Фреоновая система охлаждения для пк. Чеклист для определения вектора выбора технологии

Требования, которые предъявляются к системам охлаждения с фреоном в качестве рабочего вещества. Фреоны, в отличие от других холодильных рабочих веществ, имеют большую текучесть, хорошо растворяются в смазочных маслах и имеют очень малую растворимость в воде. Именно с этим связаны основные отличия охлаждающих систем с фреоном в качестве рабочего вещества и от других охлаждающих систем.

На основе вышеуказанных особенностей фреонов можно сформулировать главные требования, которые предъявляются к системам охлаждения с фреоном в качестве рабочего вещества:

· поддержание гер­метичности;

· обеспечение проникновения влаги в холодильную установку;

· беспрерывная циркуляция смеси «масло–фреон» и возвращение масла в компрессор из испарителя.

Поддержание герметичности холодильной установки можно достигнуть с помощью использования специальных прокладок, которые изготавливаются из паронита или маслостойкой резины. Кроме того, необходимо осуществить специальными штуцерами соединение аппаратов и трубопроводов.

Для избегания проникновения влаги в холодильную установку сегодня выпускаются холодильные аппараты и машины, которые заполнены инертным газом. Во время запуска холодильных систем в эксплуатацию их необходимо осушить с помощью продувания инертными газами, а затем происходит вакуумирование перед заправкой хладагента. Кроме того, во время эксплуатации холодильной установки необходимо производить постоянное осушение хладагента, циркулирующего в системе. Это осуществляется с помощью фильтров-осушителей.

Беспрерывная циркуляция смеси «масло–фреон» и возвращение масла в компрессор из испарителя осуществляются на основе обеспечения условий, которые бы способствовали понижению растворения хладагента в масле в компрессоре, а также с помощью использования испарителей со специальной конструкцией. В случае использования испарителей с кипением фреона внутри труб (например, воздухоохладителей или змеевиковых охлаждающих батарей) необходимо осуществлять верхнюю или нижнюю (а в некоторых случаях – и комбинированную) подачу фреона.

В том случае, если осуществляется верхняя подача фреона в систему, легче осуществить возвращение масла в картер компрессора. Также в этом случае для заправки холодильной установки необходимо меньшее количество хладагента, нет вредоносного влияния гидростатического столба жидкос­ти на теплопередачу. Кроме того, хладагент и масло осуществляют движение сверху вниз, т. е. движутся в одном направлении. Последний фактор способствует тому, что масло лучше циркулирует в системе.

В том случае, если осуществляется нижняя подача фреона в систему, то коэффициент теплопередачи будет выше, а хладагент будет лучше распределяться между секциями, которые работают параллельно. Чаще всего системы с нижней подачей фреона используются в больших, широко раз­ветвленных, насосно-циркуляционных охлаждающих системах. Для того, чтобы масло возвращалось в картер компрессора, на трубопроводах отсоса пара создают специальные петли, которые образуют некий гидравлический затвор. В этих петлях накапливается масло, которое транспортируется паром. С целью уменьшения пагубного влияния гидростатического столба жидкости приборы охлаждения необходимо реализовывать из параллельных змеевиков с приподнятыми выходными концами, которые будут располагаться горизонтально и будут объединены коллекторами.

В том случае, если осуществляется комбинированная подача фреона, хладагент осуществляет движение через змеевики, которые соединены последовательно, сначала снизу вверх, а в последних секциях – сверху вниз. В этом случае повышается коэффициент теплопередачи (по сравнению с системами с верхней подачей фреона) и улучшается возврат масла (по сравнению с нижней подаче фреона), но вместе с тем и повышается гидравлическое сопротивление. Из-за этого данный способ подачи фреона применяется лишь в некоторых системах, которые предназначены для работы с высокими температурами кипения.

