Шумовая температура приемной антенны.

Шумовая температура антенны. Коэффициент шума пассивного устройства.

Рассмотрим понятие шумовой температуры, распространяющейся на характеристику приемных антенн, в частности для характеристики приема шумового излучения из космоса и атмосферы.

Шумовой температурой антенны называется такая абсолютная температура, до которой требуется нагреть полное сопротивление антенны , чтобы мощность шума источника сигнала с данным внутренним сопротивлением было равно на выходе антенны в реальности.

В общем случае на выходе антенны определяется не только мощностью принимаемого шумового излучения, но и мощностью потерь в антенне.

Потери в антенне характеризуются сопротивлением потерь .


шумовая температура антенны.

Коэффициент шума пассивного устройства.

Определим коэффициент шума пассивного устройства в режиме согласования.

В дальнейшем анализ шумовых свойств будем проводить в режиме согласования.

Пассивный четырехполюсник .


Так как эквивалентная схема для расчета на выходе такая же как и эквивалентная схема для расчета на входе, то и мощность шума на выходе:

,

, где - коэффициент передачи по мощности.

Коэффициент шума пассивного устройства обратно пропорционален его коэффициенту передачи по мощности.

Определим коэффициент шума пассивного устройства, когда температура источника сигнала и температура пассивного устройство не равны.

12. Коэффициент шума последовательности шумящих четырехполюсников.

Часто возникает задача, где известны характеристики нескольких шумящих 4х полюсников. Необходимо определить коэффициент шума последовательности этих 4х полюсников.

Для уменьшения Кш ЛТ необходимо обеспечить достаточно большой коэффициент передачи по мощности УРЧ, малые потери в пассивном устройстве и малые значения собственного шума УРЧ. При таких условиях шум всех каскадов стоящих после УРЧ сказывается мало на Кш ЛТ. Если фидер имеет очень большое затухание, то установкой антенного усилителя можно исключить его влияние на чувствительность приемного устройства, при этом Кш ЛТ определяется лишь Кш антенного устройства.

13.Чувствительность приемного устройства.

Чувствительность характеризует способность приемника принимать слабый сигнал на фоне внутриполосных помех. Часто чувствительность приемника задается минимальным уровнем ЭДС сигнала в антенне, при котором качество сигнала на выходе приемника удовлетворяет минимальным требованиям.

Рассмотрим связь чувствительности приемника с параметрами линейного тракта и антенны.

Зададим отношение сигнал-шум на выходе линейного тракта

Считаем, что антенна согласована с приемником и все шумы, созданные антенной, характеризуются шумовой температурой Т А.

Считаем, что Е А соответствует чувствительности приемника. Найдем:

Шумовая температура линейного тракта.

Т.е. чувствительность приемника определяется сумой шумовых температур антенны и линейного тракта.

Для СВЧ приемников чувствительность удобнее характеризовать не минимально возможной ЭДС в антенне, а минимально допустимой мощностью, выделяемой на входе приемника:

Если приемники имеют переменную полосу пропускания, то чувствительность удобно характеризовать минимально допустимой удельной мощностью сигнала на входе приемника:

Где Т 0 – паспортное значение шумовой температуры, - относительная шумовая температура, кТ 0 =4*10 -21 Вт/Гц.

Чувствительность часто задается в единицах кТ 0 (например, чувствительность равна 4кТ 0 =16*10 -21 В/Гц).

14.Основные нелинейные эффекты в линейном тракте.

Мощные внеполосные помехи создают ряд нелинейных эффектов: блокирование сигнала, перекрёстная модуляция и интермодуляция. Блокирование сигнала проявляется в виде снижения коэффициента передачи полезного сигнала в тракте при воздействии мощных внеполосных помех. Существует несколько механизмов воздействия мощной помехи на коэффициент передачи линейного тракта. Рассмотрим наиболее наглядный механизм, который проявляется в схеме усилителя с транзистором, включенным по схеме с общим эмиттером. Наличие мощной помехи увеличивает постоянную составляющую тока коллектора. За счет обратной связи по постоянному току через резистор эмиттера происходит подзапирание транзистора, рабочая точка смещается в область меньших токов, а следовательно в область меньшей крутизны транзистора. Если одновременно с помехой присутствует полезный сигнал, то для него происходит уменьшение коэффициента передачи каскада за счет снижения крутизны транзистора.

