Сканировать пальцы. Толчок к развитию

Что представляет собой отпечаток и как обмануть сканер отпечатков пальцев? По сути, отпечаток — это папиллярные узоры на коже. То есть выступы и углубления, которые складываются в определенный узор. У каждого человека они свои, индивидуальные.

Формирование папиллярных узоров

Формирование таких узоров происходит примерно на 12 неделе плода. В это же время формируется и нервная система. На узор оказывает влияние множество факторов. Это и положение плода в утробе матери, и генетический код, и состояние окружающей среды, и рацион питания матери, а также многое другое.

Узор способен восстанавливаться при небольших повреждениях эпидермиса. В данной статье мы рассмотрим, можно ли и как обмануть сканер отпечатков пальцев, а также каким образом он работает у современных телефонов.

Определение личности человека по отпечатку его пальцев является одним из наиболее надежных способов идентификации. К более точным методам можно отнести лишь анализ ДНК и сканирование сетчатки глаза.

Как работает сканер отпечатков

Сканер отпечатков пальцев должен выполнить два действия:

  1. Получить изображение узора
  2. Проверить, совпадает ли он с отпечатками, находящимися в базе данных.

Сканирование

Смартфоны в настоящее время снабжены оптическими сканерами. Принцип их работы похож на работу цифрового фотоаппарата. Матрица светодиодов освещает сам узор, а микросхема из светочувствительных светодиодов делает в это время снимок.

В то время, когда на светодиод попадает свет, он производит электрический заряд. Таким образом, формируется пиксель на будущем снимке узора. Цвет пикселя варьирует в зависимости от того, какое количество света попало.

Пиксели разной интенсивности и формируют узор. Прежде чем соотнести отпечаток с базой данных, сканер проверяет яркость и четкость снимка. При неудовлетворительных результатах весь процесс получения изображения повторяется.

Анализ отпечатка

Полученное изображение подвергается анализу программного обеспечения. Распознавание происходит при помощи сложных алгоритмов.

Можно разделить все узоры на три основных типа:

  • дуговые,
  • петлевые
  • завитковые.

После того, как тип узора определен, сканер ищет минуции. Это места, где заканчивается линия узора. К примеру, происходит разрыв или раздвоение линии. В минуциях и заключается вся уникальность отпечатка пальцев. Сканер распознает, как располагаются минуции по отношению друг к другу. Для этого весь рисунок делится на небольшие зоны. Каждый участок включает определенное число минуций. Данные об их расположении записываются.

Аналогичные зоны исследуемого отпечатка и базы данных подвергаются анализу. Если узоры одинаковые – владельцем отпечатков пальцев является один и тот же человек. Сканер не занимается сопоставлением абсолютно всех линий узора. Он лишь ищет похожие закономерности в блоках и на основании этих данных делает выводы.

Виды сканеров отпечатка пальца

Оптические сканеры бывают двух видов:

  • Сканеры Apple (iPhone 5s и далее) делают снимок пальца в то время, когда он прикасается к экрану телефона.
  • Другой тип сканера делает сразу несколько изображений, пока вы проводите пальцем по экрану. Такой сканер использовался в смартфонах Самсунг Галакси S5. Позже сканер заменили на первый тип. Он удобнее, но при этом дороже, поскольку надо использовать большую матрицу.

Все сканеры подобного плана имеют один минус: царапины и загрязнения могут вывести его из строя.

Наверняка, у многих когда-либо возникал вопрос, как обмануть сканер отпечатков пальцев и вообще возможно ли это? Ответ утвердительный. Разумеется, в компании понимают сейчас и понимали раньше при создании подобного функционала телефона, что любую биометрическую систему можно обмануть.

Достаточно сделать слепок фаланги пальца и прикоснуться им к сканеру. К тому же владельца телефона можно заставить приложить его палец к устройству.

Компания Apple продумала некоторые меры безопасности для таких случаев. Но всё же способ имеет право на существование. Айфоны старых моделей можно обмануть, просто распечатав снимок пальца с большим разрешением.

