или «пропуск цели», а в биометрии наиболее устоявшиеся понятия - FAR (False Acceptance Rate) и FRR(False Rejection Rate). Первое число характеризует вероятность ложного совпадения биометрических характеристик двух людей. Второе – вероятность отказа доступа человеку, имеющего допуск. Система тем лучше, чем меньше значение FRR при одинаковых значениях FAR. Иногда используется и сравнительная характеристика EER, определяющая точку в которой графики FRR и FAR пересекаются. Но она далеко не всегда репрезентативна. Подробнее можно посмотреть, например, .
Можно отметить следующее: если в характеристиках системы не даны FAR и FRR по открытым биометрическим базам - то что бы производители не заявляли о её характеристиках, эта система скорее всего недееспособна или сильно слабее конкурентов .
Но не только FAR и FRR определяют качество биометрической системы. Если бы это было только так, то лидирующей технологией было бы распознавание людей по ДНК, для которой FAR и FRR стремятся к нулю. Но ведь очевидно, что эта технология не применима на сегодняшнем этапе развития человечества! Нами было выработано несколько эмпирических характеристик, позволяющих оценить качество системы. «Устойчивость к подделке» – это эмпирическая характеристика, обобщающая то, насколько легко обмануть биометрический идентификатор. «Устойчивость к окружающей среде» – характеристика, эмпирически оценивающая устойчивость работы системы при различных внешних условиях, таких как изменение освещения или температуры помещения. «Простота использования» показывает насколько сложно воспользоваться биометрическим сканером, возможна ли идентификация «на ходу». Важной характеристикой является «Скорость работы», и «Стоимость системы». Не стоит забывать и то, что биометрическая характеристика человека может изменяться со временем, так что если она неустойчива– это существенный минус.
Обилие биометрических методов поражает. Основными методами, использующими статические биометрические характеристики человека, являются идентификация по папиллярному рисунку на пальцах, радужной оболочке, геометрии лица, сетчатке глаза, рисунку вен руки, геометрии рук. Также существует семейство методов, использующих динамические характеристики: идентификация по голосу, динамике рукописного подчерка, сердечному ритму, походке. Ниже представлено распределение биометрического рынка пару лет назад. В каждом втором источнике эти данные колеблются на 15-20 процентов, так что это всего лишь оценочное представление. Так же тут под понятием «геометрия руки» скрываются два разных метода о которых будет рассказано ниже.


В статье мы будем рассматривать только те характеристики, которые применимы в системах контроля и управления доступом (СКУД) или в близких им задачах. В силу своего превосходства это в первую очередь именно статические характеристики. Из динамических характеристик на сегодняшний момент только распознавание по голосу имеет хоть какую-то статистическую значимость(сравнимую с худьшими статическими алгоритмами FAR~0.1%, FRR~6%), но лишь в идеальных условиях.
Чтобы ощутить вероятности FAR и FRR, можно оценить, как часто будут возникать ложные совпадения, если установить систему идентификации на проходной организации с численностью персонала N человек. Вероятность ложного совпадения полученного сканером отпечатка пальца для базы данных из N отпечатков равна FAR∙N. И каждый день через пункт контроля доступа проходит тоже порядка N человек. Тогда вероятность ошибки за рабочий день FAR∙(N∙N). Конечно, в зависимости от целей системы идентификации вероятность ошибки за единицу времени может сильно варьироваться, но если принять допустимым одну ошибку в течение рабочего дня, то:
(1)
Тогда получим, что стабильная работа системы идентификации при FAR=0.1% =0.001 возможна при численности персонала N≈30.

Биометрические сканеры

На сегодняшний день понятие «биометрический алгоритм» и «биометрический сканер» не обязательно взаимосвязаны. Компания может выпускать эти элементы по одиночке, а может совместно. Наибольшая дифференциация производителей сканеров и производителей софта достигнута на рынке биометрии папиллярного узора пальцев. Наименьшая на рынке сканеров 3D лица. По сути уровень дифференциации во многом отображает развитость и насыщенность рынка. Чем больше выбора - тем более тематика отработана и доведена до совершенства. Различные сканеры имеют различный набор способностей. В основном это набор тестов для проверки подделан объект биометрии или нет. Для сканеров пальцев это может быть проверка рельефности или проверка температуры, для сканеров глаза это может быть проверка аккомодации зрачка, для сканеров лица - движение лица.
Сканеры очень сильно влияют на полученную статистику FAR и FRR. В некоторых случаях эти цифры могут изменяться в десятки раз, особенно в реальных условиях. Обычно характеристики алгоритма даются для некой «идеальной» базы, или просто для хорошо подходящей, где выброшены нерезкие и смазанные кадры. Лишь немногие алгоритмы честно указывают и базу и полную выдачу FAR/FRR по ней.

А теперь поподробнее про каждую из технологий

Отпечатки пальцев


Дактилоскопия (распознавание отпечатков пальцев) - наиболее разработанный на сегодняшний день биометрический метод идентификации личности. Катализатором развития метода послужило его широкое использование в криминалистике 20 века.
Каждый человек имеет уникальный папиллярный узор отпечатков пальцев, благодаря чему и возможна идентификация. Обычно алгоритмы используют характерные точки на отпечатках пальцев: окончание линии узора, разветвлении линии, одиночные точки. Дополнительно привлекается информация о морфологической структуре отпечатка пальца: относительное положение замкнутых линий папиллярного узора, «арочных» и спиральных линий. Особенности папиллярного узора преобразовываются в уникальный код, который сохраняет информативность изображения отпечатка. И именно «коды отпечатков пальцев» хранятся в базе данных, используемой для поиска и сравнения. Время перевода изображения отпечатка пальца в код и его идентификация обычно не превышает 1с, в зависимости от размера базы. Время, затраченное на поднесение руки – не учитывается.
В качестве источника данных по FAR и FRR использовались статистические данные VeriFinger SDK, полученные при помощи сканера отпечатков пальцев DP U.are.U. За последние 5-10 лет характеристики распознавания по пальцу не сильно шагнули вперёд, так что приведённые цифры неплохо показывают среднее значение современных алгоритмов. Сам алгоритм VeriFinger несколько лет выигрывал международное соревнование «International Fingerprint Verification Competition», где соревновались алгоритмы распознавания по пальцу.