Перекрестная модуляция.

При перекрестной модуляции происходит перенос закона амплитудной модуляции помехи на сигнал – сигнал приобретает модуляцию помехи. Если помеха амплитудно модулирована, то рабочая точка УРЧ скользит по переходной характеристике транзистора в соответствии с законом модуляции помехой. По такому же закону меняется крутизна транзистора, а следовательно коэффициент передачи УРЧ. Полезный сигнал, проходя через усилитель с переменным во времени коэффициентом передачи, приобретает амплитудную модуляцию помехи.

Интермодуляция.

Явление интермодуляции состоит в том, что сумма 2х и более гармонических внеполосных помех за счет нелинейности амплитудной характеристики функционального узла, создает составляющие в полосе пропускания приемника.

Если сумму 2х гармонических сигналов подставить в выражение для степенного ряда, то можно показать, что на выходе нелинейного элемента присутствует сумма гармоник колебаний. где m и n=0,1,2,… .

Наиболее мощными являются колебания гармоник с малыми значениями m и n. Рассмотрим самую мощную: m=1, n=2, . Пусть имеет место воздействие 2х гармонических помех, которые на частотной оси расположены по 1 сторону от сигнала и находятся на равном расстоянии.

При данной помеховой ситуации происходит прохождение колебаний в полосу пропускания приемника.

Методы борьбы с нелинейными эффектами.

1. Использование усилительных приборов с широким динамическим диапазоном.

2. Повышение избирательности фильтров, стоящих до усилительных приборов.



3. Установка аттенюатора на входе приемника. Данный метод применим, если имеется запас по мощности сигнала.

15.Частотная избирательность приемного устройства. Полоса пропускания.

Избирательность характеризует способность приемника выделять полезный сигнал из окружения мощных внеполосных помех.

Величина избирательности показывает, во сколько раз помеха может превышать оговоренный уровень сигнала на входе приемника, чтобы качество сигнала выходе приемника соответствовало минимальным требованиям.

Где - напряжение помехи, отстроенной от сигнала на величину Δf, - напряжение полезного сигнала.

Так как внеполосные помехи могут быть мощными, возникает задача способности приемника принимать полезные сигналы при одновременном воздействии внеполосных помех, которые вызывают нелинейные эффекты в линейном тракте.

С этой целью оценку избирательности приемника производят имитируя помеховую обстановку в реальности. Т.к. в реальности источников помех должно быть несколько, то при измерении избирательности используют столько генераторов, сколько источников помех ожидается в реальности.

С целью сокращения затрат на измерения используют 2 или 3 генератора. Один из них имитирует сигнал, другой имитирует зеркальную, либо соседние помехи. Если используется 2 помеховых генератора, то исследуется явление интермодуляции. Если уровень внеполосных помех таков, что нелинейные эффекты в линейном тракте незначительны, и ими можно пренебречь, то оценку избирательности приемника можно упростить, используя односигнальную методику измерения. В этом случае один генератор поочередно настраивается на частоту полезного сигнала и на частоты всех помех. В данном случае справедлив метод суперпозиции.

16.Автоматическая подстройка частоты гетеродина. Линейный режим.

Радикальным средством повышения стабильности частоты гетеродина является использование синтезатора частоты. Однако в ряде случаев включение синтезатора в состав приемника настолько повышает его стоимость, что теряется целесообразность его использования. В этом случае целесообразно использовать систему АПЧГ. Рассмотрим обобщенную структуру АПЧГ.

Если под воздействие дестабилизирующих факторов меняется частота гетеродина (ГУН), то на эту же величину меняется f ПЧ. Это отклонение фиксируется дискриминатором, на выходе которого формируется напряжение, знак и величина которого соответствуют отклонению частоты. После фильтрации в ФНЧ напряжение воздействует на управляющий элемент (часто варикап), который компенсирует отклонение частоты ГУН.

Если дискриминатор является частотным, то имеет место ЧАП, если отклонение частоты фиксируется с точностью до фазы и дискриминатор фазовый, то это ФАПЧ, и в этом случае в состав системы входит кварцевый генератор.

