Аксиоматика теории множеств. Теория множеств

АКСИОМАТИЧЕСКАЯ ТЕОРИЯ МНОЖЕСТВ направление в математической логике, занимающееся изучением аксиоматическим методом объектов теории множеств.

Под аксиоматической теорией множеств также понимается любая конкретная система, формализующая теорию множеств. Аксиоматическая теория множеств возникла в начале 20 века в Европе в связи с парадоксами теории множеств, показавшими, что наивная теория множеств приводит к противоречиям. Устранение парадоксов оказалось возможным только на пути аксиоматического ограничения принципа, состоящего в том, что всякое свойство определяет множество всех объектов, обладающих этим свойством. Различные ограничения приводят к различным вариантам аксиоматической теории множеств.

Первая и наиболее известная из аксиоматических теорий множеств — теория Цермело—Френкеля, определяющая построение множеств шаг за шагом, т. е. на каждом конечном или трансфинитном шаге рассматриваются только те множества, все элементы которых уже построены на предшествующих шагах. Понятие трансфинитного шага также находит в этой теории строгое определение. Эта теория формулируется в Є-языке, то есть в языке с единственным исходным неопределяемым символом Є принадлежности: хЄХ понимается как «х есть элемент множества Х». Множество Y называется подмножеством множества Х, если каждый элемент множества Υ принадлежит и множеству Х (обозначается YЄХ).

Ключевыми в теории Цермело-Френкеля (теории ZF) являются следующие аксиомы.

1) Аксиома экстенсиональности (объёмности), утверждающая, что любые два множества, содержащие одни и те же элементы, равны друг другу.

2) Аксиома выделения, утверждающая, что совокупность всех элементов данного множества, удовлетворяющих определённому свойству, является множеством.

3) Аксиома бесконечности, утверждающая существование бесконечного множества определённого вида, именно, непустого множества Х такого, что хЄХ=>{х}ЄХ, где {х} - множество, единственным элементом которого является х.

4) Аксиома степени, утверждающая, что совокупность Р(Х) всех подмножеств данного множества является множеством.

5) Аксиома подстановки, утверждающая, что если для каждого элемента х данного множества Х каким-то образом задано множество f(х), то совокупность {f(х):хЄХ} всех так определённых множеств f(х) является множеством.

6) Аксиома регулярности, утверждающая, что каждое непустое множество Х содержит Є-минимальный элемент х, т. е. х не содержит элементов множества Х.

К этой системе может присоединяться аксиома выбора АС, утверждающая, что для любого множества Х, состоящего из непустых попарно не имеющих общих элементов множеств х, существует множество Υ, имеющее ровно один общий элемент с каждым хЄХ. Расширенная таким образом система обозначается ZFC.

Аксиомы 1-4 и аксиома выбора были введены Э. Цермело в 1908 году; вместе с некоторыми аксиомами технического характера они образуют аксиоматическую теорию множеств Цермело Z или ZC (соответственно, в отсутствии или присутствии аксиомы выбора). Аксиома 5 была введена А. Френкелем и норвежским математиком Т. Сколемом в 1922 году, аксиома 6 - Дж. фон Нейманом в 1923.

К теориям Z и ZF примыкают теория типов, соответствующая первым ω + ω шагам описанной выше схемы трансфинитного построения множеств, где ω первое трансфинитное число (равное порядковому типу множества всех натуральных чисел), и теория классов фон Неймана - Бернайса - Гёделя NBG, в которой вместе с множествами разрешается рассматривать и классы, т. е. совокупности множеств, которые сами не являются множествами (например, класс всех множеств); формально классы отличаются от множеств тем, что они не являются элементами других классов (и множеств). На совершенно иной идее построена аксиоматическая теория множеств Куайна NF, в которой требуется, чтобы все переменные формулы, выражающей рассматриваемое свойство, могли быть индексированы так, что индекс у был ровно на единицу больше индекса х всякий раз, когда выражение хЄу встречается в этой формуле.

Развитие аксиоматической теории множеств показало, что объекты содержательной математики могут рассматриваться как множества, соответственно каждое утверждение содержательной математики может быть сформулировано как утверждение о множествах, и, наконец, каждое математически корректное доказательство может быть формализовано как доказательство в теории ZFC (в большинстве случаев достаточной является теория ZC). В этом смысле аксиоматическая теория множеств ZFC является аксиоматическим базисом современной математики.

Аксиоматическая теория множеств позволила доказать формальную неразрешимость, т. е. невозможность получить ответ «да» или «нет» на поставленный вопрос, для таких проблем, как проблема континуума, проблема измеримости и ряд других проблем в дескриптивной теории множеств.

