Дуговая лампа (Свеча Яблочкова). Виды газоразрядных ламп и область их применения

Изучая свойства электрического тока, В.В.Петров присоединил медной проволокой к полюсам построенной им батареи два угольных стерженька (электрода) и сблизил их концы. Он увидел, как между ними появилась яркая дуга и осветила лабораторию. Когда ученый стал вводить в нее кусочки металлов, то они очень быстро расплавлялись. Явление электрического разряда между концами слегка разведенных углей Петров наблюдал как в воздухе, так и в других газах и вакууме. Это была так называемая вольтова дуга. Таким образом, честь открытия вольтовой дуги принадлежит В.В. Петрову, что следует из его книги «Известие о гальвани-вольтовских опытах», вышедшей в 1803 г.

В своей книге Петров не только описал открытое им явление, но и указал на возможность использования этого явления для освещения, плавки и восстановления металлов из их окислов, а тем самым впервые высказал мысль о практическом применении электрического тока. Однако электричество в те времена не стало ещё областью практических применений и поэтому исследования по электричеству в России не были продолжены.

В.В. Петров так описал открытое им явление: «Если на стеклянную плитку или скамеечку со стеклянными ножками будут положены два или три древесных угля, способные для произведения светоносных явлений посредством Гальвани-Вольтовской жидкости, и если потом металлическими изолированными направителями, сообщенными с обоими полюсами огромной батареи, приближать оные один к другому на расстояние от одной до трех линей, то является между ними весьма яркие белого цвета свет или пламя, от которого оные угли скорее или медлительнее загораются и от которого темный покой довольно ясно освещен быть может».

С этого момента и нужно начинать историю электротехники как самостоятельной отрасли техники. Из-за того, что книга Петрова была издана на русском языке, многие иностранные ученые не смогли ознакомиться с его открытием. Открытие Петрова было на десятилетие забыто, а имя В.В. Петрова, первого в мире человека, посмотревшего на электричество с позиций технических – с точки зрения пользы, которую электричество могло бы принести людям, было в то время вообще не известно за рубежом.

И только позднее, в 1810 г., эти опыты повторил английский ученый сэр Хэмфри Дэви, удостоившийся великого звания первооткрывателя электрической дуги и прославившийся тем, что самым гениальным его «открытием» был его ученик, великий Майкл Фарадей. Дэви приводил в соприкосновение два заостренных угля, которые были соединены с полюсами батареи, состоящей из 2000 элементов (рис. 7.1). Благодаря огромному выделению тепла угли накаливались докрасна. Когда же Дэви удалял их концы друг от друга, ток продолжал передаваться через раскаленный воздух от одного угля к другому, распространяя ослепительный свет, получивший название света Дэви, или вольтовой дуги. При этом источником света являлась не сама дуга, а раскаленные добела концы углей (рис. 7.2). Поскольку угли, между которыми образуется дуга, постепенно сгорают (положительный примерно вдвое быстрее отрицательного), впоследствии было изобретено устройство, автоматически приближавшее один уголь к другому, оставляя расстояние между ними все время постоянным.

Устройство, позволяющее поддерживать более-менее постоянное горение вольтовой дуги, послужило прообразом первых электрических источников света или так называемых дуговых электрических ламп.

Впервые вне лаборатории и классной комнаты электрическая дуга была применена в 1845 году в Парижской опере, чтобы воспроизвести эффект восходящего солнца. Успех был полный!!!

Самые первые электрические лампы – угольные дуговые – были созданы сэром Хэмфри Дэви в 1809 году. Два угольных стержня подключались к клеммам огромной батареи. В точке соприкосновения эти стержни раскалялись добела. Когда же их разводили на расстояние около 10 см друг от друга, между ними вспыхивала ослепительно белая световая дуга. Однако практическое применение угольные дуговые лампы нашли значительно позже. Первая стационарная лампа была установлена в 1862 году на маяке Дандженесс.

Павел Николаевич Яблочков (1847– 1894) – российский электротехник, изобретатель и предприниматель. По окончании Николаевского инженерного училища в 1866 году был направлен для прохождения офицерской службы в Киевский гарнизон, но из-за болезни вынужден был уйти в отставку. Изобрел (патент 1876 года) дуговую лампу без регулятора – электрическую свечу («свеча Яблочкова»), работал над созданием электрических машин и химических источников тока.