Проанализируем простейший вариант в виде ЧАП. Различают 2 режима работы ЧАП- линейный и нелинейный. Если отклонение частоты гетеродина от требуемого значения мало и нелинейные свойства частотного дискриминатора проявляются слабо, то имеет место линейный режим, в противном случае – нелинейный.

Линейный режим.

Пусть под воздействием дестабилизирующих факторов f г отклонилась на Δf гетеродина. С целью упрощения f ПЧ =f Г - f С – т.е. верхняя настройка гетеродина. За счет действия системы АПЧ расстройка гетеродина уменьшается.

Δf Гост. =Δf ПЧост. – отклонение ПЧ от требуемого значения.

Δf Гост. = Δf Г - Δf Грег. , где Δf Гост. – регулирующее воздействие с выхода управляющего элемента.

Δf Гост ≈S упр. U дискр. , где S упр. – крутизна управляющего элемента (считаем характеристику управляющего элемента линейной), . U дискр ≈ S д Δf ост. , S д крутизна дискриминатора.

где - коэффициент частотной автоподстройки (К ЧАП).

К ЧАП показывает, во сколько раз уменьшается отклонение частоты гетеродина при использовании ЧАП. Увеличение К ЧАП приводит к снижению устойчивости системы АПЧ. Для её повышения увеличивают постоянную времени ФНЧ – растёт инерционность системы. Система не успевает отрабатывать быстрые изменения частоты гетеродина, поэтому К ЧАП, также как постоянная времени ФНЧ выбирают исходя из условий компромисса между противоречивыми требованиями: увеличение точности и быстродействия.

Обычно в расчетах К ЧАП не более 20-25. Если рассматривать воздействие дестабилизирующих факторов как некое возмущение, прикладываемое ко входу ГУН, то относительно этого возмущения система ведёт себя как ФНЧ, то есть НЧ возмущения подавляются, а ВЧ проходят на выход системы без изменений.

ШУМОВАЯ ТЕМПЕРАТУРА

ШУМОВАЯ ТЕМПЕРАТУРА

Эффективная величина, служащая мерой мощности шумов в радиоприёмных устройствах. Ш. т. Тш равна темп-ре абсолютно чёрного тела или согласованного сопротивления, при к-рой его теплового шума равна мощности шумов данного устройства. Отношение Тш к T0=300 К наз. относит. Ш. т. или шумовым числом. Понятием Ш. т. пользуются в радиофизике для оценки уровня шумов электровакуумных и полупроводниковых приборов, предназначенных для усиления и преобразования электрич. сигналов; антенн; в радиоастрономии при описании источников косм. радиоизлучения; для определения шумового вклада, вносимого радиоприёмным устройством в полезный в процессе его обработки. Ш. т. реальных объектов определяется обычно сравнением с эталонными шумовыми генераторами.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ШУМОВАЯ ТЕМПЕРАТУРА

(эквивалентная) -эфф. величина, служащая относительной мерой спектральной плотности мощности эл.-магн. излучения источников шумов. Вводится по аналогии с равновесным излучением (тепловым шумом) согласованного сопротивления, мощности для к-рого определяется ф-лой Найквиста:(k - постоянная Больцмана, T -абс. темп-pa сопротивления). T. о., под Ш. т. источника шума Т ш следует понимать такую темп-ру согласованного сопротивления, при к-рой спектральная мощности теплового шума этого сопротивления будет равна спектральной плотности мощности шумов данного источника. Относительной Ш. т. (или шумовым числом) наз. отношение Т ш к "комнатной" темп-ре T 0 = 290 К.

Понятием Ш. т. широко пользуются в радиотехнике для оценки шумовых свойств эл.-вакуумных и полупроводниковых приборов, предназначенных для усиления и преобразования электрич. сигналов, и эталонных шумовых генераторов; в радиоастрономии - для описания источников космич. радиоизлучения. Понятие Ш. т. используется также для определения шумового вклада, вносимого радиоприёмными устройствами в полезный сигнал в процессе его обработки. В этом случае Т ш и шума коэффициент (шум-фактор) F связаны ф-лой

Ш. т. реальных объектов определяется обычно сравнением с эталонными шумовыми генераторами.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ШУМОВАЯ ТЕМПЕРАТУРА" в других словарях:

    Величина, характеризующая уровень шума, численно равная температуре абсолютно черного тела, при котором спектральная плотность мощности его теплового излучения равна спектральной плотности мощности шумов радиоэлектронной аппаратурыБольшой Энциклопедический словарь

    шумовая температура - — Тематики электросвязь, основные понятия EN noise temperature …

    Величина, характеризующая уровень шума, численно равная температуре абсолютно чёрного тела, при котором спектральная плотность мощности его теплового излучения равна спектральной плотности мощности шумов радиоэлектронной аппаратуры. * * * ШУМОВАЯ … Энциклопедический словарь

    шумовая температура - triukšmo temperatūra statusas T sritis automatika atitikmenys: angl. equivalent noise temperature; noise temperature vok. equivalente Rauschtemperatur, f; Rauschtemperatur, f rus. шумовая температура, f pranc. température équivalente de bruit, f … Automatikos terminų žodynas

    шумовая температура - triukšmo temperatūra statusas T sritis fizika atitikmenys: angl. noise temperature vok. Rauschtemperatur, f rus. шумовая температура, f pranc. température de bruit, f … Fizikos terminų žodynas

    Эффективная величина, служащая мерой мощности шумов в радиоприёмных устройствах. Ш. т. Тш равна температуре согласованного сопротивления (эквивалента антенны), при которой мощность его теплового шума равна мощности шумов данного… … Большая советская энциклопедия

    Физ. величина, характеризующая мощность электрич. шумов электронного устройства (усилителя, преобразователя электрич. сигналов, генератора шума и т. д.); равна темп ре, до к рой должен быть нагрет резистор, согласованный с входным сопротивлением… … Большой энциклопедический политехнический словарь

    Величина, характеризующая уровень шума, численно равная темп ре абсолютно чёрного тела, при к ром спектральная плотность мощности его теплового излучения равна спектральной плотности мощности шумов радиоэлектронной аппаратуры … Естествознание. Энциклопедический словарь

    Шумовая температура антенны характеристика мощности шумов приёмной антенны. Шумовая температура не имеет никакого отношения к физической температуре антенны. Она задается формулой Найквиста, и равна температуре резистора, который имел бы… … Википедия

    шумовая температура резонансного разрядника - шумовая температура Tш Температура, соответствующая шумовому излучению вспомогательного разряда резонансного разрядника. [ГОСТ 23769 79] Тематики приборы и устройства защитные СВЧ Обобщающие термины параметры СВЧ защитных устройств Синонимы… … Справочник технического переводчика

Книги

  • Метод фрагментации для расчета шумовой температуры антенн , А. М. Сомов. В книге излагается метод расчета воздействия тепловых шумов окружающего пространства на шумовую температуру антенн земных станций спутниковой связи. Пространство в виде почвы и воздушной…

Приемный тракт состоит из ряда последовательно соединенных каскадов выполняющих различные функции. Это усилители, соединительные пассивные тракты, фильтры, смесители и т.п. Все каскады харакетризуются коэффициентом передачи по мощности как отношение мощности сигнала на выходе каскада к мощности сигнала на его входе, включая и смесители, у которых сигнал на входе на одной частоте, а на выходе на другой. Если коэффициент передачи каскада не меняется при изменении мощности сигнала на его входе, то будем считать, что он в линейном режиме. Аналогично, если последовательно соединенные каскады тракта находятся в линейном режиме, то и весь тракт называется линейным трактом. Следствием из этого свойства является то, что для линейного тракта отношение мощности сигнала к мощности шумов на входе и на выходе одно и тоже.

В общем случае характеристика (усилителя, смесителя и т.п.) представлена на рис.5. По оси абсцис показана величина мощноси сигнала на входе каскада – Р вх. По оси ординат величина коэффициента передачи каскада – К.

При определенной величине входной мощности Р нас. наблюдается уменьшение коэффициента передачи на величину DК. Уровень мощности сигнала на входе каскада, при котором наблюдается уменьшение коэффициента передачи на величину DК, называется уровнем насыщения каскада.
DК задается в зависимости от назначения тракта равным 0,1 дБ, 0,5 дБ, 1,0 дБ, 3 дБ или другой величине. При заданном допустимом критерии уменьшения коэффициента передачи каскада считается, что каскад работает в линейном режиме до тех пор, пока мощность сигнала на его входе не привысила величину Р нас.