Как видите, есть несколько способов, как обмануть сканер отпечатков пальцев. Причем,если в айфонах это сделать затруднительно, то в смартфонах с ОС Андроид дело обстоит намного проще.

Все существующие на сегодняшний день сканеры отпечатков пальцев по используемым ими физическим принципам можно выделить в три группы:

  • оптические;
  • кремниевые (или полупроводниковые);
  • ультразвуковые.

Оптические сканеры

В основе работы оптических сканеров лежит оптический метод получения изображения. По видам используемых технологий можно выделить следующие группы оптических сканеров:

1. FTIR-сканеры - устройства, в которых используется эффект нарушенного полного внутреннего отражения (Frustrated Total Internal Reflection, FTIR) .

При падении света на границу раздела двух сред световая энергия делится на две части: одна отражается от границы, другая — проникает через границу раздела во вторую среду. Доля отраженной энергии зависит от угла падения. Начиная с некоторой его величины, вся световая энергия отражается от границы раздела. Это явление называется полным внутренним отражением . Однако при контакте более плотной оптической среды (в нашем случае поверхность пальца) с менее плотной (в практической реализации, как правило, поверхность призмы) в точке полного внутреннего отражения пучок света проходит через эту границу. Таким образом, от границы отразятся только пучки света, попавшие в такие точки полного внутреннего отражения, к которым не были приложены бороздки папиллярного узора поверхности пальца. Для фиксации получившейся световой картинки поверхности пальца используется специальная камера (ПЗС или КМОП в зависимости от реализации сканера).

2. Оптоволоконные сканеры (fiber optic scanners) - представляют собой оптоволоконную матрицу, каждое из волокон которой заканчивается фотоэлементом.

Чувствительность каждого фотоэлемента позволяет фиксировать остаточный свет, проходящий через палец, в точке прикосновения рельефа пальца к поверхности сканера. Изображение отпечатка пальца формируется по данным каждого из элементов.

3. Электрооптические сканеры (electro- optical scanners) основаны на использовании специального электрооптического полимера, в состав которого входит светоизлучающий слой.

При прикладывании пальца к сканеру неоднородность электрического поля у его поверхности (разность потенциалов между бугорками и впадинами) отражается на свечении этого слоя так, что он высвечивает отпечаток пальца. Затем массив фотодиодов сканера преобразует это свечение в цифровой вид.

4. Оптические протяжные сканеры (sweep optical scanners) в целом аналогичны FTIR-устройствам.

Их особенность в том, что палец нужно не просто прикладывать к сканеру, а проводить им по узкой полоске - считывателю. При движении пальца по поверхности сканера делается серия мгновенных снимков (кадров). При этом соседние кадры снимаются с некоторым наложением, т. е. перекрывают друг друга, что позволяет значительно уменьшить размеры используемой призмы и самого сканера. Для формирования (точнее сборки) изображения отпечатка пальца во время его движения по сканирующей поверхности кадрам используется специализированное программное обеспечение.

5. Роликовые сканеры (roller- style scanners) . В этих миниатюрных устройствах сканирование пальца происходит при прокатывании пальцем прозрачного тонкостенного вращающегося цилиндра (ролика).


Во время движения пальца по поверхности ролика делается серия мгновенных снимков (кадров) фрагмента папиллярного узора, соприкасающегося с поверхностью. Аналогично протяжному сканеру соседние кадры снимаются с наложением, что позволяет без искажений собрать полное изображение отпечатка пальца. При сканировании используется простейшая оптическая технология: внутри прозрачного цилиндрического ролика находятся статический источник света, линза и миниатюрная камера. Изображение освещаемого участка пальца фокусируется линзой на чувствительный элемент камеры. После полной «прокрутки» пальца, «собирается картинка» его отпечатка.

6. Бесконтактные сканеры (touchless scanners) . В них не требуется непосредственного контакта пальца с поверхностью сканирующего устройства.