Первый дуговой источник света сконструировал в 1844 году французский физик Жан Бернар Леон Фуко. В ходе разработки конструкций дуговых ламп возникла задача регулировать расстояние между электродами. Наиболее простыми регуляторами были электромагнитные – первые электроавтоматические приборы. Получили распространение лампы с регуляторами комбинированного действия (электромагнитного и механического), например дуговая лампа русского изобретателя А.И. Шпаковского. В 1856 году эти лампы впервые успешно использовались для освещения большой площади перед Лефортовским дворцом во время коронационных торжеств в Москве. Но необходимо было так усовершенствовать конструкции дуговых ламп, чтобы они были простыми и надежными, доступными для широкого потребления. Успешное решение этой проблемы тесно связано с изобретением П.Н. Яблочковым «электрической свечи» – дуговой лампы без регулятора.

П.Н. Яблочков изобрел оригинальную дуговую электрическую лампу (рис.7.3), в которой угольные стержни были расположены не друг против друга, а параллельно, что позволило значительно надежнее сохранять неизменное расстояние между их концами. Угольные стержни были разделены изолирующей прослойкой. Концы стержней соединялись угольной пластинкой. При пропускании тока пластинка сгорала и между концами угольных стержней появлялась электрическая дуга. По мере сгорания углей изолирующая прослойка испарялась и светящаяся дуга не затухала. Изобретение П.Н. Яблочкова позволило включать источники света последовательно в общую цепь. Одна электрическая свеча могла гореть около 2 часов. При установке нескольких свечей в специальном фонаре, оборудованном переключателем для включения очередной свечи вместо перегоревшей, можно было обеспечить бесперебойное освещение в течение более длительного времени. Яблочков также установил, что для питания свечи лучше применять переменный ток, в этом случае при электродах одинакового диаметра получалась вполне устойчивая дуга.

В 1876 г. Яблочков получил патент на свое изобретение, названный «Система распределения токов для электрического освещения». Простота и удобство свечей Яблочкова (или, как их называли в мире, «русского света»), заменивших дорогие, сложные и громоздкие дуговые фонари с регуляторами для непрерывного сближения сгорающих углей, вызвали их повсеместное распространение, и вскоре они зажглись на улицах и площадях Парижа, Лондона и Берлина, а также Америки и даже Азии.

«Из Парижа, – писал Яблочков, – электрическое освещение распространилось по всему миру, дойдя до дворца шаха Персидского и до дворца короля Камбоджи». Это было подлинным триумфом русского изобретателя. В 1877 г.

Яблочков получил еще два патента на конструкцию электрической свечи и на систему распределения токов с использованием конденсаторов. В апреле 1879 г. в Петербурге на заседании Российского технического общества Яблочков сделал доклад о своих последних работах в области электрического освещения, а через две недели там же прочел публичную лекцию на тему «Об электрическом освещении». Именно 1879 г. был годом наибольших успехов и наибольшей славы Яблочкова.

Впоследствии Кертинг и Маттисен в Лейпциге создали усовершенствованную конструкцию дуговой лампы (рис. 7.4), в которой обеспечивается постоянство сопротивления вольтовой дуги. Регулировочный механизм состоит из двойной катушки а, соединенной с системой зубчатых колес b . Вся система может поворачиваться вокруг неподвижной оси f , а также отклоняться вправо и влево под влиянием силы натяжения сердечника c . Если при возникновении тока угли соприкасаются, то возникающий сильный ток приводит в действие отклоняющую систему, разводящую угли на строго фиксированное расстояние. По мере сгорания углей вольтова дуга удлиняется и отклоняющая система реагирует на изменяющийся ток, плавно уменьшая расстояние между углями. Плавность перемещения углей обеспечивается наличием воздушного тормоза l с противовесом m из тяжелых металлических пластинок.

Однако из-за серьезных технических проблем, возникших в процессе эксплуатации (наличие открытой дуги, необходимость применения только переменного электрического тока для достижения равномерного сгорания угольных стержней, сложность механической конструкции и др.), а также в связи с появлением электрических ламп накаливания применение электрических свечей оказалось весьма ограниченным. В частности, серьезным недостатком конструкции дуговых ламп было значительное испарение угля стержней под воздействием кислорода на открытом воздухе при возникновении вольтовой дуги.