Характерное значение FAR для метода распознавания отпечатков пальцев – 0.001%.
Из формулы (1) получим, что стабильная работа системы идентификации при FAR=0.001% возможна при численности персонала N≈300.
Преимущества метода. Высокая достоверность - статистические показатели метода лучше показателей способов идентификации по лицу, голосу, росписи. Низкая стоимость устройств, сканирующих изображение отпечатка пальца. Достаточно простая процедура сканирования отпечатка.
Недостатки: папиллярный узор отпечатка пальца очень легко повреждается мелкими царапинами, порезами. Люди, использовавшие сканеры на предприятиях с численностью персонала порядка нескольких сотен человек заявляют о высокой степени отказа сканирования. Многие из сканеров неадекватно относятся к сухой коже и не пропускают стариков. При общении на последней выставке MIPS начальник службы безопасности крупного химического предприятия рассказывал что их попытка ввести сканеры пальцев на предприятии (пробовались сканеры различных систем) провалилась - минимальное воздействие химических реактивов на пальцы сотрудников вызывало сбой систем безопасности сканеров - сканеры объявляли пальцы подделкой. Так же присутствует недостаточная защищённость от подделки изображения отпечатка, отчасти вызванная широким распространением метода. Конечно, не все сканеры можно обмануть методами из Разрушителей Легенд, но всё же. Для некоторых людей с «неподходящими» пальцами (особенности температуры тела, влажности) вероятность отказа в доступе может достигать 100%. Количество таких людей варьируется от долей процентов для дорогих сканеров до десяти процентов для недорогих.
Конечно, стоит отметить, что большое количество недостатков вызвано широкой распространённостью системы, но эти недостатки имеют место быть и проявляются они очень часто.
Ситуация на рынке
На данный момент системы распознавания по отпечаткам пальцев занимают более половины биометрического рынка. Множество российских и зарубежных компаний занимаются производством систем управления доступом, основанных на методе дактилоскопической идентификации. По причине того, что это направление является одним из самых давнишних, оно получило наибольшее распространение и является на сегодняшний день самым разработанным. Сканеры отпечатков пальцев прошли действительно длинный путь к улучшению. Современные системы оснащены различными датчиками (температуры, силы нажатия и т.п.), которые повышают степень защиты от подделок. С каждым днем системы становятся все более удобными и компактными. По сути, разработчики достигли уже некоего предела в данной области, и развивать метод дальше некуда. Кроме того, большинство компаний производят готовые системы, которые оснащены всем необходимым, включая программное обеспечение. Интеграторам в этой области просто нет необходимости собирать систему самостоятельно, так как это невыгодно и займет больше времени и сил, чем купить готовую и уже недорогую при этом систему, тем более выбор будет действительно широк.
Среди зарубежных компаний, занимающихся системами распознавания по отпечаткам пальцев, можно отметить SecuGen(USB-сканеры для PC, сканеры, которые можно устанавливать на предприятия или встраивать в замки, SDK и ПО для связи системы с компьютером); Bayometric Inc. (fingerprint scanners, TAA/Access control systems, fingerprint SDKs, embedded fingerprint modules); DigitalPersona, Inc. (USB-scanners, SDK). В России в данной области работают компании: BioLink (дактилоскопические сканеры, биометрические устройства управления доступом, ПО); Сонда (дактилоскопические сканеры, биометрические устройства управления доступом, SDK); СмартЛок (дактилоскопические сканеры и модули) и др.

Радужная оболочка



Радужная оболочка глаза является уникальной характеристикой человека. Рисунок радужки формируется на восьмом месяце внутриутробного развития, окончательно стабилизируется в возрасте около двух лет и практически не изменяется в течение жизни, кроме как в результате сильных травм или резких патологий. Метод является одним из наиболее точных среди биометрических методов.
Система идентификации личности по радужной оболочке логически делится на две части: устройство захвата изображения, его первичной обработки и передачи вычислителю и вычислитель, производящий сравнение изображения с изображениями в базе данных, передающий команду о допуске исполнительному устройству.
Время первичной обработки изображения в современных системах примерно 300-500мс, скорость сравнения полученного изображения с базой имеет уровень 50000-150000 сравнений в секунду на обычном ПК. Такая скорость сравнения не накладывает ограничений на применения метода в больших организациях при использовании в системах доступа. При использовании же специализированных вычислителей и алгоритмов оптимизации поиска становится даже возможным идентифицировать человека среди жителей целой страны.
Сразу могу ответить что я несколько предвзято и положительно отношусь к этому методу, так как именно на этой ниве мы запускали свой стартап. Небольшому самопиару будет посвящён абзац в конце.
Статистические характеристики метода
Характеристики FAR и FRR для радужной оболочки глаза наилучшие в классе современных биометрических систем (за исключением, возможно, метода распознавания по сетчатке глаза). В статье приведены характеристики библиотеки распознавания радужной оболочки нашего алгоритма - EyeR SDK, которые соответствуют проверенному по тем же базам алгоритму VeriEye. Использовались базы фирмы CASIA, полученные их сканером.

Характерное значение FAR – 0.00001%.
Согласно формуле (1) N≈3000 - численность персонала организации, при которой идентификация сотрудника происходит достаточно стабильно.
Здесь стоит отметить немаловажную особенность, отличающую систему распознавания по радужной оболочке от других систем. В случае использования камеры разрешения от 1.3МП можно захватывать два глаза на одном кадре. Так как вероятности FAR и FRR являются статистически независимыми вероятностями, то при распознавании по двум глазам значение FAR будет приблизительно равняться квадрату значения FAR для одного глаза. Например, для FAR 0,001% при использовании двух глаз вероятность ложного допуска будет равна 10-8 %, при FRR всего в два раза выше, чем соответствующее значение FRR для одного глаза при FAR=0.001%.
Преимущества и недостатки метода
Преимущества метода. Статистическая надёжность алгоритма. Захват изображения радужной оболочки можно производить на расстоянии от нескольких сантиметров до нескольких метров, при этом физический контакт человека с устройством не происходит. Радужная оболочка защищена от повреждений - а значит не будет изменяться во времени. Так же, возможно использовать высокое количество методов, защищающих от подделки.
Недостатки метода. Цена системы, основанной на радужной оболочке выше цены системы, основанной на распознавании пальца или на распознавании лица. Низкая доступность готовых решений. Любой интегратор, который сегодня придёт на российский рынок и скажет «дайте мне готовую систему» - скорее всего обломается. В большинстве своём продаются дорогие системы под ключ, устанавливаемые большими компаниями, такими как Iridian или LG.
Ситуация на рынке
На данный момент удельный вес технологий идентификации по радужной оболочке глаза на мировом биометрическом рынке составляет по разным подсчетам от 6 до 9 процентов (в то время как технологии распознавания по отпечаткам пальцев занимают свыше половины рынка). Следует отметить, что с самого начала развития данного метода, его укрепление на рынке замедляла высокая стоимость оборудования и компонентов, необходимых, чтобы собрать систему идентификации. Однако по мере развития цифровых технологий, себестоимость отдельной системы стала снижаться.
Лидером по разработке ПО в данной области является компания Iridian Technologies.
Вход на рынок большому количеству производителю был ограничен технической сложностью сканеров и, как следствие, их высокой стоимостью, а так же высокой ценой ПО из-за монопольного положения Iridian на рынке. Эти факторы позволяли развиться в области распознавания радужной оболочки только крупным компаниям, скорее всего уже занимающимся производством некоторых компонентов пригодных для системы идентификации (оптика высокого разрешения, миниатюрные камеры с инфракрасной подсветкой и т.п.). Примерами таких компаний могут быть LG Electronics, Panasonic, OKI. Они заключили договор с Iridian Technologies, и в результате совместной работы появились следующие системы идентификации: Iris Access 2200, BM-ET500, OKI IrisPass. В дальнейшем возникли усовершенствованные модели систем, благодаря техническим возможностям данных компаний самостоятельно развиваться в этой области. Следует сказать, что вышеперечисленные компании разработали также собственное ПО, но в итоге в готовой системе отдают предпочтение программному обеспечению Iridian Technologies.
На Российском рынке «преобладает» продукция зарубежных компаний. Хотя и ту можно купить с трудом. Длительное время фирма Папилон уверяла всех, что у них есть распознавание по радужной оболочке. Но даже представители РосАтома - их непосредственного закупщика, для которого они делали систему рассказывают, что это не соответствует действительности. В какой-то момент проявлялась ещё какая-то российская фирма, которая сделала сканеры радужной оболочки. Сейчас уже не вспомню названия. Алгоритм они у кого-то закупили, возможно у того же VeriEye. Сам сканер представлял собой систему 10-15 летней давности, отнюдь не бесконтактную.
В последний год на мировой рынок вышло пара новых производителей в связи с истечением первичного патента на распознавание человека по глазам. Наибольшего доверия из них, на мой взгляд, заслуживает AOptix. По крайней мере их превью и документация не вызывает подозрений. Второй компанией является SRI International. Даже на первый взгляд человеку, занимавшемуся системами распознавания радужки их ролики кажутся весьма лживыми. Хотя я не удивлюсь если в реальности они что-то умеют. И та и та система не показывает данных по FAR и FRR, а так же, судя по всему, не защищена от подделок.