Лит.: Гедель К. Совместимость аксиомы выбора и обобщенной континуум-гипотезы с аксиомами теории множеств // Успехи математических наук. 1948. Т. 3. Вып. 1; Новиков П. С. О непротиворечивости некоторых положений дескриптивной теории множеств // Труды математического института Академии Наук СССР. 1951. Т. 38; Quine W. О. van. Set theory and its logic. Camb., 1963; Френкель А. А., БарХиллел И. Основания теории множеств. М., 1966; Коэн П. Дж. Теория множеств и континуум-гипотеза. М., 1969; Справочная книга по математической логике. М., 1982. Ч. 2: Теория множеств.

I. Основные понятия и аксиомы теории множеств

За тысячи лет своего существования от простейших представлений о числе и фигуре математики пришла к образованию многих новых понятий и методов. Она превратилась в мощное средство изучения природы и гибкое орудие практики. XX век принес математике новые идеи, теории, расширилась сфера её применения. Математика занимает особое положение в системе наук - её нельзя отнести ни к гуманитарным, ни к естественным наукам. Но она ввела те основные понятия, которые используются в них. Таким понятием является понятие «множество», которое впервые возникло в математике и в настоящее время является общенаучным.

Первый набросок теории множеств принадлежит Бернарду Больцано («Парадоксы бесконечного», 1850). В этой работе рассматриваются произвольные (числовые) множества, и для их сравнения определено понятие взаимно-однозначного соответствия.

В конце 19 века Георг Кантор, немецкий математик, основоположник теории множеств, дал интуитивное определение понятию «множеству» так: «Множество есть многое, мыслимое как единое целое» . Такое определение множества потребовало введения трех символов .

Первый из них должен представлять множество как нечто «единое», т.е. являться представителем самого множества. В качестве такого символа принято применять любую прописную букву какого-либо алфавита: например, обозначать множества прописными буквами латинского алфавита А, В, …, Х или какого-либо другого по соглашению.

Второй символ должен представлять «многое», то есть рассматриваться как элемент множества. В качестве этого символа принято использовать строчные буквы этого же алфавита: a, b, …, z.

Третий символ должен однозначно соотнести элемент множеству. В качестве соответствующего символа определен знак , который происходит от первой буквы греческого слова (быть). Запись определяет отношение: х есть элемент Х. Для того чтобы указать, что х не есть элемент Х, пишут .

Стоит отметить, что такое определение понятия множества приводит к ряду внутренних противоречий теории - так называемым парадоксам.

Например, рассмотрим парадокс Рассела. Парикмахер
(элемент х), проживающий в некоторой деревне, которые не бреются сами (пусть Х - множество всех тех и только тех жителей данной деревни, которые не бреются сами). Бреет ли парикмахер самого себя? То есть или ? Ответить на вопрос невозможно, поскольку полагая, например, что , сразу приходим к противоречию: , и обратно.

В школьном курсе математики учащимися рассматривается понятие множества, как неопределяемое понятие, под которым понимается совокупность объектов окружающей нас действительности, мыслимую как единое целое. А каждый объект этой совокупности называют элементом данного множества .

На настоящее время существует несколько аксиоматических систем теории множеств:

Система аксиом Цермело. К этой системе аксиом часто добавляют аксиому выбора, и называют системой Цермело — Френкеля с аксиомой выбора (ZFC).

Аксиомы теории NBG. Данная система аксиом, предложенная фон Нейманом, впоследствии пересмотренная и упрощенная Робинсоном, Бернайсом и Геделем.

Система Цермело (Z-система) состоит из 7 аксиом. Опишем данные аксиомы в тех рамках, в которых они используются в школьном курсе математики.

Аксиома объемности (Z1). Если все элементы множества А принадлежат множеству В, а все элементы множества В принадлежат также множеству А, то А=В.

Для пояснения данной аксиомы нам необходимо использовать термин «подмножество»: Если каждый элемент множества A является элементом множества Z, то говорят, что А - подмножество Z, и пишут . Символ именуется «включение». Если не исключается возможность ситуации, когда Z=A, то для того чтобы акцентировать на этом внимание, пишут .

Введя термин «подмножество», сформулируем аксиому 1 в символьном виде: .

Аксиома пары (Z2). Для произвольных a и b существует множество, единственными элементами которого являются {a,b}.

Данная аксиома используется при пояснении декартова произведения множеств, где первоначальным понятием является «упорядоченная пара». Под упорядоченной парой понимают совокупность двух элементов, каждый из которых занимает в записи определенное место. Обозначают упорядоченную пару так: (а,b).