Практичный американец Джандус первым преодолел эту трудность поразительно просто, поместив под колпаком не всю лампу, а только вольтову дугу, оставив контакты угольных стержней вне закрытого сосуда. При возникновении дуги угольный пар, окисляясь небольшим количеством кислорода, имеющимся в замкнутом объеме, образует угольную кислоту. Кислота, смешиваясь с азотом воздуха, образует нейтральную атмосферу, в которой и происходит дальнейшее горение вольтовой дуги. Кроме того, в этом случае значительно изменяется весь характер процесса горения. Угольные стержни сгорают абсолютно одинаково, само горение проходит более плавно и устойчиво, а длительность горения при одинаковом размере стержней увеличивается в 10–20 раз.

На рис. 7.5 показана усовершенствованная лампа Кертинга с закрытой дугой, имевшая широкое распространение в Германии в конце XIX века.

С привлечением дуговых ламп различной конструкции были проведены первые опыты уличного освещения с помощью электрического тока (рис. 7.6, 7.7).

Однако из-за большой сложности конструкции, необходимости мощного источника тока для образования вольтовой дуги и невозможности гибкого «дробления света» дуговые лампы использовались преимущественно в качестве мощных источников освещения (например на морских маяках). На рис. 7.8 показан общий вид такого морского маяка, свет от мощных дуговых ламп которого был виден на расстоянии в 17 морских миль.

Трансформаторы.

Трансформатором называют электромагнитное устройство,предназначенное для преобразования посредством магнитного поля электрической энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения при неизменной частоте.

Условное графическое изображение трансформатора

Источник Приёмник

Электромагнитная схема трансформатора

Принципиальная схема трансформатора(воздушного)

Трансформатор с ферро магнитным сердечником

На замкнутом магнитопроводе расположены две обмотки.К одной обмотке с числом витков W 1 проводится электроэнергия от источника питания. Эта обмотка называется первичной. К другой обмотке с числом витков W 2 подключается нагрузка . Это вторая обмотка.

Под действием подведённой переменной ЭДС источника в первичной обмотке возникает i 1 , который возбуждает изменяющийся магнитный поток Ф 1 .Этот поток пронизывает витки первичной и вторичной обмоток индуцирует в них е 1 и е 2 .ЭДС е 1 создаёт основную часть напряжения на первичной обмотке U 1 ,другая составляющая U 1 это напряжение на активном сопротивлении первичной обмотке. ЭДС е 2 создаёт напряжение на вторичной обмотке трансформатора U 2 ,которое равно е 2 в режиме холостого хода(без нагрузки).При подключении к вторичной обмотке нагрузки появляется ток i 2 ,которыйобразует собственный магнитный поток Ф 2 , накладывающийся на потом первичной обмотки. В результате создаётся общий поток Ф сцепленный с витками обеих обмоток и определяющий в них ЭДС е 1 и е 2 .

Помимо основного потока в магнитопроводе,токи обмоток создают в окружающей пространстве, которым часто пренебрегают. Можно так же пренебречь активными сопротивлениями обмоток. Такой трансформатор называется идеализированным.

При увеличении тока i 2 увеличивается МДС вторичной обмотки W 2* i 2 (увеличивается Ф 2) и стремится ослабить результирующий поток Ф, что приводит к уменьшению ЭДС е 1 и нарушает электрическое равновесие:Ė ист =İ 1 R 1 +Ė 1 , это приводит к росту тока i 1 в первичной обмотке. Электрическое равновесие восстанавливается когда МДС W 1* i 1 скомпенсирует рост МДС W 2* i 2 .

Вывод: изменение нагрузки трансформатора,т.е. тока i 2 ,приводит к соответствующему изменению тока i 1 .

Применение трансформаторов.

1)Трансформаторы используются в качестве преобразователей напряжение одного значения в напряжение другого значения при неизменной мощности. Силовые трансформаторы.

2)Трансформаторы изолируют в электрическом отношении одну часть схемы от другой. При этом используют важнейшее свойство трансформаторов -возможность передачи энергии при отсутствии электрических связей между обмотками(Электроинструмент).(Источник питания в радиоэлектроники) .

3)Трансформаторы широко используются в измерительной технике для работы с высокими напряжениями и большими токами.(Измерительные трансформаторы напряжения и тока).

4)Трансформация сопротивлений или согласование генератора с нагрузкой.(Сварочный аппарат,СВЧ техника).

Трансформация напряжений.