Методы подвода хладагента к испарителям. Подвод хладагента реализовывается через дроссельные устройства. При этом конструкция дросселей подбирается в зависимости от вида датчика. Дроссели могут срабатывать в случае изменения уровня жидкости в испарителе (соленоидные вентили или поплавковые регулирующие вентили; и дроссели, которые получают сигнал от электронных указателей уровня) или же в случае перегрева пара (ТРВ). Для того, чтобы испарители хорошо заполнялись фреоном, применяют терморегулирующий вентиль (ТРВ) с термобаллоном, устанавливающийся до или после теплообменного аппарата. В том случае, если термобаллон устанавливается до теплообменного аппарата, ТРВ необходимо настроить на начало открытия в случаях перегрева паров на 3–4 °С, полное же его открытие должно происходить при перегреве в 5–7 °С. Следует отметить, что перегрев пара происходит лишь в последних (по ходу движения хладагента) шлангах теплообменного аппарата, из-за чего эти шланги работают с небольшой эффективностью. Также необходимо знать, что при сравнительно малых перегревах паров чувствительность ТРВ уменьшается, а работа его становится неустойчивой.

Для того, чтобы снизить перегрев пара на выходе из змеевиковых теплообменников, необходимо использовать ТРВ, которое работает на принципе внешнего выравнивания давления. В этом случае перегрев выходящего из теплообменника пара регулируется и снижается на величину, которая соответствует уменьшению давления в охлаждающем аппарате на линии от ТРВ до того места, где уравнительная трубка ТРВ присоединяется к трубопроводу.

В случае размещения термобаллона ТРВ после теплообменного аппарата теплосъем теплообменника повышается вследствие лучшего заполнения его жидким хладагентом и уменьшения концентрации масла в смеси «масло–фреон». Причем ТРВ необходимо настраивать на существенно более высокий перегрев пара (как минимум, на 15–20 °С), который бы обеспечивал доиспарение хладагента из масла.

https://pandia.ru/text/80/222/images/image002_27.jpg" width="430" height="250">

Качественное заполнение хладагентом испарителей, в которых кипение фреона происходит в межтрубном пространстве (кожухозмеевиковые или кожухотрубные теплообменные аппараты), реализовывается с помощью поплавковых регуляторов уровня или ТРВ. Следует отметить, что когда проектируется, а затем и эксплуатируется холодильная система, необходимо создавать условия для возвращения масла в картер компрессор из охлаждающих аппаратов.

В случае применения смеси «масло–фреон» с ограниченной взаимной растворимостью, фракция, которая насыщена маслом (как более легкая) накапливается виде небольшого слоя в верхней части охлаждающего аппарата. Чтобы масло возвращалось в компрессор, необходимо температуру застывания масла поддерживать значительно более низкой, чем температуру кипения хладагента. В этом случае масло начинает вспениваться парами фреона и в таком виде начинается уноситься во всасывающий трубопровод.

В случае применения смеси «масло–фреон» с неограниченной взаимной растворимостью масло из межтрубного пространства охлаждающего теплообменника может уноситься вместе с каплями неиспарившейся жидкости, захватываемыми паровым потоком.

Количество масла, которое отводится паром из кожухотрубного теплообменника, обуславливается скоростью его движения в охлаждающем теплообменнике, местом присоединения патрубка всасывания к кожуху теплообменника и его кон­струкцией. Скорость в паровом пространстве зависит от количества пара, который образовался, т. е. от тепловой нагрузки, и от степени заполнения теплообменником жидким хладагентом. В том случае, если степень заполнения теплообменника либо его тепловая нагрузка уменьшаются, то следствием этого становится снижение количества жидкой смеси «масло–фреон», которая уносится из него вместе с паром. В том случае, если имеют место малые тепловые нагрузки, унос масла из теплообменника может полностью остановиться, что приведет к существенному ухудшению его теплопередачи, и, как следствие, к аварийному уменьшению уровня масла в картере компрессора.

Принципиальная схема питания фреонового теплообменника по перегреву показана на рис. 3. Особенностью такой схемы является настройка ТРВ для того, чтобы обеспечить нормальную работу системы.


Если плавно повышать тепловую нагрузку теплообменника, усиленное парообразование в испарителе приведет к уносу жидкости, следствием чего является снижение подачи хладагента через ТРВ. Но при этом ТРВ не способен обеспечить безопасную работу холодильной системы в случае резкого повышения тепло­вой нагрузки из-за того, что вскипание хладагента может привести к перепол­нению теплообменника, и, как следствие, к влажному ходу компрессора. Следовательно, данную схему можно применять только для питания теплообменников, работающих в стационарном режиме с незначительными колебаниями тепловой на­грузки. Регулирование заполнения теплообменника в переходных и пусковых режимах необходимо реализовывать ручным регулирующим вентилем.