Аксиома суммы (Z3). Для произвольных множеств А и В существует единственное множество С, элементами которого являются все элементы множества А и все элементы множества В и которое никаких других элементов больше не содержит.

В символьном виде аксиому Z3 можно записать так: . На основании данной аксиомы и вытекающих из неё теорем указываются свойства операций множеств, описание которых будут изложены в пункте 3. Аксиомы Z1 и Z2 позволяют нам ввести понятие операции объединения, пересечения, дополнение, разности множеств.

Аксиома степени (Z4). Для любого множества Х существует множество всех его подмножеств Р(Х).

Аксиома бесконечности (Z6). Существует, по крайней мере, одно бесконечное множество - натуральный ряд чисел.

Аксиома выбора (Z7) . Для всякого семейства непустых множеств существует функция, которая каждому множеству семейства сопоставляет один из элементов этого множества. Функция называется функцией выбора для заданного семейства.

Стоит отметить важность соответствующих аксиом, так как множества и отношения между ними являются предметом изучения любой математической дисциплины.

Укажем ещё одно важное открытие в теории множеств - изображение отношений между подмножествами, для наглядного представления . Одним из первых, кто пользовался этим методом, был выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц. Затем этот метод довольно основательно развил и Леонард Эйлер. После Эйлера этот же метод разрабатывал чешский математик Бернард Больцано. Только в отличие от Эйлера он рисовал не круговые, а прямоугольные схемы. Методом кругов Эйлера пользовался и немецкий математик Эрнест Шредер. Но наибольшего расцвета графические методы достигли в сочинениях английского логика Джона Венна. В честь Венна вместо кругов Эйлера соответствующие рисунки называют иногда диаграммами Венна, а в некоторых книгах их называют также диаграммами Эйлера-Венна . Диаграммы Эйлера-Венна используются не только в математике и логике, но и в менеджменте и других прикладных направлениях.

II. Отношения между множествами и способы их задания

Итак, под множествами понимается совокупность любых объектов, мыслимая как единое целое. Множества могут состоять их объектов самой различной природы. Их элементами могут быть буквы, атомы, числа, уравнения, точки, углы и т. д. Именно этим объясняется чрезвычайная широта теории множеств и ее приложение к самым разнообразным областям знания (математике, физике, экономике, лингвистике и т. д.).

Считают, что множество определяется своими элементами, то есть множество задано, если о любом объекте можно сказать, принадлежит он этому множеству или не принадлежит. Различают два способа задания множеств.

  1. перечисления элементов .

Например, если множество А состоит из элементов а, b, с, то пишут: А = {a, b, c}.

Не каждое множество можно задать с помощью перечисления элементов. Множества, все элементы которых можно перечислить называют конечными. Множества, все элементы которых нельзя перечислить называют бесконечными. Их нельзя задать с помощью перечисления элементов. Исключение составляют бесконечные множества, в которых ясен порядок образование каждого следующего элемента на основе предыдущего. Например, множество натуральных чисел - бесконечное множество. Но известно, что в нем каждое следующее число, начиная со второго, на 1 больше предыдущего. Поэтому можно задать так N = {1, 2, 3, 4, …}.

  1. Множество можно задать с помощью указания характеристического свойства.

Характеристическим свойством данного множества называется свойство, которым обладают все элементы этого множества и не обладают ни один, не принадлежащий ему элемент. Обозначается: А = {x|…}, где после вертикальной черты записывается характеристическое свойство элементов данного множества.

Например, В={1,2,3}. Нетрудно заметить, что каждый элемент множества В - натуральное число, меньшее 4. Именно это свойство элементов множества В является для него характеристическим. В этом случае пишут: и читают: «Множество В состоит из таких элементов х, что х принадлежит множеству натуральных чисел и х меньше четырех» или множество В состоит из натуральных чисел, меньших 4. Множество В можно задать и по - другому: или , и т.д.

При этом, если элемент не подчиняется характеристическому свойству множества, то он данному множеству и не принадлежит. Существуют множества, которые можно задать только с помощью указания характеристического свойства, например, .

Особую важность в школьном курсе математике имеют числовые множества , т.е. множества, элементами которого являются числа . Для названия числовых множеств в математике приняты специальные обозначения:

N = {1, 2, 3, 4, …} - множество натуральных чисел;

Z = {…,-4, -3, -2, -1, 0, 1, 2, 3, 4, …} - множество целых чисел (содержит все натуральные числа и числа, им противоположные);

Q = {x | x=p/q, где p∈Z, q∈N} - множество рациональных чисел (состоит из чисел, допускающих представление в виде обыкновенной дроби);

J - множество иррациональных чисел (множество, состоящее из бесконечных десятичных непериодических дробей, например: 1,23456342 …;, и др.)