Распознавание по лицу

Существует множество методов распознавания по геометрии лица. Все они основаны на том, что черты лица и форма черепа каждого человека индивидуальны. Эта область биометрии многим кажется привлекательной, потому что мы узнаем друг друга в первую очередь по лицу. Данная область делится на два направления: 2-D распознавание и 3-D распознавание. У каждого из них есть достоинства и недостатки, однако многое зависит еще и от области применения и требований, предъявленных к конкретному алгоритму.
В кратце расскажу про 2-d и перейду к одному из самых интересных на сегодня методов - 3-d.
2-D распознавание лица

2-D распознавание лица - один из самых статистически неэффективных методов биометрии. Появился он довольно давно и применялся, в основном, в криминалистике, что и способствовало его развитию. В последствие появились компьютерные интерпретации метода, в результате чего он стал более надёжным, но, безусловно, уступал и с каждым годом все больше уступает другим биометрическим методам идентификации личности. В настоящее время из-за плохих статистических показателей он применяется, в мультимодальной или, как ее еще называют, перекрестной биометрии, или в социальных сетях.
Статистические характеристики метода
Для FAR и FRR использованы данные для алгоритмов VeriLook. Опять же, для современных алгоритмов он имеет весьма обыкновенные характеристики. Иногда промелькивают алгоритмы с FRR 0.1% при аналогичном FAR, но базы по которым они получены ну уж очень сомнительны (вырезанный фон, одинаковое выражение лица, одинаковые причёска, освещение).

Характерное значение FAR – 0.1%.
Из формулы (1) получаем N≈30 - численность персонала организации, при которой идентификация сотрудника происходит достаточно стабильно.
Как видно, статистические показатели метода достаточно скромные: это нивелирует то преимущество метода, что можно проводить скрытую съемку лиц в людных местах. Забавно наблюдать, как пару раз в год финансируется очередной проект по обнаружению преступников через видеокамеры, установленные в людных местах. За последние десяток лет статистические характеристики алгоритма не улучшились, а количество таких проектов - выросло. Хотя, стоит отметить, что для ведения человека в толпе через множество камер алгоритм вполне годится.
Преимущества и недостатки метода
Преимущества метода. При 2-D распознавании, в отличие от большинства биометрических методов, не требуется дорогостоящее оборудование. При соответствующем оборудовании возможность распознавания на значительных расстояниях от камеры.
Недостатки. Низкая статистическая достоверность. Предъявляются требования к освещению (например, не удается регистрировать лица входящих с улицы людей в солнечный день). Для многих алгоритмов неприемлемость каких-либо внешних помех, как, например, очки, борода, некоторые элементы прически. Обязательно фронтальное изображение лица, с весьма небольшими отклонениями. Многие алгоритмы не учитывают возможные изменения мимики лица, то есть выражение должно быть нейтральным.
3-D распознавание лица