Уравнения электрического состояния обмоток идеализированного трансформатора имеют следующий вид:

u 1 =-e 1 ; u 2 =-e 2 где а

Отношение напряжения или ЭДС первичной обмотки к напряжению или ЭДС вторичной обмотки называют коэффициентом трансформации.

Трансформация токов.

Воспользуемся уравнением магнитного состояния Н*l= W 1* i 1 - W 2* i 2 ,где l-длина средней линии магнитопровода, Н*l-магнитное напряжение, W * i-МДС.

Величины магнитного напряжения на несколько порядков меньше величины МДС обмоток, поэтому можно ещё более идеализировать трансформатор,считать, Н*l≈0,тогда W 1* i 1 = W 2* i 2 =>МДС первичной и вторичной обмоток действуют встречно и уравновешивают друг друга.

Умножим это уравнение на

В идеальном трансформаторе энергия полностью передаётся из первичной обмотки во вторичную.

Векторная диаграмма трансформатора.

Ė ист =İ 1 (R 1 +j*ω*l 1)- İ 2 *j*M*ω

İ 2 (R 1 +j*ω*l 1)- İ 1 *j*M*ω+ İ 2 * =0 ; где İ 2 *

За начальую фазу примем ток нагрузки İ 2

Потери в трансформаторе.

Периодические изменения магнитного поля в магнитопроводе сопровождаются магнитными потерями,мощность которых зависят от частоты и амплитуды магнитной индукции в магнитопроводе, а также от материала последнего.

Магнитные потери имеёт 2 составляющие:

    Потери на гистерезис

    Потери на вихревые токи или токи Фунно

Для снижения потерь на гистерезис используют феррамагнитные материалы с малой площадью петли гистерезиса –магнитомягкие материалы.

Для снижения потерь на токи Фунно сердечник трансформатора изготавливают из тонких пластин, изолированных друг от друга или используют ферриты – материалы с высокой магнитной проницаемостью,но являющаяся диэлектриком.

При неизменном напряжении на входе трансформатора U 1 магнитные потери не зависят от нагрузки.

В обмотках трансформатора возникают электрические потери на активных сопротивлениях проводников.

Активная мощность,потребляемая трансформатором Р 1 превышает активную мощность,отдаваемую в нагрузку Р 2 на величину

∆Р= Р м + Р э1 + Р э2 , где Р м –мощность магнитных потерь.

Потери в трансформаторе вызывают тепловые потери,направленные от внутренних частей к внешней поверхности.

Температура нагрева изоляции обмоток трансформаторы определяет номинальные токи первичной I ном1 и вторичный I ном2 обмоток.

I ном1 и I ном2 -это такие токи обмоток,при которых трансформатор может работать не перегреваясь неограниченное время.

Напряжение на которое рассчитаны обмотки трансформатора называются номинальными: U ном1 и U ном2 .

Произведение номинального тока на номинальное напряжение даёт номинальную полную мощность: S ном1 и S ном2 .

Однако вовсе не обязательно,чтобы мощность нагрузки трансформатора была равна номинальной. Она может быть как меньше,так и больше её. В первом случае трансформатор будет меньше греться,чтобы увеличить его срок службы,а во втором случае начнётся перегрев и если трансформатор будет работать долго в этом режиме то сгорит. Однако кратковременная работа с перегрузкой последствий не вызовет.

Отношение полной мощности нагрузки к номинальной,называется коэффициентом нагрузки трансформатора β= ; K s = -коэффициент передачи полной мощности.

Дуговая лампа - общий термин для обозначения класса ламп, в которых источником света является электрическая дуга . Дуга горит между двумя электродами из тугоплавкого металла, как правило из вольфрама . Пространство вокруг промежутка обычно заполняется инертным газом (ксеноном, аргоном), парами металлов или их солей (ртути, натрия и др.). В зависимости от состава, температуры и давления газа, в котором происходит разряд, лампа может излучать свет различного спектра. Если в спектре излучения много ультрафиолетового света, а необходимо получить видимый, используется люминофор .

Принцип работы

В дуговой лампе газ между электродами ионизируется под воздействием высокой температуры и электрического поля, в результате чего переходит в состояние плазмы. Плазма хорошо проводит ток. За счёт рекомбинации электронов излучается свет.