R = (-∞; +∞) - множество действительных чисел.

Множество всех действительных чисел Л. Эйлер изобразил с помощью кругов. (Рис. 1)

Cтоит отметить, что все любые числовые множества можно задать с помощью числового промежутка. (Рис. 2)

Типы числовых промежутков


Множество С, рассмотренное выше, это числовое множество и его можно указать с помощью числового промежутка (Рис. 3)

Рисунок 3 - Числовой промежуток

Укажем еще одно важное правило для задания числовых множеств: Конечные числовые множества изображаются на числовой прямой отдельными точками.

В математике иногда приходится рассматривать множества, содержащие только один элемент, и даже множества, не имеющие ни одного элемента. Множество, не содержащее ни одного элемента, называют пустым . Его обозначают знаком ∅. Например, дано множество A={x|x∈N∧-2

Стоит отметить, когда речь идет о двух и более множествах, то между ними могут быть какие-либо отношения или нет. Если множества находятся в каких-либо отношениях, то речь идет или об отношении равенства или отношении включении .

Множество А включается во множество В, если каждый элемент множества А принадлежит множеству В. Обозначается данное отношение так: A⊂B. Или, по-другому говорят, что множество А является подмножеством множества В.

Множества А и В называются равными , тогда и только тогда, когда каждый элемент множества А принадлежит множеству В и вместе с этим каждый элемент множества В принадлежит множеству А. Обозначается данное отношение так: А=В

Например:

1) A={a,b,c,d} и B={b,d}, эти множества находятся в отношении включения B⊂A, т.к. каждый элемент множества В принадлежит множеству А.

2) M={x|x∈R∧x<6}=(-∞;6) и K{x|x∈R∧x≤8}=(-∞;8], эти множества находятся в отношении включения M⊂K, т.к. каждый элемент множества M принадлежит множеству K (Рис. 4)

Рисунок 4 - Числовой промежуток

3) A={x|x∈N∧x:2}={2,4,6,8,10,...} и B={x|x∈N∧x:3}={3,6,9,12,...}, эти два множества не находятся ни в каких отношениях A⊄B, так как во множестве А есть элемент 2, не принадлежащий множеству В

и B⊄A, т.к. во множестве В есть элемент 3, не принадлежащий множеству А.

Следовательно, данные множества не находятся ни в каких отношениях.

III. Операции и свойства операций над множествами

Опр.1. Пересечением множеств А и В называется операция, результатом которой является множество, состоящее из тех и только тех элементов, которые принадлежат и А и В одновременно.

A∩B={x|x∈A∧x∈B}

Опр.2. Объединением множеств А и В называется операция, результатом которой является множество, состоящее из тех и только тех элементов, которые принадлежат множеству А или множеству В (т.е. хотя бы одному из этих множеств).

A∪B={x|x∈A∨x∈B}

Опр.3. Разностью множеств А и В называется операция, результатом которой является множество, состоящее из тех и только тех элементов, которые принадлежат А и не принадлежат В одновременно.

А\ В ={x∈A∧x∉B}

Опр.4. Дополнением множества А до универсального множества называется множество, каждый элемент которого принадлежит универсальному и не принадлежит А.

Выражения с множествами

Из множеств, знаков операций над ними и, может быть, скобок можно составлять выражения. Например, А∩В\С.

Необходимо знать порядок выполнения операций в таких выражениях и уметь их читать.

Порядок выполнения операций

    если нет скобок, то в первую очередь выполняется дополнение до универсального множества простого множества, затем пересечение и объединение (они равноправны между собой), в последнюю очередь - разность;

    если в выражении есть скобки, то сначала выполняют операции в скобках по порядку, приведенному в пункте 1), а затем все операции за скобками.

Например, а) А∩В\С; б) А∩(В\С); в) А∩(В\С)" .

Чтение выражения начинается с результата последней операции. Например, выражение а) читается так: разность двух множеств, первое из которых пересечение множеств А и В, а второе - множество С.

Круги Эйлера

Операции над множествами и отношения между ними можно изобразить с помощью кругов Эйлера. Это специальные чертежи, на которых обычные множества изображаются кругами, универсальное множество - прямоугольником

Задача. Изобразить с помощью кругов Эйлера множество (А∪В)"∩С.

Решение. Расставим порядок выполнения операций в данном выражении: (А∪В)"∩С. Заштрихуем результаты операций согласно порядку их выполнения

Свойства операции над множествами (рис.5)

Свойства I - 8 и 1 0 - 8 0 связаны между собой гак называемым принципом двойственности:

если в любом из двух столбиков свойств поменять знаки ∩→∪, ∪→∩, ∅→U, U→∅, то получится другой столбик свойств.