Реализация данного метода представляет собой довольно сложную задачу. Несмотря на это в настоящее время существует множество методов по 3-D распознаванию лица. Методы невозможно сравнить друг с другом, так как они используют различные сканеры и базы. далеко не все из них выдают FAR и FRR, используются абсолютно различные подходы.
Переходным от 2-d к 3-d методом является метод, реализующий накопления информации о лицу. Этот метод имеет лучшие характеристики, чем 2d метод, но так же как и он использует всего одну камеру. При занесении субъекта в базу субъект поворачивает голову и алгоритм соединяет изображение воедино, создавая 3d шаблон. А при распознавании используется несколько кадров видеопотока. Этот метод скорее относится к экспериментальным и реализации для систем СКУД я не видел ни разу.
Наиболее классическим методом является метод проецирования шаблона. Он состоит в том, что на объект (лицо) проецируется сетка. Далее камера делает снимки со скоростью десятки кадров в секунду, и полученные изображения обрабатываются специальной программой. Луч, падающий на искривленную поверхность, изгибается - чем больше кривизна поверхности, тем сильнее изгиб луча. Изначально при этом применялся источник видимого света, подаваемого через «жалюзи». Затем видимый свет был заменен на инфракрасный, который обладает рядом преимуществ. Обычно на первом этапе обработки отбрасываются изображения, на котором лица не видно вообще или присутствуют посторонние предметы, мешающие идентификации. По полученным снимкам восстанавливается 3-D модель лица, на которой выделяются и удаляются ненужные помехи (прическа, борода, усы и очки). Затем производится анализ модели - выделяются антропометрические особенности, которые в итоге и записываются в уникальный код, заносящийся в базу данных. Время захвата и обработки изображения составляет 1-2 секунды для лучших моделей.
Так же набирает популярность метод 3-d распознавания по изображению, получаемому с нескольких камер. Примером этого может являться фирма Vocord со своим 3d сканером. Этот метод даёт точность позиционирования, согласно уверениям разработчиков, выше метода проецирования шаблона. Но, пока не увижу FAR и FRR хотя бы по их собственной базе - не поверю!!! Но его разрабатывают уже года 3, а подвижки на выставках пока не видны.
Статистические показатели метода
Полные данные о FRR и FAR для алгоритмов этого класса на сайтах производителей открыто не приведены. Но для лучших моделей фирмы Bioscript (3D EnrolCam, 3D FastPass), работающих по методу проецирования шаблона при FAR = 0.0047% FRR составляет 0.103%.
Считается, что статистическая надежность метода сравнима с надежностью метода идентификации по отпечаткам пальцев.
Преимущества и недостатки метода
Преимущества метода. Отсутствие необходимости контактировать со сканирующим устройством. Низкая чувствительность к внешним факторам, как на самом человеке (появление очков, бороды, изменение прически), так и в его окружении (освещенность, поворот головы). Высокий уровень надежности, сравнимый с метом идентификации по отпечаткам пальцев.
Недостатки метода. Дороговизна оборудования. Имеющиеся в продаже комплексы превосходили по цене даже сканеры радужной оболочки. Изменения мимики лица и помехи на лице ухудшают статистическую надежность метода. Метод еще недостаточно хорошо разработан, особенно в сравнении с давно применяющейся дактилоскопией, что затрудняет его широкое применение.
Ситуация на рынке
Распознавание по геометрии лица причисляют к «трем большим биометрикам» вместе с распознаванием по отпечаткам пальцев и радужной оболочке. Надо сказать, что данный метод довольно распространен, и ему отдают пока предпочтение перед распознаванием по радужке глаза. Удельный вес технологий распознавания по геометрии лица в общем объеме мирового биометрического рынка можно оценивать в пределах 13-18 процентов. В России к данной технологии также проявляется больший интерес, чем, например, к идентификации по радужной оболочке. Как уже упоминалось ранее, существует множество алгоритмов 3-D распознавания. В большинстве своем компании предпочитают развивать готовые системы, включающие сканеры, сервера и ПО. Однако есть и те, кто предлагает потребителю только SDK. На сегодняшний день можно отметить следующие компании, занимающиеся развитием данной технологии: Geometrix, Inc. (3D сканеры лица, ПО), Genex Technologies (3D сканеры лица, ПО) в США, Cognitec Systems GmbH (SDK, специальный вычислители, 2D камеры) в Германии, Bioscrypt (3D сканеры лица, ПО) – дочернее предприятие американской компании L-1 Identity Solutions.
В России в данном направлении работают компании Artec Group (3D сканеры лица и ПО) – компания, головной офис которой находится в Калифорнии, а разработки и производство ведутся в Москве. Также несколько российских компаний владеют технологией 2D распознавания лица – Vocord, ITV и др.
В области распознавания 2D лица основным предметом разработки является программное обеспечение, т.к. обычные камеры отлично справляются с захвата изображения лица. Решение задачи распознавания по изображению лица в какой-то степени зашло в тупик – уже на протяжении нескольких лет практически не происходит улучшения статистических показателей алгоритмов. В этой области происходит планомерная «работа над ошибками».
3D распознавание лица сейчас является куда более привлекательной областью для разработчиков. В нём трудится множество коллективов и регулярно слышно о новых открытиях. Множество работ находятся в состоянии «вот-вот и выпустим». Но пока что на рынке лишь старые предложения, за последние годы выбор не изменился.
Одним из интересных моментов, над которыми я иногда задумываюсь и на которые, возможно ответит Хабр: а точности kinect хватит для создания такой системы? Проекты по вытаскиванию 3d модели человека через него вполне себе есть.

Распознавание по венам руки


Это новая технология в сфере биометрии, широкое применение её началось всего лет 5-10 назад. Инфракрасная камера делает снимки внешней или внутренней стороны руки. Рисунок вен формируется благодаря тому, что гемоглобин крови поглощает ИК излучение. В результате, степень отражения уменьшается, и вены видны на камере в виде черных линий. Специальная программа на основе полученных данных создает цифровую свертку. Не требуется контакта человека со сканирующим устройством.
Технология сравнима по надёжности с распознаванием по радужной оболочке глаза, в чём-то превосходя её, а в чём-то уступая.
Значение FRR и FAR приведено для сканера Palm Vein. Согласно данным разработчика при FAR 0,0008% FRR составляет 0.01%. Более точный график для нескольких значений не выдаёт ни одна фирма.
Преимущества и недостатки метода
Преимущества метода. Отсутствие необходимости контактировать со сканирующим устройством. Высокая достоверность - статистические показатели метода сравнимы с показаниями радужной оболочки. Скрытость характеристики: в отличие от всех вышеприведённых - эту характеристику очень затруднительно получить от человека «на улице», например сфотографировав его фотоаппаратом.
Недостатки метода. Недопустима засветка сканера солнечными лучами и лучами галогеновых ламп. Некоторые возрастные заболевания, например артрит – сильно ухудшают FAR и FRR. Метод менее изучен в сравнении с другими статическими методами биометрии.
Ситуация на рынке
Распознавание по рисунку вен руки является довольно новой технологией, и в связи с этим ее удельный вес на мировом рынке невелик и составляет около 3%. Однако к данному методу проявляется все больший интерес. Дело в том, что, являясь довольно точным, этот метод не требует столь дорогого оборудования, как, например, методы распознавания по геометрии лица или радужной оболочке. Сейчас многие компании ведут разработки в данной сфере. Так, например, по заказу английской компании TDSi было разработано ПО для биометрического считывателя вен ладони PalmVein, представленного компанией Fujitsu. Сам сканер был разработан компанией Fujitsu в первую очередь для борьбы с финансовыми махинациями в Японии.
Также в сфере идентификации по рисунку вен работают следующие компании Veid Pte. Ltd. (scanner, software), Hitachi VeinID (scanners)
В России компаний, занимающихся данной технологией, мне не известно.

Сетчатка глаза


До недавнего времени считалось, что самый надёжный метод биометрической идентификации и аутентификации личности - это метод, основанный на сканировании сетчатки глаза. Он содержит в себе лучшие черты идентификации по радужной оболочке и по венам руки. Сканер считывает рисунок капилляров на поверхности сетчатки глаза. Сетчатка имеет неподвижную структуру, неизменную по времени, кроме как в результате болезни, например, катаракты.
Сканирование сетчатки происходит с использованием инфракрасного света низкой интенсивности, направленного через зрачок к кровеносным сосудам на задней стенке глаза. Сканеры сетчатки глаза получили широкое распространение в системах контроля доступа на особо секретные объекты, так как у них один из самых низких процентов отказа в доступе зарегистрированных пользователей и практически не бывает ошибочного разрешения доступа.
К сожалению, целый ряд трудностей возникает при использовании этого метода биометрии. Сканером тут является весьма сложная оптическая система, а человек должен значительное время не двигаться, пока система наводится, что вызывает неприятные ощущения.
По данным компании EyeDentify для сканера ICAM2001 при FAR=0,001% значение FRR составляет 0,4%.
Преимущества и недостатки метода
Преимущества. Высокий уровень статистической надёжности. Из-за низкой распространенности систем мала вероятность разработки способа их «обмана».
Недостатки. Сложная при использовании система с высоким временем обработки. Высокая стоимость системы. Отсутствие широкого рынка предложение и как следствие недостаточная интенсивность развития метода.