В том случае, если термобаллон ТРВ поместить на трубопроводе между испарителем и РТО, то немного снижается вероятность влажного хода компрессо­ра в случае переменных тепловых нагрузок, но это повлечет за собой ухудшение возвращения масла в картер компрессора, а теплопередача в испари­теле уменьшится. По некоторым опытным данным, коэффициент теплопередачи, от­несенный к полной поверхности аппарата, уменьшается на 30% при увеличении перегрева паров хладагента R22, которые выходят из испарителя от 0 до 2 °С.

Принципиальная схема заполнения хладагентом фреонового испарителя в зависимости от уровня показана на рис. 4. При этом, уровень жидкости в теплообменнике надо поддерживать таким, чтобы исключалось ее попадание во всасы­вающий трубопровод в случае максимальных тепловых нагрузок, которые соответствуют заданным условиям эксплуатации охлаждающего теплообменника. Удаление смеси «масло–фреон» из аппарата реализовывается по специальному трубопроводу, который присоединяется к теплообменнику в той зоне, где присутствует наивысшая кон­центрация масла в жидкой фазе. Жидкость, которая отводится из теплообменника, поступает в РТО, где происходит доиспарение хладагента.

Соленоидный вентиль, который расположен между охлаждающим теплообменником и ТРВ, закрывается одновременно с выключением компрессора, тем самым предотвраща­я возможное поступление жидкости во всасывающий трубопровод. Данная схема обеспечивает надежную эксплуатацию холодильной системы в случае переменных тепловых нагрузок.

В том случае, если для охлаждения необходимы низкотемпературные фре­оновые установки, можно применить схему питания охлаждающего теплообменника, которая показана на рис. 5. Данная схема отличается от схемы, изображенной на рис. 4, тем, что тут применяется оросительный испаритель с насосной циркуля­цией смеси «масло–фреон». Ряд зарубежных фирм-изготовителей производят оросительные испарители, которые оснащены эжекторами либо же встроенными цир­куляционными насосами.

https://pandia.ru/text/80/222/images/image006_11.jpg" width="450" height="312">

В случае проектирования РТО можно принимать гидравли­ческое сопротивление его зоны пара по данным фирмы «Данфосс», приведенным на рис. 6.

Разводка трубопроводов. В охлаждающих системах разводку тру­бопроводов выполняют так, чтобы обеспечить непрерывный равномер­ный возврат в компрессор уносимого масла.

Жидкостные трубопроводы с фреоном необходимо прокладывать аналогично аммиачным. Но при этом следует отметить, что плотность фреонов значительно выше, а скрытая теплота фазового перехода существенно ниже по сравнению с аммиаком . Вследствие этого внимание необходимо обращать на предупреждение вскипания хладагента из-за уменьшения его давления в трубопроводах, которые направляют жидкость снизу вверх – к дроссельным и распределительным устройствам. При этом следует поддерживать достаточную для транспортировки масла скорость пара во фреоновых паровых трубопроводах, которая зависит от плотности пара и размеров капель масла, при этом она резко меняется при изменении температуры и давления в системе.

Если в трубопроводах повысить скорость, то более крупные капли масла легче уносятся обратно в компрессор, но при этом это приводит к резкому увеличению потерь давления. Вследствие этого ухудшаются условия работы компрессора, а также уменьшается его холодопроизводительность. Крайне нежелательны при этом возрастание гидравлического сопротивления во всасывающих трубопроводах в одно - и многоступенчатых установках, которые работают на низкие температуры.

Рекомендуются следующие минимальные скорости, которые бы обеспечивали перенос масла: в вертикальных всасывающих трубопроводах, в которых фреон движется снизу вверх, – 8,0 м/с; в вертикальных нагнетательных трубопроводах – 7,5 м/с; в горизонтальных всасывающих трубопроводах, в которых создается уклон по ходу движения пара – 4,5 м/с; в горизонтальных нагнетательных трубопроводах – 3,5 м/с.