Палец прикладывается к отверстию в сканере, несколько источников света подсвечивают его снизу с разных сторон, в центре сканера находится линза, через которую, собранная информация проецируется на КМОП-камеру, преобразующую полученные данные в изображение отпечатка пальца.

Полупроводниковые (кремниевые) сканеры

В основе этих сканеров использование для получения изображения поверхности пальца свойств полупроводников, изменяющихся в местах контакта гребней папиллярного узора с поверхностью сканера. В настоящее время существует несколько технологий реализации полупроводниковых сканеров.

1. Емкостные сканеры (capacitive scanners) - наиболее широко распространенный тип полупроводниковых сканеров, в которых для получения изображения отпечатка пальца используется эффект изменения емкости pn-перехода полупроводникового прибора при соприкосновении гребня папиллярного узора с элементом полупроводниковой матрицы.

Существуют модификации описанного сканера, в которых каждый полупроводниковый элемент в матрице сканера выступает в роли одной пластины конденсатора, а палец - в роли другой. При приложении пальца к сенсору между каждым чувствительным элементом и выступом-впадиной папиллярного узора образуется некая емкость, величина которой определяется расстоянием между поверхностью пальца и элементом. Матрица этих емкостей преобразуется в изображение отпечатка пальца.

2. Чувствительные к давлению сканеры (pressure scanners) - в этих устройствах используются сенсоры, состоящие из матрицы пьезоэлементов.

При прикладывании пальца к сканирующей поверхности выступы папиллярного узора оказывают давление на некоторое подмножество элементов поверхности, соответственно впадины никакого давления не оказывают. Матрица полученных с пьезоэлементов напряжений преобразуется в изображение поверхности пальца.

3. Термо-сканеры (thermal scanners) - в них используются сенсоры, которые состоят из пироэлектрических элементов, позволяющих фиксировать разницу температуры и преобразовывать ее в напряжение (этот эффект также используется в инфракрасных камерах).

При прикладывании пальца к сенсору по температуре прикасающихся к пироэлектрическим элементам выступов папиллярного узора и температуре воздуха, находящегося во впадинах, строится температурная карта поверхности пальца и преобразуется в цифровое изображение.


Данные типы сканеров являются самыми распространенными. Во всех приведенных полупроводниковых сканерах используются матрица чувствительных микроэлементов (тип которых определяется способом реализации) и преобразователь их сигналов в цифровую форму. Таким образом, обобщенно схему работы приведенных полупроводниковых сканеров можно продемонстрировать следующим образом:

4. Радиочастотные сканеры (RF- Field scanners) - в таких сканерах используется матрица элементов, каждый из которых работает как маленькая антенна.

Сенсор генерирует слабый радиосигнал и направляет его на сканируемую поверхность пальца. Каждый из чувствительных элементов принимает отраженный от папиллярного узора сигнал. Величина наведенной в каждой микроантенне электро-движущая сила (ЭДС) зависит от наличия или отсутствия в близи нее гребня папиллярного узора. Полученная таким образом матрица напряжений преобразуется в цифровое изображение отпечатка пальца.

5. Протяжные термо-сканеры (thermal sweep scanners) - разновидность термо-сканеров, в которых для сканирования (так же как и в оптических протяжных сканерах), необходимо провести пальцем по поверхности сканера, а не просто приложить его.

6. Емкостные протяжные сканеры (capacitive sweep scanners) - используют аналогичный способ покадровой сборки изображения отпечатка пальца, но каждый кадр изображения получается с помощью емкостного полупроводникового сенсора.

7. Радиочастотные протяжные сканеры (RF- Field sweep scanners) - аналогичны емкостным, но используют радиочастотную технологию.