IV. Разбиение множества на классы

Считают, что множество Х разбито на попарно непересекающиеся подмножества или классы, если выполнены следующие условия:

1) пересечение любых двух подмножеств пусто;

2) объединение всех подмножеств совпадает с множеством Х.

Разбиение множества на классы называют классификацией.

V. Декартово произведение множеств

Декартовым произведением множеств А и В называется множество пар, первая компонента каждой из которых принадлежит множеству А, а вторая — множеству В Декартово произведение множеств А и В обозначают А х В. Таким образом, А×В={(x,y)|x∈A˄y∈B}. Операцию нахождения декартова произведения множеств А и В называют декартовым умножением этих множеств. Если А и В — числовые множества, то элементами декартова произведения этих множеств будут упорядоченные пары чисел.

VI. Правила суммы и произведения

Обозначим число элементов конечного множества A символом n(A). Если множества А и В не пересекаются, то n(AUВ)= n(А) +n (В). Если множества А и В пересекаются, то n(А U В) = n (A) + n (В) — n (A ∩ В).

Число элементов декартова произведения множеств A и В подсчитывается по формуле n (А X В) = n (A) . n (В).

Правило подсчета числа элементов объединения непересекающихся конечных множеств в комбинаторике носит название прави-ла суммы, если элемент х можно выбрать k способами, а элемент у — m способами, причем ни один из способов выбора элемента х не совпадает со способом выбора элемента у, то выбор «х или у» можно осуществить k + m способами.

Правило подсчета числа элементов декартова произведения конечных множеств в комбинаторике носит название правила произведения: если элемент х можно выбрать k способами, а элемент y - m способами, то пару (х,y) можно выбрать km способами.

VII. Список использованных источников

    Асеев Г.Г. Абрамов О.М., Ситников Д.Э. Дискретная математика: Учебное пособие. - Ростов н/Д: «Феникс», Харьков: «Торсинг», 2003, -144с.

    Виленкин Н. Я. Алгебра. Учебное пособие для IX - X классов средних школ с математической специализацией, 1968

    Виленкин Н.Я. Рассказы о множествах. М.: Изд-во «Наука». - 1965. - 128с

    Диаграммы Эйлера - Венна.URL:http://studopedia.net/1_5573_diagrammi-eylera-venna.html

    Киреенко С.Г., Гриншпон И. Э. Элементы теории множеств (учебное пособие). - Томск, 2003. - 42 с.

    Куратовский К., Мостовский А. Теория множеств. - М.: Мир, 1970, - 416с.

В начале XX века Бертран Рассел, изучая наивную теорию множеств, пришел к парадоксу (с тех пор известному как парадокс Рассела). Таким образом, была продемонстрирована несостоятельность наивной теории множеств и связанной с ней канторовской программы стандартизации математики. А именно, был обнаружен ряд теоретико-множественных антиномий: оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам классической логики высказываний, может быть «доказано» абсолютно любое утверждение!). Антиномии ознаменовали собой полный провал программы Кантора.

После обнаружения антиномии Рассела часть математиков (например, Л. Э. Я. Брауэр и его школа) решила полностью отказаться от использования теоретико-множественных представлений. Другая же часть математиков, возглавленная Д. Гильбертом, предприняла ряд попыток обосновать ту часть теоретико-множественных представлений, которая казалась им наименее ответственной за возникновение антиномий, на основе заведомо надёжной финитной математики. С этой целью были разработаны различные аксиоматизации теории множеств.

Особенностью аксиоматического подхода является отказ от лежащего в основе программы Кантора представления о действительном существовании множеств в некотором идеальном мире. В рамках аксиоматических теорий множества «существуют» исключительно формальным образом, и их «свойства» могут существенно зависеть от выбора аксиоматики. Этот факт всегда являлся мишенью для критики со стороны тех математиков, которые не соглашались (как на том настаивал Гильберт) признать математику лишённой всякого содержания игрой в символы. В частности, Н. Н. Лузин писал, что «мощность континуума, если только мыслить его как множество точек, есть единая некая реальность», место которой в ряду кардинальных чисел не может зависеть от того, признаётся ли в качестве аксиомы континуум-гипотеза, или же её отрицание.

В настоящее время наиболее распространённой аксиоматической теорией множеств является ZFC -- теория Цермело -- Френкеля с аксиомой выбора. Вопрос о непротиворечивости этой теории (а тем более -- о существовании модели для неё) остаётся нерешенным.