Чтобы обеспечить более легкий подъем масла в вертикальных паровых трубопроводах, нижнюю часть трубопроводов необходимо изготовить в виде сифонов. При этом масло постепенно заполняет сифон, тем самым увеличивая его гидравлическое сопротивление до того момента, пока не выбросится потоком пара в сторону низкого давления.

В том случае, если необходимо подавать масло с парами хладагента вверх на существенную высоту, на трубопроводе изготавливают каскад сифонов, которые расположены друг от друга на расстоянии 3–9 м. Масло под давлением парообразного хладагента поступательно движется от нижнего сифона к верхнему..

Верхнюю часть вертикальных трубопроводов, которые транспортируют смесь «масло–пар», из отдельных приборов охлаждения снизу вверх, необходимо выгибать в виде грифонов, которые представляют собой обратные сифоны, подключая их к общей всасывающей линии сверху. Вследствие этого предотвращается возможность попадания смеси «масло–фреон» из одного прибора охлаждения в другой.

Надежный возврат масла из приборов охлаждения в картер компрессора обеспечивается в том случае, если всасывающий вентиль компрессора находится ниже выход­ных патрубков приборов охлаждения, и вместе с тем используется верхняя разводка всасы­вающих трубопроводов.

Горизонтальные участки паровых трубопроводов необходимо выполнять с уклоном 3–5% по ходу хладагента. Уклон обеспечивает снижение скорости пара и предотвращение обратного слива масла по трубе в том случае, если произошла остановка компрессора, либо же снизилась его производительность.

В схемах, где используется верхняя разводка трубопроводов, стоя­ки нагнетания компрессоров, которые работают параллельно, необходимо присоеди­нять к общему коллектору. Это реализуется с помощью сифонов, прямо перед которыми устанавливаются обратные клапаны на каждом стояке. Вследствие этого можно защитить компрессоры, которые временно не работают, от конденсации в них пара и вредоносного заполне­ния нагнетательных стояков маслом.

В малых установках, в которых присутствует переменная тепловая на­грузка, часто используется один компрессор, в котором регулируется холодопроизводительность. Этот один компрессор позволяет поддерживать давление кипения примерно постоянным. В том случае, если тепловая нагрузка будет изменяться во времени, скорость пара в нагнетательном и всасывающем трубопроводах вследствие этого может колебаться в существенном диапазоне. В таких условиях становится сложным осуществлять транспортировку масла в трубопроводах, которые направлены снизу вверх (например, в таких случаях, когда конденсатор находится на крыше здания). Для этого сечение вертикального отрезка линии нагнетания компрессора необходимо рассчитать таким образом, чтобы в случае минимальной тепловой нагрузки в этой линии поддерживалась достаточная для транспортировки масла скорость. Но если повышать производительность компрессора, гидравлическое сопротивление трубопровода начинает резко возрастать.

В холодильных установках, в которых регулируется холодопроизводительность, необходимо использовать нагнетательную линию, которая будет состоять из двух труб разного диаметра, как показано на рис. 7.

В том случае, когда тепловая нагрузка будет возрастать, общее сечение трубопроводов будет поддерживать необходимую для транспортировки масла скорость пара. Если производительность компрессора уменьшается, то скорость движения пара недопустимой, происходит постепенное заполнение сифона маслом, тем самым создается гидравлический затвор, которые перекрывает трубу с большим диаметром. Это приведет к тому, что весь пар начнет двигаться по трубе с меньшим диаметром со скоростью, которая будет достаточной для переноса масла.

Циркуляция смесей «масло–фреон». Концентрация масла в смеси, которая возвращается в компрессор, зависит от пе­регрева пара хладагента в РТО.

Если во фреоновой холодильной установке, в которой осуществляется безнасосная система охлаждения, будет отсутствовать РТО, то хладагент в приборах охлаждения будет фактически полностью испаряться. Малое количество хладагента при этом будет доиспаряться из масла во всасывающем трубопроводе. Концентрация масла в смеси «масло–фреон» в приборах охлаждения высокая, а на выходе из них – будет близка к единице, что приведет к существенному скоплению масла в приборах охлаждения, и как следствие, теплопередача приборов охлаждения и надежность всей системы заметно снизится.