Геометрия рук


Этот метод, достаточно распространённы ещё лет 10 назад и произошедший из криминалистики в последние годы идёт на убыль. Он основан на получении геометрических характеристик рук: длин пальцев, ширины ладони и.т.д. Этот метод, как и сетчатка глаза - умирающий, а так как у него куда более низкие характеристики, то даже не будем вводить его боле полного описания.
Иногда считается что в системах распознавания по венам применяют геометрические методы распознавания. Но в продаже мы такого явно заявленного ни разу не видели. Да и к тому же часто при распознавании по венам делается снимок только ладони, тогда как при распознавании по геометрии делается снимок пальцев.

Немного самопиара

В своё время мы разработали неплохой алгоритм распознавания по глазам. Но на тот момент такая высокотехнологичная штука в этой стране была не нужна, а в буржуйстан (куда нас пригласили после первой же статьи) - ехать не хотелось. Но внезапно, спустя года полтора таки нашлись инвесторы, которые захотели построить себе «биометрический портал» - систему, которая бы кушала 2 глаза и использовала цветовую составляющую радужной оболочки (на что у инвестора был мировой патент). Собственно теперь мы этим и занимаемся. Но это не статья про самопиар, это краткое лирическое отступление. Если кому интересно есть немного инфы, а когда-нибудь в будущем, когда мы выйдем на рынок (или не выйдем) я тут напишу пару слов о перипетиях биометрического проекта в России.

Выводы

Даже в классе статических систем биометрии имеется большой выбор систем. Какую из них выбрать? Всё зависит от требований к системе безопасности. Самыми статистически надежными и устойчивыми к подделке системами доступа являются системы допуска по радужной оболочке и по венам рук. На первые из них существует более широкий рынок предложений. Но и это не предел. Системы биометрической идентификации можно комбинировать, достигая астрономических точностей. Самыми дешёвыми и простыми в использовании, но обладающими хорошей статистикой, являются системы допуска по пальцам. Допуск по 2D лицу удобен и дёшев, но имеет ограниченную область применений из-за плохих статистических показателей.
Рассмотрим характеристики, которые будет иметь каждая из систем: устойчивость к подделке, устойчивость к окружающей среде, простота использования, стоимость, скорость, стабильность биометрического признака во времени. Расставим оценки от 1 до 10 в каждой графе. Чем ближе оценка к 10, тем лучше система в этом отношении. Принципы выбора оценок были описаны в самом начале статьи.


Также рассмотрим соотношение FAR и FRR для этих систем. Это соотношение определяет эффективность системы и широту её использования.


Стоит помнить, что для радужной оболочки можно увеличить точность системы практически квадратично, без потерь для времени, если усложнить систему, сделав её на два глаза. Для дактилоскопического метода - путём комбинирования нескольких пальцев, и распознаванию по венам, путём комбинирования двух рук, но такое улучшение возможно только при увеличении времени, затрачиваемого при работе с человеком.
Обобщив результаты для методов, можно сказать, что для средних и больших объектов, а так же для объектов с максимальным требованием в безопасности следует использовать радужную оболочку в качестве биометрического доступа и, возможно, распознавание по венам рук. Для объектов с количеством персонала до нескольких сотен человек оптимальным будет доступ по отпечаткам пальцев. Системы распознавания по 2D изображению лица весьма специфические. Они могут потребоваться в случаях, когда распознавание требует отсутствия физического контакта, но поставить систему контроля по радужной оболочке невозможно. Например, при необходимости идентификации человека без его участия, скрытой камерой, или камерой наружного обнаружения, но возможно это лишь при малом количестве субъектов в базе и небольшом потоке людей, снимаемых камерой.

Юному технику на заметку

У некоторых производителей, например у Neurotechnology на сайте доступны демо-версии методов биометрии, которые они выпускают, так что вполне можно подключить их и поиграться. Для тех же, кто решит покопаться в проблеме посерьёзнее, могу посоветовать единственную книжку которую я видел на русском - «Руководство по биометрии» Р.М. Болл, Дж.Х. Коннел, Ш. Панканти. Там есть много алгоритмов и их математических моделей. Не всё полно и не всё соответствует современности, но база неплохая и объемлющая.

P.S.

В этом опусе я не вдавался в проблему аутентификации, а только затрагивал идентификацию. В принципе из характеристики FAR/FRR и возможности подделки все выводы по вопросу аутентификации напрашиваются сами.

Теги:

  • биометрия
  • сканеры отпечатков пальцев
Добавить метки

Основой любых систем защиты информационных систем являются идентификация и аутентификация, так как все механизмы защиты информации рассчитаны на работу с поименованными субъектами и объектами АС. Напомним, что в качестве субъектов АС могут выступать как пользователи, так и процессы, а в качестве объектов АС – информация и другие информационные ресурсы системы.

Присвоение субъектам и объектам доступа личного идентификатора и сравнение его с заданным перечнем называется идентификацией. Идентификация обеспечивает выполнение следующих функций:

Установление подлинности и определение полномочий субъекта при его допуске в систему,

Контролирование установленных полномочий в процессе сеанса работы;

Регистрация действий и др.

Аутентификацией (установлением подлинности) называется проверка принадлежности субъекту доступа предъявленного им идентификатора и подтверждение его подлинности. Другими словами, аутентификация заключается в проверке: является ли подключающийся субъект тем, за кого он себя выдает.

Общая процедура идентификации и аутентификации пользователя при его доступе в АС представлена на рис. 2.10. Если в процессе аутентификации подлинность субъекта установлена, то система защиты информации должна определить его полномочия (совокупность прав). Это необходимо для последующего контроля и разграничения доступа к ресурсам.

По контролируемому компоненту системы способы аутентификации можно разделить на аутентификацию партнеров по общению и аутентификацию источника данных. Аутентификация партнеров по общению используется при установлении (и периодической проверке) соединения во время сеанса. Она служит для предотвращения таких угроз, как маскарад и повтор предыдущего сеанса связи. Аутентификация источника данных – это подтверждение подлинности источника отдельной порции данных.

По направленности аутентификация может быть односторонней (пользователь доказывает свою подлинность системе, например при входе в систему) и двусторонней (взаимной).