Ультразвуковые сканеры

Ультразвуковое сканирование - это сканирование поверхности пальца ультразвуковыми волнами и измерение расстояния между источником волн и впадинами и выступами на поверхности пальца по отраженному от них эху. Качество получаемого таким способом изображения в 10 раз лучше, чем полученного любым другим, представленным на биометрическом рынке методом. Кроме этого, стоит отметить, что данный способ практически полностью защищен от муляжей, поскольку позволяет кроме отпечатка пальца получать и некоторые дополнительные характеристики о его состоянии (например, пульс внутри пальца).

Примеры использования сканеров отпечатков пальцев

Основное применение технологии распознавания по отпечаткам пальцев – защита от несанкционированного доступа. Чаще используются в охранных системах и системах учета рабочего времени сотрудников.

Для контроля доступа, сканеры отпечатков пальцев встраивают в ноутбуки, мобильные телефоны, внешние накопители, флэш-карты и т.д. и т.п.

Человек всегда пытался сохранить свою личную информацию в тайне. И это совсем не удивляет – на то она и личная! С появлением первых компьютеров пользователи начали защищать свои данные паролями и различными ПИН-кодами. Однако первые компьютеры были созданы не для домашнего пользования, а для различных производственных фирм. Пусть на них и не было личной информации, они хранили различные алгоритмы работы, которые тоже разглашать никто не хотел.

Затем компьютеры постепенно начали «одомашниваться», а параллельно этому появляются и сотовые телефоны. И уже каждый человек, воспользовавшись комбинацией, известной только ему, смог обезопасить свои данные. Долгое время в обиходе применялись различные комбинации символов в качестве паролей. Однако на смену им приходит сканер отпечатков пальцев. Он был популярен в Америке ещё в середине 90-х. Идея заключалась в том, что можно получить доступ к устройству «в одно касание». И вместо того, чтобы каждый раз вводить пароль, пользователю достаточно лишь дотронуться до соответствующей площадки.

Сканер отпечатков пальцев в России

В России же такое нововведение не имело высокого распространения в те времена. Лишь 20 сентября 2013 года, когда был запущен iPhone 5s, который как раз и имеет встроенный сканер отпечатков пальцев и совокупность средств (Touch ID) для обеспечения его работы, широкая группа пользователей смогла оценить столь интересную технологию. После появления смартфона из Купертино на рынок повалила куча моделей выше среднего ценового сегмента, которые оснащались сканером отпечатков пальцев. Сегодня же даже бюджетные смартфоны в большинстве своем имеют биометрический датчик для идентификации пользователей.

Насколько безопасен сканер отпечатков пальцев?

Несмотря на то, что биометрические показатели человека не так просто подделать, сканер отпечатков не так безопасен, как может казаться. Команда «Лаборатории Касперского» провела проверку защищённости этого приспособления. Выяснилось, что на некоторых устройствах информация об отпечатках хранится в незашифрованной форме и в формате картинки. Так что теоретически любое приложение, которому вы дадите доступ к интернету и к локальным файлам, сможет передать информацию о ваших отпечатках куда угодно. Поэтому «Касперский» рекомендовал пользоваться только проверенными приложениями и программами. Как бы то ни было, на большинстве современных девайсов эта информация хранится в закодированном виде и в надёжно защищённой папке.

Альтернативы сканера отпечатков пальцев

Компания Samsung решила последовать примеру Apple с ее Touch ID и придумать уникальный биометрический датчик, который можно внедрить в смартфон. Фирмой было принято решение разработать сканер радужки глаза. Его суть состоит в том, что для разблокировки устройства необходимо посмотреть в камеру, чтобы система, проанализировав полученные данные, распознала вас. Она фиксирует именно радужку глаза, которая так же, как и отпечатки пальцев, у каждого человека разная. Однако и этот вид биометрической идентификации далеко не идеален. Технология требует, чтобы было видно более 90% радужки глаза. Некоторые люди с азиатским разрезом глаз жалуются на то, что устройство просит открыть глаза пошире, но в силу анатомических особенностей это сделать не так просто.