Для пассивных каскадов (фильтров построенных на пассивных элементах, фидерных и волноводных трактов) коэфициент передачи не зависит от одной мощности сигнала. Эфект сгорания пассивных каскадов в данном случае не рассматривается.

Все каскады генерируют шумы, мощность которых на выходе каскада может быть вычислена по следующей формуле:

,

где - постоянная Больцмана; - эквивалентная шумовая температура шумов на выходе каскада; - полоса рабочих частот каскада, которую ограничивают с помощью селективных элментов до полосы частот в которой сосредоточен спектр сигнала.

Эквивалентная шумовая температура входа каскада - такая температура шумов, при которой - мощность шумов поданная на вход идеального (не шумящего) каскада, пройдя через идеальный каскад с усилением К, образвала бы на его входе мощность шумов равную . Тогда . Отсюда: .

Для активных каскадов либо устройств (усилителе, смесителей, приемников и т.п.) в паспортных данных имеется величина эквивалентной шумовой температуры входа каскада либо устройства. Для больших значений мощности шумов в паспорте на такие каскады либо устройства дается величина N – коэффициент шума (безразмерная величина выраженная в разах). Связь коэффициента шума и эквивалентной шумовой температуры входа устройства определяется выражением:


, где - температура окружающей среды, обычно при нормальной температуре .

Из общей теории радиотехнических цепей суммарный коэффициент передачи последовательно соединенных n каскадов (при отсуствии рассогласования и насыщения) и эквивалентная шумовая температура на входе последовательно соединенных n каскадов вычисляется по следующим формулам:

;

где: - коэффициенты предачи первого, второго, … , n -го каскадов, соответственно;

- эквивалентные шумовые температуры на входе соответствующих каскадов.

Здесь коэффициенты передачи данных в разах, а эквивалентные шумовые температуры в Кельвинах.

Для пассивных элементов (волновод, фидерный тракт и т.п.) генерируемая мощность шумов на выходе тракта вычисляется из следующего выражения.

Как отмечалось, выходной шум приемника складывается из усиленного шума ис­точника сигнала и собственного шума приемника, т. е.

С учетом этого получим:

.

Из выражения следует, что всегда
. Лишь у идеального приемника когда
тогда
.

Отношение
можно рассматривать условно как собственный шум при­емника, пересчитанный на вход приемника или приведенный к входу приемника. Обозначим:

,

.

Отсюда приведенный шум равен:

Номинальная мощность шума, поступающего на вход приемника от выходного сопротивления источника сигнала при температуре, равна

,

где величину
определяют по формуле
.

Эта величина называется стандартным входным шумом. Тогда приведенный шум выразится так

Шумовая температура приемника

Введем в последнюю формулу обозначение:

.

Эту величину называют шумовой температурой приемника. С учетом этого по­лу­чим

.

Определим физический смысл шумовой температуры. Выразим из последней формулы шум на выходе реального приемника следующим образом:

Теперь выразим шум на выходе идеального приемника:

Сравнивая оба выражения, можно придать следующий физический смысл по­нятию «шумовая температура приемника». Шумовая температура приемника - это тем­пература, на которую надо увеличить температуру выходного сопротивления ис­точника сигнала
, чтобы шум на выходе идеального приемника стал бы ра­вен шу­му на выходе реального приемника.

Выразим коэффициент шума через шумовую температуру, для этого разделим выражение (2.2) на (2.3), получим:

.

Величину
называютотносительной шумовой температурой приемни­ка. С учетом этого обозначения окончательно получим

.

2.3 Коэффициент шума последовательно соединенных четырехполюсников

Для анализа влияния шумов отдельных каскадов приемника на его результирующий коэффициент шума удобно приемник представить последовательным со­еди­нением четырехполюсников (рисунок 2.2), т.е.

Рисунок 2.2

Предположим, приемник состоит из трех каскадов, каждый из которых имеет свой коэффициент передачи
и свой коэффициент шума
. Воспользуемся вы­ражением (2.1)

.