Для того, чтобы дуга зажглась, должен произойти электрический пробой газа. Для этого требуется предварительный подогрев и большая напряжённость электрического поля. Для этой цели применяются различные схемы: может кратковременно замыкаться цепь в обход лампы (в результате чего импульс образуется за счёт самоиндукции дросселя при размыкании), или подаваться высокое напряжение от отдельного импульсного зажигающего устройства , могут использоваться дополнительные поджигающие электроды или рабочие электроды могут механически сближаться.

Цвет излучаемого света, как и электрические характеристики лампы меняются со временем и изменением температуры. Температура дуги в лампе может достигать нескольких тысяч градусов Цельсия, кварцевой колбы - до 500 градусов, а керамической колбы - до 1000 градусов.

См. также

Напишите отзыв о статье "Дуговая лампа"

Литература

  • Braverman Harry. Labor and Monopoly Capital. - New York: Monthly Review Press, 1974.
  • MacLaren Malcolm. The Rise of the Electrical Industry during the Nineteenth Century. - Princeton: Princeton University Press, 1943.
  • Noble David F. America by Design: Science, Technology, and the Rise of Corporate Capitalism. - New York: Oxford University Press, 1977. - P. 6–10.
  • Prasser Harold C. The Electrical Manufacturers. - Cambridge: Harvard University Press, 1953.

Отрывок, характеризующий Дуговая лампа

Я не могла ещё с уверенностью сказать, что хотя бы что-то по-настоящему понимаю. Но было невероятно интересно, и кое-какие Стеллины действия уже становились более понятными, чем это было в самом начале. Малышка на секунду сосредоточилась, и мы снова оказались во Франции, как бы начиная точно с того же самого момента, на котором недавно остановились... Опять был тот же богатый экипаж и та же самая красивая пара, которая никак не могла о чём-то договориться... Наконец-то, совершенно отчаявшись что-то своей юной и капризной даме доказать, молодой человек откинулся на спинку мерно покачивавшегося сидения и грустно произнёс:
– Что ж, будь по-вашему, Маргарита, я не прошу вашей помощи более... Хотя, один лишь Бог знает, кто ещё мог бы помочь мне увидеться с Нею?.. Одного лишь мне не понять, когда же вы успели так измениться?.. И значит ли это, что мы не друзья теперь?
Девушка лишь скупо улыбнулась и опять отвернулась к окошку... Она была очень красивой, но это была жестокая, холодная красота. Застывшее в её лучистых, голубых глазах нетерпеливое и, в то же время, скучающее выражение, как нельзя лучше показывало, насколько ей хотелось как можно быстрее закончить этот затянувшийся разговор.
Экипаж остановился около красивого большого дома, и она, наконец, облегчённо вздохнула.
– Прощайте, Аксель! – легко выпорхнув наружу, по-светски холодно произнесла она. – И разрешите мне напоследок дать вам хороший совет – перестаньте быть романтиком, вы уже не ребёнок более!..
Экипаж тронулся. Молодой человек по имени Аксель неотрывно смотрел на дорогу и грустно сам себе прошептал:
– Весёлая моя «маргаритка», что же стало с тобою?.. Неужели же это всё, что от нас, повзрослев, остаётся?!..
Видение исчезло и появилось другое... Это был всё тот же самый юноша по имени Аксель, но вокруг него жила уже совершенно другая, потрясающая по своей красоте «реальность», которая больше походила на какую-то ненастоящую, неправдоподобную мечту...
Тысячи свечей головокружительно сверкали в огромных зеркалах какого-то сказочного зала. Видимо, это был чей-то очень богатый дворец, возможно даже королевский... Невероятное множество «в пух и в прах» разодетых гостей стояли, сидели и гуляли в этом чудесном зале, ослепительно друг другу улыбаясь и, время от времени, как один, оглядываясь на тяжёлую, золочёную дверь, чего-то ожидая. Где-то тихо играла музыка, прелестные дамы, одна красивее другой, порхали, как разноцветные бабочки под восхищёнными взглядами так же сногсшибательно разодетых мужчин. Всё кругом сверкало, искрилось, сияло отблесками самых разных драгоценных камней, мягко шуршали шелка, кокетливо покачивались огромные замысловатые парики, усыпанные сказочными цветами...
Аксель стоял, прислонившись к мраморной колонне и отсутствующим взглядом наблюдал всю эту блестящую, яркую толпу, оставаясь совершенно равнодушным ко всем её прелестям, и чувствовалось, что, так же, как и все остальные, он чего-то ждал.
Наконец-то всё вокруг пришло в движение, и вся эта великолепно разодетая толпа, как по мановению волшебной палочки, разделилась на две части, образуя ровно посередине очень широкий, «бальный» проход. А по этому проходу медленно двигалась совершенно потрясающая женщина... Вернее, двигалась пара, но мужчина рядом с ней был таким простодушным и невзрачным, что, несмотря на его великолепную одежду, весь его облик просто стушёвывался рядом с его потрясающей партнёршей.