Фирма Apple тоже решила не останавливаться на сканере отпечатков пальцев, разработав Face ID. Это совокупность программ, которая проводит анализ вашего лица и строит его объёмную виртуальную модель. Она, помимо уникального рельефа лица, также несёт в себе информацию о ваших глазах, губах и носе. Эти показатели хранятся на смартфоне в закодированном формате. Но и эта технология биометрической идентификации не смогла гарантировать стопроцентную защиту. Уже через неделю после запуска iPhone X, который первым получил Face ID, в сети было опубликовано видео, в котором один из специалистов компании при помощи маски.

Где располагается

Чаще всего для расположения сканера используют два места: кнопка «Домой» на передней части смартфона или задняя крышка устройства. Сканер выглядит, как гладкая поверхность, чаще всего немного обрамлённая маленьким бортиком. Редко дактилоскопический сканер встраивают в боковую кнопку питания.

Как настроить

Чтобы настроить работу сканера отпечатков пальцев на Android-устройстве, вам необходимо зайти в настройки, затем выбрать пункт «Экран блокировки» (иногда «Экран блокировки и отпечатка пальца»), нажать на «Управление отпечатками пальцев» и смело можете производить настройку. А именно – добавить отпечаток пальца или удалить из уже занесённых в память.

В основном смартфоны могут хранить до 10 отпечатков пальцев (реже меньше). Чтобы занести отпечаток пальца, необходимо выбрать соответствующий пункт и приложить палец к сканеру (не нажимая кнопки «Домой», если он в неё встроен), прикладывая палец в разных положениях. Также после занесения отпечатка пальца в память устройства желательно присвоить ему какое-либо наименование, дабы не запутаться, если в систему будет занесено несколько отпечатков.

С каждым годом цифровые технологии всё сильнее проникают в нашу жизнь. Деньги, документы, личные видео и фотографии, записи образуют массивы данных обо всех аспектах человеческой жизни. В теории, при должной усидчивости, с их помощью возможно построить исчерпывающий психологический портрет человека, украсть деньги, проникнуть в чужой дом. Защита личных данных в современном мире становится всё актуальнее.

Предпосылки развития

Эта пятиминутка паранойи понадобилась не для того, чтобы вас напугать (хотя если вы сейчас задумались о том, чтобы сменить пароли на более стойкие - это здорово), а чтобы объяснить почему производители смартфонов почти повсеместно в своих продуктах стали использовать методы биометрической аутентификации - защиты, в основе которой лежит уникальность параметров частей человеческого тела.

Таких параметров много, но не все из них подходят для целей защиты данных. Одни сильно меняются со временем, другие нелегко и неудобно считывать с технической точки зрения. Например, криминалисты иногда опознают людей по прикусу или при помощи ДНК, но вы ведь не будете снимать слепки с челюстей, каждый раз, когда предстоит авторизироваться в почте. Неудобно и сдавать капельку крови, чтобы разблокировать смартфон.

Если учесть все “но” остаются: рисунок радужки глаза, форма лица и черепа, а также отпечатки пальцев - малейшие узоры покрывающие кожу.

Несмотря на то, что смартфоны с датчиками отпечатков пальцев появились сравнительно недавно, сама технология прошла длинный путь развития. Я не буду обращаться к истории криминалистики, в которой дактилоскопия используется с 1902 года, а сразу перейду к применению ее достижений в различных гаджетах.

Толчок к развитию

Одним из первых девайсов, получивших датчик отпечатков пальцев, стал ноутбук от Acer - TravelMate 739. На обработку прикосновения к сканеру ему требовалось чуть больше 12 секунд, но для начала двухтысячных годов это было невероятно.

Уже в 2002 году мир увидел первое мобильное устройство со сканером отпечатков пальцев - карманный компьютер от HP - iPAQ Pocket PC h5400. Экран 320×240 точек, процессор Intel PXA250 400МГц, 64 МБ ОЗУ и 20 МБ под файловое хранилище - я мечтал о таком.