Аксиомы теории множеств

Сейчас у нас имеются все средства, чтобы сформулировать систему аксиом теории множеств ZFC, в рамках которой можно изложить все общепринятые в современной математике способы рассуждений и не проходит ни один из известных теоретико-множественных парадоксов. Эта система позволяет строить все математические объекты исходя из пустого множества. Представим систему аксиом, Цермело -- Френкеля (ZF).

Аксиома существования пустого множества: Существует пустое множество;

Аксиома существования пары: Если существуют множества а и b, то существует множество a, b ;

Аксиома суммы: Если существует множество X, то существует множество X=a a b для некоторого b X;

Аксиома бесконечности: Существует множество = 0, 1,…,n,… , где 0 = , n + 1 = n n ;

Аксиома множества всех подмножеств: Если существует множество А, то существует множество:

6. Аксиома замены: Если P(x, у) -- некоторое условие на множества x, у , такое, что для любого множества x существует не более одного множества у , удовлетворяющего Р(х, у), то для любого множества а существует множество {b P(c,b) для некоторого с а};

7. Аксиома экстенсиональности:

Два множества, имеющие одинаковые элементы, равны, любое множество определяется своими элементами:

8. Аксиома регулярности:

Всякое непустое множество x имеет элемент а х, для которого

Из аксиомы регулярности следует, что каждое множество получается на некотором шаге "регулярного процесса" образования множества всех подмножеств, начинающегося с и подобного построению натуральных чисел из пустого множества по аксиоме бесконечности. Это означает, что любой элемент любого множества является множеством, сконструированным из пустого множества.

Покажем, как аксиоматика ZF позволяет определять теоретико-множественные операции.

1. Определим множество A В, исходя из множеств А к В. По аксиоме существования пары образуется множество {А, В}. С помощью аксиомы суммы получаем множество {A, B}, которое по определению совпадает с множеством A B.

2. Пересечение А В множеств А и В определяется по аксиоме замены с помощью следующего свойства Р(х, у): х = у и х А. Имеем множество {b P(c,b) и с В} = {b с = b и с А и с В} = {c с А и с В}.

3. Покажем, что из аксиом 5 и 6 следует существование множества А 2 = {(a, b) a, b А} для любого множества А. Так как (a, b) = , то А 2 P(Р(А)). Пусть свойство Р(х, у) означает, что существуют такие a, b А, что x = и y = х. Тогда множество А 2 равно {b P(c,b), c Р(Р(А))} и по аксиоме 6 оно существует.

Система аксиом ZFC образуется из ZF добавлением одной из следующих двух эквивалентных аксиом, которые, с одной стороны, являются наименее "очевидными", а с другой -- наиболее содержательными,

1. Аксиома выбора.

Для любого непустого множества А существует такое отображение: Р(А) {} A, что (Х) X |для всех X А, X .

2. Принцип полного упорядочения. Для любого непустого множества А существует бинарное отношение на А, для которого A, вполне упорядоченное множество.

В системе ZFC справедлив принцип трансфинитной индукции, являющийся обобщением принципа полной индукции: если A, - вполне упорядоченное множество, Р(х) -- некоторое свойство, то справедливость свойства Р(х) на всех элементах х А следует из того, что для любого z А выполнимость свойства Р на элементах у, где у < z, влечет выполнимость P(z):

  • a}, {a, b
  • а}, {а, b

Введение

Значение математической логики в нашем и прошлом столетии сильно возросло. Главной причиной этого явилось открытие парадоксов теории множеств и необходимость пересмотра противоречивой интуитивной теории множеств. Было предложено много различных аксиоматических теорий для обоснования теории множеств, но как бы они не отличались друг от друга своими внешними чертами, общее для всех них содержание составляют те фундаментальные теоремы, на которые в своей повседневной работе опираются математики. Выбор той или иной из имеющихся теорий является в основном делом вкуса; мы же не предъявляем к системе, которой будем пользоваться, никаких требований, кроме того, чтобы она служила достаточной основой для построения современной математики.

§1. Система аксиом

Опишем теорию первого порядка NBG, которая в основном является системой того же типа, что и система, предложенная первоначально фон Нейманом , , а затем тщательно пересмотренная и упрощенная Р. Робинсоном , Бернайсом и Гёделем . (Будем в основном следовать монографии Гёделя, хотя и с некоторыми важными отклонениями.) Теория NBG имеет единственную предикатную букву

и не имеет ни одной функциональной буквы или предметной константы. Чтобы быть ближе к обозначениям Бернайса и Гёделя , мы будем употреблять в качестве переменных вместо x1, x2, … прописные латинские буквы X1, Х2, ... (Как обычно, мы используем буквы X, Y, Z, ... для обозначения произвольных переменных.) Мы введем также сокращенные обозначения ХY для(X, Y) и XY для (X, Y). Содержательно знак понимается как символ отношения принадлежности.