Рис. 2.10. Классическая процедура идентификации и аутентификации

Обычно методы аутентификации классифицируют по используемым средствам. В этом случае указанные методы делят на четыре группы:

1. Основанные на знании лицом, имеющим право на доступ к ресурсам системы, некоторой секретной информации – пароля.

2. Основанные на использовании уникального предмета: жетона, электронной карточки и др.

3. Основанные на измерении биометрических параметров человека – физиологических или поведенческих атрибутах живого организма.

4. Основанные на информации, ассоциированной с пользователем, например, с его координатами.

Рассмотрим эти группы.

1. Наиболее распространенными простыми и привычными являются методы аутентификации, основанные на паролях – секретных идентификаторах субъектов. Здесь при вводе субъектом своего пароля подсистема аутентификации сравнивает его с паролем, хранящимся в базе эталонных данных в зашифрованном виде. В случае совпадения паролей подсистема аутентификации разрешает доступ к ресурсам АС.

Парольные методы следует классифицировать по степени изменяемости паролей:

Методы, использующие постоянные (многократно используемые) пароли,

Методы, использующие одноразовые (динамично изменяющиеся) пароли.

В большинстве АС используются многоразовые пароли. В этом случае пароль пользователя не изменяется от сеанса к сеансу в течение установленного администратором системы времени его действительности. Это упрощает процедуры администрирования, но повышает угрозу рассекречивания пароля. Известно множество способов вскрытия пароля: от подсмотра через плечо до перехвата сеанса связи. Вероятность вскрытия злоумышленником пароля повышается, если пароль несет смысловую нагрузку (год рождения, имя девушки), небольшой длины, набран на одном регистре, не имеет ограничений на период существования и т. д. Важно, разрешено ли вводить пароль только в диалоговом режиме или есть возможность обращаться из программы.

В последнем случае, возможно запустить программу по подбору паролей – «дробилку».

Более надежный способ – использование одноразовых или динамически меняющихся паролей.

Известны следующие методы парольной защиты, основанные на одноразовых паролях:

Методы модификации схемы простых паролей;

Методы «запрос-ответ»;

Функциональные методы.

В первом случае пользователю выдается список паролей. При аутентификации система запрашивает у пользователя пароль, номер в списке которого определен по случайному закону. Длина и порядковый номер начального символа пароля тоже могут задаваться случайным образом.

При использовании метода «запрос-ответ» система задает пользователю некоторые вопросы общего характера, правильные ответы на которые известны только конкретному пользователю.

Функциональные методы основаны на использовании специальной функции парольного преобразования . Это позволяет обеспечить возможность изменения (по некоторой формуле) паролей пользователя во времени. Указанная функция должна удовлетворять следующим требованиям:

Для заданного пароля x легко вычислить новый пароль ;

Зная х и y, сложно или невозможно определить функцию .

Наиболее известными примерами функциональных методов являются: метод функционального преобразования и метод «рукопожатия».

Идея метода функционального преобразования состоит в периодическом изменении самой функции . Последнее достигается наличием в функциональном выражении динамически меняющихся параметров, например, функции от некоторой даты и времени. Пользователю сообщается исходный пароль, собственно функция и периодичность смены пароля. Нетрудно видеть, что паролями пользователя на заданных -периодах времени будут следующие: x, f(x), f(f(x)), ..., f(x)n-1.

Метод «рукопожатия» состоит в следующем. Функция парольного преобразования известна только пользователю и системе защиты. При входе в АС подсистема аутентификации генерирует случайную последовательность x, которая передается пользователю. Пользователь вычисляет результат функции y=f(x) и возвращает его в систему. Система сравнивает собственный вычисленный результат с полученным от пользователя. При совпадении указанных результатов подлинность пользователя считается доказанной.

Достоинством метода является то, что передача какой-либо информации, которой может воспользоваться злоумышленник, здесь сведена к минимуму.

В ряде случаев пользователю может оказаться необходимым проверить подлинность другого удаленного пользователя или некоторой АС, к которой он собирается осуществить доступ. Наиболее подходящим здесь является метод «рукопожатия», так как никто из участников информационного обмена не получит никакой конфиденциальной информации.

Отметим, что методы аутентификации, основанные на одноразовых паролях, также не обеспечивают абсолютной защиты. Например, если злоумышленник имеет возможность подключения к сети и перехватывать передаваемые пакеты, то он может посылать последние как собственные.

2. В последнее время получили распространение комбинированные методы идентификации, требующие, помимо знания пароля, наличие карточки (token) – специального устройства, подтверждающего подлинность субъекта.

Карточки разделяют на два типа:

Пассивные (карточки с памятью);

Активные (интеллектуальные карточки).

Самыми распространенными являются пассивные карточки с магнитной полосой, которые считываются специальным устройством, имеющим клавиатуру и процессор. При использовании указанной карточки пользователь вводит свой идентификационный номер. В случае его совпадения с электронным вариантом, закодированным в карточке, пользователь получает доступ в систему. Это позволяет достоверно установить лицо, получившее доступ к системе и исключить несанкционированное использование карточки злоумышленником (например, при ее утере). Такой способ часто называют двухкомпонентной аутентификацией.

Иногда (обычно для физического контроля доступа) карточки применяют сами по себе, без запроса личного идентификационного номера.

К достоинству использования карточек относят то, что обработка аутентификационной информации выполняется устройством чтения, без передачи в память компьютера. Это исключает возможность электронного перехвата по каналам связи.

Недостатки пассивных карточек следующие: они существенно дороже паролей, требуют специальных устройств чтения, их использование подразумевает специальные процедуры безопасного учета и распределения. Их также необходимо оберегать от злоумышленников, и, естественно, не оставлять в устройствах чтения. Известны случаи подделки пассивных карточек.

Интеллектуальные карточки кроме памяти имеют собственный микропроцессор. Это позволяет реализовать различные варианты парольных методов защиты: многоразовые пароли, динамически меняющиеся пароли, обычные запрос-ответные методы. Все карточки обеспечивают двухкомпонентную аутентификацию.

К указанным достоинствам интеллектуальных карточек следует добавить их многофункциональность. Их можно применять не только для целей безопасности, но и, например, для финансовых операций. Сопутствующим недостатком карточек является их высокая стоимость.

Перспективным направлением развития карточек является наделение их стандартом расширения портативных систем PCMCIA (PC Card). Такие карточки являются портативными устройствами типа PC Card, которые вставляются в разъем PC Card и не требуют специальных устройств чтения. В настоящее время они достаточно дороги.