Уже на следующий год компания Fujitsu выпускает свой первый мобильный телефон с дактилоскопическим сканером и с тех пор, вплоть до 2011 года, на рынок попадает порядка 30 различных телефонов со сканерами отпечатков пальцев.

Apple запатентовала разблокировку с помощью дактилоскопического датчика в 2008 году, но пока компания доводила технологию до ума, Motorola представила первый в мире Android-смартфон с дактилоскопом - Atrix 4G.


К несчастью для Motorola, это устройство на рынке осталось почти что незамеченным. К моменту старта продаж интерес покупателей и индустрии к сканерам окончательно угас, чтобы возродиться вслед за анонсом iPhone 5S 10 сентября 2013 года. После этого события каждая уважающая себя компания считала долгом как можно скорее встроить сканер отпечатков пальцев свой аппарат.

Разновидности сканеров отпечатков пальцев

Отпечатки пальцев считываются различными способами. Существует несколько типов сканеров: оптические, емкостные, ультразвуковые, радиочастотные, термальные и распознающие узор за счет давления. Рассказывать обо всех этих разновидностях нет смысла, поскольку в мобильных устройствах используются только некоторые из них.

Сейчас в потребительской электронике наиболее распространены оптические и емкостные сенсоры.

Оптические дактилоскопические датчики - наиболее старая из актуальных технологий. Возможно, вы вспомните, как в некоторых фильмах, чтобы попасть за запертую дверь герой прикладывает к стеклянной пластине палец или ладонь, и кожу сканирует медленно проползающий луч света. Конечно, в реальности все происходит не так наглядно, но принцип тот же. По сути оптический дактилоскоп это маленький, но чрезвычайно чувствительный цифровой фотоаппарат. Палец подсвечивается сквозь полупрозрачную площадку и сенсоры в глубине датчика улавливают отраженный от поверхности кожи свет. По характеру отражения создается представление о форме узора, о складках кожи.

Общим недостатком оптических сканеров отпечатков пальцев является их чувствительность к загрязнениям. Стоит испачкаться контактной площадке или самому пальцу и количество отказов увеличивается в разы.


К тому же такой сканер несложно обмануть, что с удовольствием демонстрируют хакеры. Достаточно распечатать фотографию пальца в высоком разрешении и сканер “купится” на подмену.

Вторая распространенная технология - емкостные сенсоры . Они различают пальцы при помощи массива полупроводниковых элементов. Это очень похоже на сенсорный экран, но намного более тонко. Когда человек прикасается к такому датчику, изменяется распределение электрических зарядов на пластине сенсора, усеянной массой крошечных конденсаторов. Во впадинах и на гребнях которые образуют рисунок на коже заряд различается. Изменения отслеживаются и сохраняются в памяти устройства в виде паттерна, по которому можно опознать рисунок конкретного пальца. Но и это не панацея. Применяя 3D-печать и токопроводящие материалы позволяют изготовить подделку, которую не отличит от оригинала и емкостный датчик.


Наиболее продвинутой и пока еще очень слабо распространенной в мобильной электронике технологией остается ультразвуковое распознавание отпечатков пальцев.

В оптических сканерах происходит измерение угла отражения лучей света от рельефа пальца. В ультразвуковом сканере действует тот же принцип, но информация о рельефе кожи получается при помощи звука. Сенсором измеряется то, как кожа взаимодействует с ультразвуком. Причем он не просто отражается от поверхности пальца, а проникает вглубь кожи. В результате получается не двухмерное изображения, а объемная карта звуковых отражений, подделать которую очень сложно.

Одним из первых смартфонов с ультразвуковым сканером отпечатков пальцев стал производства LeEco, но ничего выдающегося, кроме технологии, в его датчике отпечатков пальцев не было. А ведь ультразвук хорошо проникает сквозь стекло и металл. В теории это позволяет конструкторам прятать дактилоскопический сенсор глубоко в корпусе смартфона под другими деталями.