Следующим образом определим равенство:

Определение. Х=Y служит сокращением для формулы

.

Таким образом, два объекта равны тогда и только тогда, когда они состоят из одних и тех же элементов.

Определение.

служит сокращением для формулы (включение).

Определение. X

Y служит сокращением для Х Y & X ≠ Y (собственное включение).

Из этих определений легко следует

Предложение 1.

Х = Y (X Y & Y X); Х = Х; Х = Y Y = Х; Х = Y (Y = Z Х = Z); Х = Y (ZX ZY).

Теперь приступим к перечислению собственных аксиом теории NBG, перемежая формулировки самих аксиом различными следствиями из них и некоторыми дополнительными определениями. Предварительно, однако, отметим, что в той «интерпретации», которая здесь подразумевается, значениями переменных являются классы. Классы - это совокупности, соответствующие некоторым, однако отнюдь не всем, свойствам (те свойства, которые фактически определяют классы, будут частично указаны в аксиомах. Эти аксиомы обеспечивают нам существование необходимых в математике классов и являются, достаточно скромными, чтобы из них нельзя было вывести противоречие). (Эта «интерпретация» столь же неточна, как и понятия «совокупность», «свойство» и т. д.)

Назовем класс множеством, если он является элементом какого-нибудь класса. Класс, не являющийся множеством, назовем собственным классом.

Определение. M(X) служит сокращением для

Y(XY) (X есть множество).

Определение. Pr(X) служит сокращением для

M(X) (X есть собственный класс).

В дальнейшем увидим, что обычные способы вывода парадоксов приводят теперь уже не к противоречию, а всего лишь к результату, состоящему в том, что некоторые классы не являются множествами. Множества предназначены быть теми надежными, удобными классами, которыми математики пользуются в своей повседневной деятельности; в то время как собственные классы мыслятся как чудовищно необъятные собрания, которые, если позволить им быть множествами (т. е. быть элементами других классов), порождают противоречия.

Система NBG задумана как теория, трактующая о классах, а не о предметах. Мотивом в пользу этого послужило то обстоятельство, что математика не нуждается в объектах, не являющихся классами, вроде коров или молекул. Все математические объекты и отношения могут быть выражены в терминах одних только классов. Если же ради приложений в других науках возникает необходимость привлечения «неклассов», то незначительная модификация системы NBG позволяет применить ее равным образом как к классам, так и к «неклассам» (Мостовский ).

Мы введем строчные латинские буквы x1, x2, … в качестве специальных, ограниченных множествами, переменных. Иными словами,

x1 A (x1) будет служить сокращением для X (M(X)A (X)) , что содержательно имеет следующий смысл: «A истинно для всех множества, и x1 A (x1) будет служить сокращением для X (M(X)A (X)), что содержательно имеет смысл: «A истинно для некоторого множества». Заметим, что употребленная в этом определении переменная X должна быть отличной от переменных, входящих в A (x1). (Как и обычно, буквы х, y, z, ... будут употребляться для обозначения произвольных переменных для множеств.)

П р и м е р. Выражение

ХхyZA (X, х, y, Z) служит сокращением для ХXj (М(Xj)Y(M(Y)&ZA (X, Xj, Y, Z))).

А к с и о м а Т. (Аксиома объемности.) Х = Y

Здесь мы введем аксиомы, на которых будет основано все наше дальнейшее изложение теории множеств. Эти аксиомы позволяют строить новые множества из уже имеющихся множеств, и в этом смысле они не отличаются от аксиом, приведенных в главе I. Существенное различие заключается в том, что здесь мы будем рассматривать множества, у которых элементы сами являются множествами, то есть будем рассматривать семейство множеств (A, B, X, Y, …).

Повторим, прежде всего, аксиому объемности.

I . Аксиома объемности.

Если множества A и B составлены из одних и тех же элементов, то они совпадают.

С помощью символов эту аксиому можно записать в виде:

II . Аксиома существования пустого множества.

Существует такое множество
, что ни один элемент
x ему не принадлежит:

.

II ".Аксиома пары.

Для произвольных a и b существует множество, единственными элементами которого являются a и b :

.

III . Аксиома суммы. Для каждого семейства множеств
существует множество, состоящее из тех и только тех элементов, которые принадлежат некоторому множеству
, принадлежащему
:
.

Согласно аксиоме I, существует не более одного такого множества S .

Действительно, если

для произвольного x

и, согласно аксиоме I,
.