Для выходного шума трехкаскадного приемника запишем

Аналогично для идеального приемника имеем:

Подставив числитель и знаменатель в выражение для
и учитывая, что

; ,

Аналогично можно получить выражения для любого числа каскадов. Выводы:

1) Коэффициент шума приемника определяется в основном шумом его первых каскадов.

2) На входе приемника следует располагать усилитель с малым собственным шумом и большим коэффициентом усиления.

3) Чем больше коэффициент усиления первого каскада, тем меньше влияют после­дующие каскады на результирующий коэффициент шума приемника.

Кроме того, математически можно показать, что для пассивного четырехполюсника, у которого
, коэффициент шума равен

.

2.4 Чувствительность рпу и ее связь с коэффициентом шума

Различают предельную (или пороговую) и реальную чувствительность РП Р У.

Предельная чувствительность - это минимальный сигнал на входе приемника, при котором на выходе приемника отношение
равно единице.

Реальная чувствительность (или чувствительность, ограниченная шумами) - это минимальный сигнал на входе приемника, при котором на выходе приемника, обеспечивается заданный уровень полезного сигнала, при заданном отношении
.

Предельная чувствительность равна сумме приведенного шума приемника и шу­ма, поступающего на вход из антенны, т.е.

,

где - шумовая температура антенны;

- относительная шумовая температуры антенны.

Однако для нормальной работы оконечного устройства необходимо, чтобы
было бы намного больше единицы. Поэтому реальная чувствительность оп­ределяется выражением

,
,

где - коэффициент различимости.

Для оценки чувствительности собственно приемника (без антенны) использу­ется формула при
, т.е.

;
.

Во всех случаях, чем больше
, тем больше и тем меньше (хуже) чувстви­тельность приемника.

  • 5. Структура линейного тракта супергетеродинного приемника. Зеркальный канал приема.
  • 6. Комбинационные каналы приема.
  • 7. Супергетеродин с двукратным преобразованием частоты.
  • 8. Инфрадин.
  • 10. Коэффициент шума и шумовая температура.
  • 11.Шумовая температура антенны. Коэффициент шума пассивного устройства.
  • 12. Коэффициент шума последовательности шумящих четырехполюсников.
  • 13.Чувствительность приемного устройства.
  • 14.Основные нелинейные эффекты в линейном тракте.
  • 15.Частотная избирательность приемного устройства. Полоса пропускания.
  • 16.Автоматическая подстройка частоты гетеродина. Линейный режим.
  • 17.Нелинейный режим автоматической подстройки частоты гетеродина.Особенности эксплуатации приемного устройства.
  • Поведение апч при замираниях сигнала
  • 18.Система автоматической регулировки усиления. Назначение. Принципы построения.
  • 19.Амплитудная характеристика системы автоматической регулировки усиления. Параметры системы автоматической регулировки усиления.
  • 20.Коэффициент передачи одноконтурной входной цепи.
  • 21.Режимы максимального усиления и согласования для входной цепи.
  • 22. Способы настройки входной цепи. Особенности электронной настройки.
  • 23. Зависимость резонансного коэффициента передачи входной цепи от частоты настройки (индуктивная связь с антенной).
  • 24. Внутриемкостная связь контура входной цепи с нагрузкой и индуктивная связь с антенной – коэффициент передачи.
  • 25. Особенности входных цепей для настроенных антенн.
  • 26. Коэффициент усиления одноконтурного однокаскадного урч.
  • 27. Влияние внутренней обратной связи на устойчивость одноконтурного урч.
  • 28. Повышение устойчивости урч
  • 29. Усилитель промежуточной частоты – два принципа построения. Виды полосовых фильтров для упч.
  • 30. Преобразование частоты. Требования к смесителям. Искажение сигналов.
  • 31. Схемотехника смесителей. Гетеродины.
  • 32. Последовательный диодный амплитудный детектор – принцип работы. Коэффициент передачи в режиме сильного сигнала.
  • Режим сильного сигнала
  • 33. Нелинейные искажения в амплитудном детекторе.
  • 34. Воздействие помех на ад.
  • 35. Анализ ад в режиме слабого сигнала.
  • 36. Параллельный и транзисторный ад.
  • 37 Фазовые детекторы (фд)
  • 38. Частотные детекторы (чд)
  • 39 Воздействие помех на чд. Схемы порогопонижения.
  • Воздействие сильных помех на чд
  • 40. Прием ам и обп сигналов
  • 41. Прием чм сигналов.
  • 42. Прием фазоманипулированных сигналов. Демодулятор офм-сигналов. Формирователь опорного напряжения.
  • 43. Многоуровневая фм(мфм)
  • 44. Прием сигналов с минимальным частотным сдвигом (чммс)
  • 45. Прием сложных сигналов
  • 46. Прием с перестройкой рабочей частоты(ппрч)
  • 47. Подавление замираний с помощью пространственно-разнесенного приема
  • 48.Адаптивная компенсация помех.
  • 49. Компенсатор узкополосных синфазных помех.
  • 50. Компенсатор помех с квадратурными каналами обработки сигнала.
  • 11.Шумовая температура антенны. Коэффициент шума пассивного устройства.