Устройство, в котором свет создается за счет электрической дуги, создаваемой между двумя ЭЛЕКТРОДАМИ. Во многих современных дуговых лампах, используемых как источник яркого света, применяют металлические и ок-сидные электроды, погруженные в газ, который начинает светиться при возникновении дуги.


Смотреть значение Дуговая Лампа в других словарях

Лампа — ж. немецк. сосуд разного вида и устройства, для освещения жилья маслом, ворванью, жидким салом; лампа обычно со стеклом, иногда с часовым ходом, для накачиванья масла;........
Толковый словарь Даля

Лампа — лампы, ж. (фр. lampe). 1. Прибор, наполняемый горючим веществом для искусственного освещения. Керосиновая лампа. Спиртовая лампа. || Приспособление для электрического освещения.........
Толковый словарь Ушакова

Лампа Ж. — 1. Осветительный или нагревательный прибор различного вида и устройства.
Толковый словарь Ефремовой

Лампа-вспышка Ж. — 1. Портативный импульсный источник света для кратковременного и интенсивного освещения объектов во время фотосъемки; фотовспышка.
Толковый словарь Ефремовой

Лампа — -ы; ж. [франц. lampe]
1. Осветительный прибор (различного вида и устройства). Электрическая л. Керосиновая л. Настольная л. Л. дневного света (электрическая лампа, источником........
Толковый словарь Кузнецова

Ценовая Эластичность Дуговая — эластичность, которая измеряется как средняя на дуге кривой
спроса и
предложения.
Экономический словарь

Лампа — Заимствование из немецкого, в котором Lampe восходит к французскому lampe от латинского lampas, в свою очередь восходящему к греческому слову, давшему, кстати, и лампада.
Этимологический словарь Крылова

Бактерицидная Лампа — см. лампа бактерицидная.
Словарь микробиологии

Лампа Бактерицидная — газоразрядный источник УФ–излучения, используемый для стерилизации воздуха и некоторых жидкостей. Наполнена инертным газом (напр., ксеноном) с небольшим количеством........
Словарь микробиологии

— газоразрядный источник света, в котором при электрическом разряде в парах ртути возникает оптическое излучение, главным образом в УФ и видимой областях спектра. Используется........
Словарь микробиологии

Бактерицидная Лампа ртутная лампа низкого давления с колбой из увиолевого стекла, испускающая ультрафиолетовое излучение с максимумом, соответствующим длине волны 253,7 нм; является основным........
Большой медицинский словарь

Бестеневая Лампа — см. Светильник бестеневой.
Большой медицинский словарь

— см. лампа ртутная.
Словарь микробиологии

— источник ультрафиолетового излучения в виде трубки из кварцевого стекла с металлическими электродами, из которой удален воздух и добавлено небольшое количество паров........
Большой медицинский словарь

Лампа Инфракрасного Излучения — физиотерапевтический аппарат, представляющий собой укрепленный на штативе и снабженный рефлектором электронагревательный элемент, максимум излучения которого находится........
Большой медицинский словарь

Лампа Ультрафиолетового Излучения — (УФЛ; син. ртутно-кварцевая лампа нрк) - физиотерапевтический аппарат, представляющий собой источник ультрафиолетового излучения (дуговую ртутную трубчатую горелку)........
Большой медицинский словарь

Лампа-соллюкс — см. Соллюкс-лампа.
Большой медицинский словарь

Ланге Лампа — (О. Ланге, отеч. офтальмолог конца 19 в.) лампа для диафаноскопии глаза, отличающаяся тем, что имеет конденсор в форме усеченного конуса, дающий узкий концентрированный........
Большой медицинский словарь

Галогенная Лампа — лампа накаливания, в состав газовой смеси которой кромеинертного газа входят галогены (обычно иод или бром). При одинаковых собычной лампой накаливания мощности и сроке........