Так как, аксиома III утверждает существование по крайней мере одного такого множества S , то отсюда следует, что для каждого
множестваS определено однозначно. Назовем его суммой множеств , принадлежащих семейству
, и будем обозначатьS (A ) или
.

IV . Аксиома степени. Для каждого множества A существует семейство множеств P , элементами которого являются все подмножества множества A и только они:
.

Легко доказать, что множество A однозначно определяет семейство P . Оно (P ) называется его (A ) степенью и обозначается
.

V . Аксиома бесконечности. Существует такое семейство множеств A , которому принадлежит O и, если
, то в
A найдется элемент Y , состоящий из всех элементов множества X и самого множества X :

.

Таким образом, семейству A принадлежит множество O , множество N 1 , единственными элементами которого являются O и N 1 , и так далее.

VI . Аксиома выбора. Для каждого семейства A пустых непересекающихся множеств существует множество B , имеющее один общий элемент с каждым из множеств
:

Чтобы облегчить чтение этого выражения, заметим, что высказывательная функция утверждает существование такого элементаx , что условия
и
эквивалентны. Поэтому элементx – единственный элемент произведения
, и рассматриваемая высказывательная функция утверждает, что это произведение имеет только один элемент.

Для произвольной высказывательной функции Ф(x ) примем следующую аксиому:
.

- это аксиома зависит от остальных, поэтому мы не даем ей отдельного номера.

. Аксиома выделения для высказывательной функции Ф. Для произвольного множества A существует множество, состоящее из тех и только тех элементов множества A , которые (будучи подставлены на место переменных x ) удовлетворяют Ф.

Символически эту аксиому можно записать в следующем виде (полагая, что переменная B не встречается в Ф ):

Если в Ф(x ) встречаются (свободные) переменные, отличные от x , то они играют роль параметров, от которых зависит B .

Очевидно, что множество B однозначно определяется высказывательной функцией Ф(x ) , множеством A и выбором переменной x .

Мы будем обозначать его
или
и читать: «множество техx из A , которые удовлетворяют Ф(x ) ».

Для каждой высказывательной функции, не содержащей переменных x и B , примем следующую аксиому.

. Аксиома замены для высказывательной функции Ф. Если для каждого x существует единственный элемент y , такой, что выполняется Ф( x ), то для каждого множества A существует множество B , состоящее из тех и только тех элементов y , которые при некотором
выполняют Ф(
x ).

Положим интуитивный смысл этой аксиомы. Допустим, что условие аксиомы истинно, то есть для каждого x существует только один элемент y , выполняющий Ф(x ) . Назовем этот элемент y последователем элемента x . Аксиома
утверждает, что тогда для каждого множестваA существует множество B , состоящее из всех последователей элементов множества A и только из них.

Например, пусть
, тогда последователем множестваX будем множество 2 x . Аксиома замены утверждает, что для каждого семейства множества A существует семейство множеств B , элементами которого является множество 2 x , где
.

Аксиомы I – VI и все аксиомы
(а из число бесконечно), гдеФ – произвольная высказывательная функция из класса , образуют (бесконечную) систему аксиом, которую мы будем обозначать
. Опуская в
аксиому выбора (VI), получаем новую систему аксиом и обозначим ее .

Роль, которую в теории множеств играют отдельные аксиомы, можно полностью оценить только после знакомства с их следствиями. Здесь мы сделаем только несколько общих заключений.

Аксиомы в математических теориях могут играть двоякую роль.

    В одних случаях аксиомы полностью характеризуют теорию, то есть они в каком-то смысле определяют первичные понятия этой теории.

Например, в теории групп мы определяем группу как множество с операциями, удовлетворяющими аксиомам этой теории.

    В других случаях аксиомы формализуют только некоторые свойства первичных понятий теории и тогда их цель не в том, чтобы дать полное описание первичных понятий, а скорее в том, чтобы дать систематизацию интуитивного смысла этих понятий.

Именно вот такое назначение и будут иметь аксиомы в дальнейших разделах теории множеств.

Аксиомы III, IV, VI,
являются так называемымиусловными аксиомами существования : они позволяют делать заключения о существовании определенных множеств при условии, что существуют другие множества.

Конструкции, осуществляемые на основе аксиом III, IV, VI,
, однозначны.

В то же время аксиома VI не определяет однозначно множество, существование которого она утверждает: для данного семейства A непустых непересекающихся множеств существует, вообще говоря, много множеств B удовлетворяющих аксиоме выбора.

Аксиомы II и V заслуживают названия абсолютных аксиом существования: они постулируют существование некоторых множеств и не ограничены никакими условиями.