Соедините эту особенность с нынешним увлечением безрамочными экранами и получите концепцию смартфона у которого датчик отпечатка пальца, расположен под дисплеем. Прототипы с таким расположением сенсора уже , нам осталось только дождаться релиза технологии в полноценном продукте. Его уже давно прочат , но не исключено, что корейцев обойдут на финишной прямой .

Аппаратная реализация сканирования отпечатка пальца это лишь половина того, что нужно сделать, чтобы защитить ваши данные. Куда важнее то, как смартфон хранит данные об отпечатках и то, как ими распоряжается.

Но прежде чем перейти к нюансам программной реализации биометрической аутентификации по отпечаткам пальцев - небольшой совет. Если вы хотите увеличить скорость распознавания отпечатка смартфоном - добавьте один и тот же палец в систему дважды.

“Железо” - это не все

Рассказывать о программной части я также буду в хронологическом порядке. В смартфонах на Android поначалу не существовало единого подхода к разблокировке устройства отпечатком пальца. Каждый производитель организовывал этот процесс в соответствии с собственными представлениями о безопасности. Порой весьма странными.

Например, громким скандалом стала история с HTC One Max, где в памяти телефона хранились полные копии отпечатков пальцев как есть, даже без шифрования.

Эталоном стала технология Touch ID от Apple. Смартфоны компании не запоминают отпечатки пальцев. Вместо этого, данные с сенсора в момент сканирования преобразовываются в одностороннюю хеш-функцию - битовую строку, из которой нельзя восстановить отпечаток.

Принцип проиллюстрирую на примере уравнения a+b=4. Какие пары чисел дают в сумме четыре - догадаться не сложно. Если слева от знака “равно” вместо a+b находится особая математическая последовательность - односторонняя хеш-функция. В нее можно подставить цифры, полученные с датчика отпечатков пальцев и получить справа некое значение. В одну сторону такую функцию посчитать легко, но проделать обратную операцию практически невозможно.


Чтобы по цифрам справа от знака “равно” выяснить, какие данные подставил в хеш-функцию датчик отпечатков пальцев, с текущим уровнем быстродействия компьютеров, потребуется время, сопоставимое с возрастом вселенной.

В памяти смартфона хранятся только хеш-функции, к тому же они дополнительно шифруются и извлекаются из защищенной памяти смартфона только когда требуются пользователю.

Аналогичный алгоритм, названный Nexus Imprint появился у пользователей Android только вместе с 6-й версией этой операционной системы. Тогда же Google представила Fingerprint API для сторонних разработчиков и включила в программу сертификации аппаратов требования к датчику отпечатков пальцев.

Но вечная проблема Android - фрагментация накладывает опечаток и здесь. Если для продажи устройств в Европе производители получают все необходимые сертификаты, то для выхода на такие рынки, как Китай и Индия это делать не обязательно. Так что многие аппараты без Google Play, попадающие по неофициальным каналам в частности на российский рынок, не недостаточно хорошо защищены.

Кроме того, энтузиастам “перепрошивок” следует помнить о том, что разблокировка загрузчика смартфона фактически отключает все меры безопасности, предпринятые разработчиком операционной системы.

Не безопаснее, но удобнее


Как видите, для смартфона ваши отпечатки пальцев мало чем отличаются от обычного пароля - такие же последовательности цифр, пускай и вводятся они не с наэкранной клавиатуры, а при помощи специального датчика. Они не безопаснее, но заметно удобнее паролей. Их нельзя потерять или забыть, они быстрее вводятся и что самое главное, с ними владельцы смартфонов стали защищать свои устройства гораздо чаще. На это и был расчет, когда Apple внедряла Touch ID - аккуратно подготовить платформу для развертывания и внедрения фирменной системы бесконтактных платежей - Apple Pay.

И тут надо отдать компании должное. Преследуя коммерческие интересы она в очередной раз выступила в роли локомотива, спровоцировав изменения, которые пошли на пользу всей индустрии.