Генераторная Лампа электронная лампа для преобразования энергииисточника тока в энергию электромагнитных колебаний. Применяют врадиопередатчиках, измерительных приборах, установках........
Большой энциклопедический словарь

Минина Лампа — (А. В. Минин, 1851-1909, отеч. врач) портативный аппарат для светолечения, представляющий собой лампу накаливания синего цвета с параболическим рефлектором, укрепленным на ручке.
Большой медицинский словарь

Налобная Лампа — см. Налобный осветитель.
Большой медицинский словарь

Дуговая Печь — электрическая печь для плавки металлов и других материалов,в которой используется тепловой эффект электрической дуги. По способунагрева подразделяются на печи прямого........
Большой энциклопедический словарь

Дуговая Сварка — (электродуговая сварка) - вид сварки, при которой кромкисвариваемых металлических частей расплавляют дуговым разрядом междуэлектродом и металлом в месте соединения.
Большой энциклопедический словарь

Дуговая Угольная Лампа — газоразрядный источник света, в которомиспользуется излучение электрического разряда между угольными электродами.Изобретена в 1876 П. Н. Яблочковым. Применяют в прожекторах,кинопроекционных........
Большой энциклопедический словарь

Зеленая Лампа — литературное общество в Санкт-Петербурге (1819-20), политературно-политической ориентации связанное с "Союзом благоденствия".Участвовали Н. В. Всеволожский (основатель),........
Большой энциклопедический словарь

Импульсная Лампа — источник света, предназначенный для получениякратковременных световых вспышек высокой интенсивности, в которомиспользуется свечение низкотемпературной плазмы.........
Большой энциклопедический словарь

Погружная Лампа В Медицинской Технике — осветитель операционного поля в глубине раны, представляющий собой длинный гибкий стержень с электрической лампочкой на конце или гибкий световод от внешнего источника........
Большой медицинский словарь

Криптоновая Лампа — лампа накаливания, колба которой заполнена Kr. Посравнению с лампами той же мощности, заполненными смесью азота и аргона,имеет повышенную (на 15-20%) световую отдачу, малые размеры.
Большой энциклопедический словарь

Ксеноновая Лампа — газоразрядный источник света высокого и сверхвысокогодавления, в котором дуговой разряд происходит в атмосфере Xe. Представляетсобой заполненную Xe кварцевую колбу........
Большой энциклопедический словарь

Трансформаторы - трансформация переменного тока

Переменный ток выгодно отличается от постоянного тока тем, что он хорошо поддается трансформированию, т.е. преобразованию тока относительно высокого напряжения в ток более низкого напряжения, или наоборот. Трансформаторы позволяют передавать переменный ток по проводам на большие расстояния с малыми потерями энергии. Для этого переменное напряжение, вырабатываемое на электростанциях генераторами, с помощью трансформаторов повышают до напряжения в несколько сотен тысяч вольт и «посылают» по линиям электропередачи (ЛЭП) в различных направлениях. С повышением напряжения уменьшается сила тока в ЛЭП при одной и той же передаваемой мощности, что и приводит к снижению потерь и позволяет применять провода меньшего сечения. В городах и селах на расстоянии сотен и тысяч километров от электростанций это напряжение понижают трансформаторами до более низкого, которым и питают лампочки освещения, электродвигатели и другие электрические приборы. Трансформаторы широко применяют и в радиотехнике . Схематическое устройство простейшего трансформатора показано на (рис. 5). Он состоит из двух катушек из изолированного провода, называемых обмотками, насаженных на магнитопровод, собранный из пластин специальной, так называемой трансформаторной стали . Обмотки трансформатора изображают на схемах так же, как катушки индуктивности, а магнитопровод - линией между ними . Действие трансформатора основано на явлении электромагнитной индукции. Переменный ток, текущий по одной из обмоток трансформатора, создает вокруг нее и в магнитопроводе переменное магнитное поле. Это поле пересекает витки другой обмотки трансформатора, индуцируя в ней переменное напряжение той же частоты. Если к этой обмотке подключить какую - либо нагрузку, например лампу накаливания, то в получившейся замкнутой цепи потечет переменный ток - лампа станет гореть. Обмотку, к которой подводится переменное напряжение, предназначаемое для трансформирования, называют первичной, а обмотку, в которой индуцируется переменное напряжение - вторичной .