3. Методы аутентификации, основанные на измерении биометрических параметров человека (см. таблицу 2.6), обеспечивают почти 100 % идентификацию, решая проблемы утраты паролей и личных идентификаторов. Однако такие методы нельзя использовать при идентификации процессов или данных (объектов данных), так как они только начинают развиваться (имеются проблемы со стандартизацией и распространением), требуют пока сложного и дорогостоящего оборудования. Это обусловливает их использование пока только на особо важных объектах и системах.

Примерами внедрения указанных методов являются системы идентификации пользователя по рисунку радужной оболочки глаза, отпечаткам ладони, формам ушей, инфракрасной картине капиллярных сосудов, по почерку, по запаху, по тембру голоса и даже по ДНК.

Таблица 2.6

Примеры методов биометрии

Физиологические методы

Поведенческие методы

Снятие отпечатков пальцев

Сканирование радужной оболочки глаза

Сканирование сетчатки глаза

Геометрия кисти руки

Распознавание черт лица

Анализ клавиатурного почерка

Новым направлением является использование биометрических характеристик в интеллектуальных расчетных карточках, жетонах-пропусках и элементах сотовой связи. Например, при расчете в магазине предъявитель карточки кладет палец на сканер в подтверждение, что карточка действительно его.

Назовем наиболее используемые биометрические атрибуты и соответствующие системы.

· Отпечатки пальцев. Такие сканеры имеют небольшой размер, универсальны, относительно недороги. Биологическая повторяемость отпечатка пальца составляет 10-5 %. В настоящее время пропагандируются правоохранительными органами из-за крупных ассигнований в электронные архивы отпечатков пальцев.

· Геометрия руки. Соответствующие устройства используются, когда из-за грязи или травм трудно применять сканеры пальцев. Биологическая повторяемость геометрии руки около 2 %.

· Радужная оболочка глаза. Данные устройства обладают наивысшей точностью. Теоретическая вероятность совпадения двух радужных оболочек составляет 1 из 1078.

· Термический образ лица . Системы позволяют идентифицировать человека на расстоянии до десятков метров. В комбинации с поиском данных по базе данных такие системы используются для опознания авторизованных сотрудников и отсеивания посторонних. Однако при изменении освещенности сканеры лица имеют относительно высокий процент ошибок.

· Голос. Проверка голоса удобна для использования в телекоммуникационных приложениях. Необходимые для этого 16-разрядная звуковая плата и конденсаторный микрофон стоят менее 25 $. Вероятность ошибки составляет 2 – 5%. Данная технология подходит для верификации по голосу по телефонным каналам связи, она более надежна по сравнению с частотным набором личного номера. Сейчас развиваются направления идентификации личности и его состояния по голосу – возбужден, болен, говорит правду, не в себе и т.д.

· Ввод с клавиатуры. Здесь при вводе, например, пароля отслеживаются скорость и интервалы между нажатиями.

· Подпись. Для контроля рукописной подписи используются дигитайзеры.

4. Новейшим направлением аутентификации является доказательство подлинности удаленного пользователя по его местонахождению. Данный защитный механизм основан на использовании системы космической навигации, типа GPS (Global Positioning System). Пользователь, имеющий аппаратуру GPS, многократно посылает координаты заданных спутников, находящихся в зоне прямой видимости. Подсистема аутентификации, зная орбиты спутников, может с точностью до метра определить месторасположение пользователя. Высокая надежность аутентификации определяется тем, что орбиты спутников подвержены колебаниям, предсказать которые достаточно трудно. Кроме того, координаты постоянно меняются, что сводит на нет возможность их перехвата.

Аппаратура GPS проста и надежна в использовании и сравнительно недорога. Это позволяет ее использовать в случаях, когда авторизованный удаленный пользователь должен находиться в нужном месте.

Суммируя возможности средств аутентификации, ее можно классифицировать по уровню информационной безопасности на три категории:

1. Статическая аутентификация;

2. Устойчивая аутентификация;

3. Постоянная аутентификация.

Первая категория обеспечивает защиту только от НСД в системах, где нарушитель не может во время сеанса работы прочитать аутентификационную информацию. Примером средства статической аутентификации являются традиционные постоянные пароли. Их эффективность преимущественно зависит от сложности угадывания паролей и, собственно, от того, насколько хорошо они защищены.

Для компрометации статической аутентификации нарушитель может подсмотреть, подобрать, угадать или перехватить аутентификационные данные и т. д.

Устойчивая аутентификация использует динамические данные аутентификации, меняющиеся с каждым сеансом работы. Реализациями устойчивой аутентификации являются системы, использующие одноразовые пароли и электронные подписи. Усиленная аутентификация обеспечивает защиту от атак, где злоумышленник может перехватить аутентификационную информацию и пытаться использовать ее в следующих сеансах работы.

Однако устойчивая аутентификация не обеспечивает защиту от активных атак, в ходе которых маскирующийся злоумышленник может оперативно (в течение сеанса аутентификации) перехватить, модифицировать и вставить информацию в поток передаваемых данных.

Постоянная аутентификация обеспечивает идентификацию каждого блока передаваемых данных, что предохраняет их от несанкционированной модификации или вставки. Примером реализации указанной категории аутентификации является использование алгоритмов генерации электронных подписей для каждого бита пересылаемой информации.

Биометрические технологии основаны на биометрии, измерении уникальных характеристик отдельно взятого человека. Это могут быть как уникальные признаки, полученные им с рождения, например: ДНК, отпечатки пальцев, радужная оболочка глаза; так и характеристики, приобретённые со временем или же способные меняться с возрастом или внешним воздействием, например: почерк, голос или походка.

Принцип работы

Все биометрические системы работают практически по одинаковой схеме. Во-первых, система запоминает образец биометрической характеристики (это и называется процессом записи). Во время записи некоторые биометрические системы могут попросить сделать несколько образцов для того, чтобы составить наиболее точное изображение биометрической характеристики. Затем полученная информация обрабатывается и преобразовывается в математический код. Кроме того, система может попросить произвести ещё некоторые действия для того, чтобы «приписать» биометрический образец к определённому человеку. Например, персональный идентификационный номер (PIN) прикрепляется к определённому образцу, либо смарт-карта, содержащая образец, вставляется в считывающее устройство. В таком случае, снова делается образец биометрической характеристики и сравнивается с представленным образцом. Идентификация по любой биометрической системе проходит четыре стадии:

  • Запись - физический или поведенческий образец запоминается системой;
  • Выделение - уникальная информация выносится из образца и составляется биометрический образец;
  • Сравнение - сохраненный образец сравнивается с представленным;
  • Совпадение/несовпадение - система решает, совпадают ли биометрические образцы, и выносит решение.

Подавляющее большинство людей считают, что в памяти компьютера хранится образец отпечатка пальца, голоса человека или картинка радужной оболочки его глаза. Но на самом деле в большинстве современных систем это не так. В специальной базе данных хранится цифровой код длиной до 1000 бит, который ассоциируется с конкретным человеком, имеющим право доступа. Сканер или любое другое устройство, используемое в системе, считывает определённый биологический параметр человека. Далее он обрабатывает полученное изображение или звук, преобразовывая их в цифровой код. Именно этот ключ и сравнивается с содержимым специальной базы данных для идентификации личности.