    Рассмотрим понятие шумовой температуры, распространяющейся на характеристику приемных антенн, в частности для характеристики приема шумового излучения из космоса и атмосферы.

    Шумовой температурой антенны называется такая абсолютная температура, до которой требуется нагреть полное сопротивление антенны , чтобы мощность шума источника сигнала с данным внутренним сопротивлением было равно
    на выходе антенны в реальности.

    В общем случае
    на выходе антенны определяется не только мощностью принимаемого шумового излучения, но и мощностью потерь в антенне.

    Потери в антенне характеризуются сопротивлением потерь
    .

    шумовая температура антенны.

    Коэффициент шума пассивного устройства.

    Определим коэффициент шума пассивного устройства в режиме согласования.

    В дальнейшем анализ шумовых свойств будем проводить в режиме согласования.

    Пассивный четырехполюсник .



    Так как эквивалентная схема для расчета
    на выходе такая же как и эквивалентная схема для расчета
    на входе, то и мощность шума на выходе:

    ,

    , где
    - коэффициент передачи по мощности.

    Коэффициент шума пассивного устройства обратно пропорционален его коэффициенту передачи по мощности.

    Определим коэффициент шума пассивного устройства, когда температура источника сигнала и температура пассивного устройство не равны.

    12. Коэффициент шума последовательности шумящих четырехполюсников.

    Часто возникает задача, где известны характеристики нескольких шумящих 4х полюсников. Необходимо определить коэффициент шума последовательности этих 4х полюсников.

    Для уменьшения Кш ЛТ необходимо обеспечить достаточно большой коэффициент передачи по мощности УРЧ, малые потери в пассивном устройстве и малые значения собственного шума УРЧ. При таких условиях шум всех каскадов стоящих после УРЧ сказывается мало на Кш ЛТ. Если фидер имеет очень большое затухание, то установкой антенного усилителя можно исключить его влияние на чувствительность приемного устройства, при этом Кш ЛТ определяется лишь Кш антенного устройства.

    13.Чувствительность приемного устройства.

    Чувствительность характеризует способность приемника принимать слабый сигнал на фоне внутриполосных помех. Часто чувствительность приемника задается минимальным уровнем ЭДС сигнала в антенне, при котором качество сигнала на выходе приемника удовлетворяет минимальным требованиям.

    Рассмотрим связь чувствительности приемника с параметрами линейного тракта и антенны.

    Зададим отношение сигнал-шум на выходе линейного тракта

    Считаем, что антенна согласована с приемником и все шумы, созданные антенной, характеризуются шумовой температурой Т А.

    Считаем, что Е А соответствует чувствительности приемника. Найдем:

    Шумовая температура линейного тракта.

    Т.е. чувствительность приемника определяется сумой шумовых температур антенны и линейного тракта.

    Для СВЧ приемников чувствительность удобнее характеризовать не минимально возможной ЭДС в антенне, а минимально допустимой мощностью, выделяемой на входе приемника:

    Если приемники имеют переменную полосу пропускания, то чувствительность удобно характеризовать минимально допустимой удельной мощностью сигнала на входе приемника:

    где Т 0 – паспортное значение шумовой температуры,
    - относительная шумовая температура, кТ 0 =4*10 -21 Вт/Гц.

    Чувствительность часто задается в единицах кТ 0 (например, чувствительность равна 4кТ 0 =16*10 -21 В/Гц).