Напряжение, которое получается на концах вторичной обмотки, зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке приблизительно равно напряжению, подведенному к первичной обмотке. Если вторичная обмотка трансформатора содержит меньшее число витков, чем первичная, то и напряжение ее меньше, чем напряжение, подводимое к первичной обмотке. И наоборот, если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подводимого к первичной обмотке. В первом случае трансформатор будет понижать, во втором повышать переменное напряжение. Напряжение, индуцируемое во вторичной обмотке, можно довольно точно подсчитать по отношению чисел витков обмоток трансформатора: во сколько раз она имеет большее (или меньшее) число витков по сравнению с числом витков первичной обмотки, во столько же раз напряжение на ней будет больше (или меньше) по сравнению с напряжением, подводимым к первичной обмотке. Так, например, если одна обмотка трансформатора имеет 1000 витков, а вторая 2000 витков, то, включив первую обмотку в сеть переменного тока с напряжением 220 В, мы получим во второй обмотке напряжение 440 В - это повышающий трансформатор. Если же напряжение 220 В подвести к обмотке, имеющей 2000 витков, то в обмотке, содержащей 1000 витков, мы получим напряжение 220 В - это понижающий трансформатор. Обмотка, имеющая 2000 витков, в первом случае будет вторичной, а во втором случае - первичной. Но, пользуясь трансформатором, вы не должны забывать о том, что мощность тока (P = UI), которую можно получить в цепи вторичной обмотки, никогда не превышает мощности тока первичной обмотки. Это значит, что получить от вторичной обмотки одну и ту же мощность можно, повышая напряжение и уменьшая ток, либо потребляя от нее пониженное напряжение при увеличенном токе. Следовательно, повышая напряжение мы проигрываем в значении тока, а выигрывая в значении тока, обязательно проигрываем в напряжении. Для питания радиоаппаратуры от сети переменного тока часто используют трансформаторы с несколькими вторичными обмотками с различным числом витков (рис. 6).

С помощью таких трансформаторов, называемых сетевыми, или трансформаторами питания, получают несколько напряжений, питающих разные цепи. Наибольшая мощность тока, которая может быть трансформирована, зависит от размера магнитопровода трансформатора и диаметра провода, из которого выполнены обмотки. Чём больше объем магнитопровода, тем большая мощность может быть трансформирована. Практически же в трансформаторе всегда бесполезно теряется часть мощности. Поэтому мощность в цепи вторичной обмотки (или сумма мощностей, получаемых от всех вторичных обмоток) всегда несколько меньше мощности, потребляемой первичной обмоткой. Нужно запомнить: трансформаторы постоянный ток не трансформируют . Если, однако, в первичной обмотке трансформатора течет пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение, частота которого равна частоте пульсаций тока в первичной обмотке. Это свойство трансформатора используется для индуктивной связи между разными цепями, разделения пульсирующего тока на его составляющие и ряда других целей, о которых разговор будет впереди. Все трансформаторы со стальными магнитопроводами и магнитопроводами из железоникелевых сплавов (пермаллоя) называют низкочастотными трансформаторами , так как они пригодны только для преобразования переменного напряжения низкочастотного диапазона. На схемах низкочастотные трансформаторы обозначают буквой Т, а их обмотки - римскими цифрами. Принцип действия высокочастотных трансформаторов, предназначаемых дня трансформации колебаний высокой частоты, также основан на электромагнитной индукции . Они могут быть как с сердечниками, так и без сердечников. Их обмотки (катушки) располагают на одном или разных каркасах, но обязательно близко одну к другой (рис. 7). При появлении тока высокой частоты в одной из катушек вокруг нее возникает переменное магнитное поле, которое индуцирует во второй катушке напряжение такой же частоты. Как и в низкочастотных трансформаторах, напряжение во вторичной катушке зависит от соотношения чисел витков в катушках.



Для усиления связи между катушками в высокочастотных трансформаторах используют сердечники в виде стержней или колец (рис. 8), представляющие собой спрессованную массу из неметаллических материалов. Их называют магнитодиэлектрическими или высокочастотными сердечниками. Наиболее распространены ферритовые сердечники. Ферритовый сердечник не только усиливает связь между катушками, но и повышает их индуктивность, поэтому они могут иметь меньше витков по сравнению с катушками трансформатора без сердечника. Магнитодиэлектрический сердечник высокочастотного трансформатора не зависимо от его конструкции и формы обозначают на схемах так же, как магнитопровод низкочастотного трансформатора, - прямой линией между катушками, а обмотки, как и катушки индуктивности, - латинскими буквами (L).