Статические методы идентификации

По отпечатку пальца

В основе этого метода лежит уникальность для каждого человека рисунка паппилярных узоров на пальцах. Отпечаток, полученный с помощью специального сканера, преобразуется в цифровой код (свертку), и сравнивается с ранее введенным эталоном. Данная технология является самой распространенной по сравнению с другими методами биометрической аутентификации.

По форме ладони

Данный метод построен на геометрии кисти руки. С помощью специального устройства, состоящего из камеры и нескольких подсвечивающих диодов, которые, включаясь по очереди, дают разные проекции ладони, строится трехмерный образ кисти руки, по которому формируется свертка и идентифицируется человек.

По расположению вен на лицевой стороне ладони

С помощь инфракрасной камеры считывается рисунок вен на лицевой стороне ладони или кисти руки. Полученная картинка обрабатывается и по схеме расположения вен формируется цифровая свертка.

По сетчатке глаза

Точнее это способ называется идентификация по рисунку кровеносных сосудов глазного дна. Для того чтобы этот рисунок стал виден, нужно посмотреть на удаленную световую точку, глазное дно подсвечивается и сканируется специальной камерой.

По радужной оболочке глаза

Рисунок радужной оболочки глаза также является уникальной характеристикой человека. Для ее сканирования существуют специальные портативные камеры со специализированным программным обеспечением. Опознавание происходит следующим образом. Камера захватывает изображение части лица, из которого выделяется изображение глаза. Из изображения глаза выделяется рисунок радужной оболочки, по которому, строится цифровой код для идентификации человека.

По форме лица

В данном методе идентификации строится трехмерный образ лица человека. На лице выделяются контуры бровей, глаз, носа, губ и т.д., вычисляется расстояние между ними и строится не просто образ, а еще множество его вариантов на случаи поворота лица, наклона, изменения выражения. Количество образов варьируется в зависимости от целей использования данного способа (для аутентификации, верификации, удаленного поиска на больших территориях и т.д.).

По термограмме лица

В основе данного способа идентификации лежит уникальность распределения на лице артерий, снабжающих кровью кожу, которые выделяют тепло. Для получения термограммы, используются специальные камеры инфракрасного диапазона. В отличие от идентификации по форме лица, этот метод позволяет различать близнецов.

По ДНК

Преимущества данного способы очевидны. Однако, существующие в настоящее время методы получения и обработки ДНК, занимают так много времени, что могут использоваться только для специализированных экспертиз.

Другие методы статической идентификации

Существуют и другие методы идентификации по биометрическим характеристикам человек. Здесь описаны только самые распространенные из них. Например, есть такие уникальные способы, как идентификация по подногтевому слою кожи, по объему указанных для сканирования пальцев, форме уха, запаху тела и т.д.

Динамические методы

Динамические методы биометрической аутентификации основываются на поведенческой (динамической) характеристике человека, то есть построенны на особенностях, характерных для подсознательных движений в процессе воспроизведения какого-либо действия.

По рукописному почерку

Как правило, для этого вида идентификации человека используется его роспись (иногда написание кодового слова). Цифровой код идентификации формируется, в зависимости от необходимой степени защиты и наличия оборудования (графический планшет, экран карманного компьютера Palm и т.д.), двух типов:

  • По самой росписи (для идентификации используется просто степень совпадения двух картинок);
  • По росписи и динамическим характеристикам написания (для идентификации строится свертка, в которую входит информация по росписи, временным характеристикам нанесения росписи и статистическим характеристикам динамики нажима на поверхность).

По клавиатурному почерку

Метод в целом аналогичен описанному выше, но вместо росписи используется некое кодовое слово (когда для этого используется личный пароль пользователя, такую аутентификацию называют двухфакторной) и не нужно никакого специального оборудования, кроме стандартной клавиатуры. Основной характеристикой, по которой строится свертка для идентификации, является динамика набора кодового слова.

Это одна из старейших биометрических технологий. В настоящее время ее развитие активизировалось, ей прочится большое будущее и широкое использование в построении «интеллектуальных зданий». Существует достаточно много способов построения кода идентификации по голосу, как правило, это различные сочетания частотных и статистических характеристик голоса.

Другие методы динамической идентификации

Для данной группы методов также описаны только самые распространенные методы, существуют еще такие уникальные способы - как идентификация по движению губ при воспроизведении кодового слова, по динамике поворота ключа в дверном замке и т.д.

Применение

Биометрические технологии активно применяются во многих областях связанных с обеспечением безопасности доступа к информации и материальным объектам, а также в задачах уникальной идентификации личности, в целях:

  • Контроля доступа;
  • Защиты информации;
  • Идентификации клиентов.

Стандарты

BioAPI является стандартом BioAPI Consortium, разработанным специально для унификации программных интерфейсов программного обеспечения разработчиков биометрических устройств.

AAMVA Fingerprint Minutiae Format/National Standard for the Driver License/Identification Card DL/ID-2000 - американский стандарт на формат представления, хранения и передачи отпечатков пальцев для водительских прав. Совместим со спецификациями BioAPI и стандартом CBEFF.

CBEFF (Common Biometric Exchange File Format) — единый формат представления биометрических данных, который предлагается для замены биометрических форматов, используемых производителями различных сегментов рынка биометрических систем, в своем оборудовании и программном обеспечении. При создании CBEFF были учтены все возможные аспекты его применения, в том числе криптография, многофакторная биометрическая идентификация и интеграция с карточными системами идентификации.

CDSA/HRS (Human Recognition Services) - биометрический модуль в архитектуре Common Data Security Architecture, разработанной Intel Architecture Labs и одобренного консорциумом Open Group. CDSA определяет набор API, представляющих собой логически связанное множество функций, охватывающих такие компоненты защиты, как шифрование, цифровые сертификаты, различные способы аутентификации пользователей, в список которых благодаря HRS добавлена и биометрия. CDSA/HRS совместим со спецификациями BioAPI и стандартом CBEFF.

ANSI/NIST-ITL 1-2000 Fingerprint Standard Revision - американский стандарт, определяющий общий формат представления и передачи данных по отпечаткам пальцев, лицу, нательным шрамам и татуировкам для использования в правоохранительных органах США.

В России вопросы стандартизации находятся в ведении соответствующего подкомитета Национального технического комитета по стандартизации ТК 355, который с 2003 года представляет РФ в международном подкомитете по стандартизации в области биометрии ISO/IEC JTC1/SC37 “Biometrics” (ИСО/МЭК СТК 1 /ПК37 «Биометрия»).