Не так давно технология считывания отпечатков пальцев была связана в основном с научно-фантастическими фильмами. Теперь, даже в бюджетном смартфоне Xiaomi есть сканер отпечатков пальцев. Мы объясним читателям принцип его работы.

Сканер отпечатков пальцев (Touch ID) позволяет идентифицировать пользователя на основе уникального рисунка кожи на кончике пальца. У каждого человека свой собственный отпечаток и «рисунок», который не повторяется даже в случае идентичных близнецов.

Отпечаток пальца (fingerprint) позволяет идентифицировать любого человека, например в случае поиска преступников. Как оказалось, функция Touch ID также полезна для пользователей смартфонов. С её помощью можно защитить смартфон от несанкционированного доступа.

В настоящее время на рынке существует несколько типов сканеров. Все они работают по одному и тому же принципу – сканер считывает отпечаток владельца смартфона и при попытке разблокировать его сравнивает «рисунок» с тем, который запрограммирован заранее в устройстве. Если отпечаток пальца совпадает, устройство будет разблокировано. В противном случае появится сообщение об ошибке.

Интересно, что сканеры не анализируют весь рисунок отпечатка пальца. Проверяются только некоторые из характерных черт или узоров. Это, например, ветвление, раздвоение или обрывание отпечатков пальцев.

Сканеры преобразуют картинку в темплит (шаблон), и по алгоритму сравнивают расстояние между кривыми и линиями. Это позволяет сделать процесс проверки намного короче, чем если бы вам нужно было проанализировать весь отпечаток пальца.

Алгоритмы подтверждают отпечаток, если примерно 40% минуций совпадает с сохранённым рисунком. На практике, этого достаточно для идентификации конкретного пользователя и обеспечения отказоустойчивости.

Минуции (или «точки Гальтона») – это уникальные для каждого пальца участки рисунка кожи (точки), которые показывают в каких местах папиллярные линии сливаются, раздваиваются или обрываются.

Типы сканеров отпечатков пальцев

1. Оптический сканер «снимает» всю панель пальцев и использует CCD-матрицу (как и большинство камер) для этого. В местах, где свет не приходит (гребни), матрица записывает «черные» пиксели, создавая точно отображаемое изображение пальца. Часто оптические сканеры имеют встроенный источник света (обычно светодиодный), чтобы сделать изображение максимально прозрачным.

2. Емкостный сканер – вместо матрицы, используются специальные миниатюрные схемы конденсаторов (ёмкостных датчиков). Когда мы прикладываем палец к этому считывателю, ёмкость отдельных конденсаторов мгновенно меняется. Емкостные сканеры гораздо точнее и эффективнее оптических сканеров, поскольку их сложнее обмануть.

3. Тепловой сканер – он работает аналогично емкостному считывателю, но вместо микроконденсаторов они используют микроскопические тепловые датчики, которые определяют разницу температур между гребнями и долями пальцевой подушки. Такой сканер невозможно обмануть имитацией пальца (т.е. фрагментом с кожным покровом).

4. Ультразвуковой сканер – использует явление дифракции, т. е. отражение и рассеяние звуковых волн. Когда мы прикладываем палец к считывателю он начинает генерировать неслышимые звуки для нас. Поведение звуковых волн в точках контакта «гребня» площадки отпечатка со сканером совершенно иное, чем во «впадинах» (где есть воздух). Это позволяет ультразвуковому сканеру создавать точный отпечаток вашего пальца.

Какой сканер отпечатка пальца лучше?

В настоящее время большинство смартфонов Xiaomi используют ёмкостные считыватели, например популярные Redmi Note 3 или Mi 5. Однако большие надежды связаны с ультразвуковыми сканерами, установленными непосредственно под дисплеем, и, вероятно, эта технология будет наиболее популярна в ближайшем будущем.

Функция Touch ID в смартфоне, хотя и очень безопасна, не гарантируют безопасность на 100%. С помощью правильных технологий и инструментов можно подделать отпечаток пальца, который сможет обмануть сканер.