В случае наличия РТО в приборы охлаждения поступает смесь «масло–фреон», которая имеет концентрацию масла x1 и содержит (G + DG) кг жидкого хладагента. Под воздействием теплопритоков в приборах охлаждения выкипает G кг хладагента, и из него выходит смесь «масло–фреон» с концентрацией мас­ла x2, которая содержит DG кг хладагента. Данная смесь движется в РТО, где происходит доиспарение хладагента в количестве DG, а затем происходит пере­грев всего пара, который образовался, на величину DtП за счет переохлажде­ния жидкого хладагента, движущегося после конденсатора, на величину DtЖ.

Уравнение теплового баланса РТО в условиях стационарного режима описывается соотношением:

(G + DG) × DiЖ + GМ × сМ × DtЖ = DG × r + (G + DG) × DiП + GМ × сМ × DtП,

где GМ – количество масла, возвращаемого в компрессор из РТО, равное количеству масла, поступающего в приборы охлаждения, кг; сМ – удельная теплоемкость масла (для упрощения сМ принимается постоянной и определяется по средней температуре смеси «масло–фреон» в РТО), кДж/(кг×м); DiЖ и DiП – разности энтальпий, соответственно, жидкого и парообразного хладагента, соответствующие разностям температурам, соответственно, DtЖ и DtП, кДж/кг; r – скрытая теплота парообразования фреона при средней температуре в РТО, кДж/кг.

В случае решения вышеназванного уравнения можно получить выражение, которое будет определять количество хладагента DG, которое нужно испарить в РТО для возвращения в компрессор масла в количестве GМ кг в зависимости от условий работы холодильной системы:

DG = G × k1 + GМ × k2,

k1 = (DiЖ – DiП) / (r + DiП – DiЖ);

k2 = cМ × (DtЖ – DtП) / (r + DtП – DtЖ)

В том случае, если переохлаждение жидкого хладагента в РТО происхо­дит за счет кипения жидкого хладагент и перегрева паров, которые поступают из приборов охлаждения холодильной установки, то в них нужно подавать боль­шее количество жидкости хладагента, чем требуется для нейтрализации наружных теплопритоков. В данных условиях кратность циркуляции хладагента через приборы охлаждения, которая определяется как n = (G + DG) / G, будет больше единицы. Таким образом, создается запас жидкого хладагента, который компенсирует неравномерность распределения его между шлангами приборов охлаждения, работающих параллельно.

Расчетное выражение для определения кратности циркуляции n можно получить из зави­симостей для DG, k1 и k2:

n = 1 + k1 + (GМ / G) × k2

Для фреоновых одноступенчатых установок с РТО значение кратности циркуляции хладагента n должно составлять 1,1–1,3 в зави­симости от условий работы. Это упрощает распределение хладагента между приборами охлаждения и обеспечивает постоянное питание их в тех случаях, когда происходят небольшие колебания тепловой нагрузки во время эксплуа­тации.

Из формулы для n следует, что кратность циркуляции увеличивается с повышением количества теплоты, которая пропорциональна DiЖ и отводится в РТО от переохлаждаемого хладагента. Поэтому необходимо стремиться к тому, чтобы хладагент, который поступает из конденсато­ра, переохлаждался в РТО до температуры, которая будет на 2–3 °С больше температуры кипения.

Кроме того, переохлаждение хладагента в РТО позволяет предотвратить расслоение смеси «масло–фреон» в дроссельном вентиле, а также уменьшить концентрацию масла в приборах охлаждения из-за уменьшения сухости отводимого от приборов охлаждения пара.

Следует отметить, что вариант, когда на переохлаждение в РТО подается часть жидкого хладагента, которая приходит из конденсатора, а вторая часть дросселируется без предварительно переохлаждения, является нецелесообразным.

Концентрация масла в смеси «масло–фреон», которая поступает в приборы охлаждения x1 и выходящая из них x2 находятся из следующих соотношений:

x1 = GМ / (G + DG + GМ);

x2 = GМ / (DG + GМ).

Из этих соотношений можно получить формулы, связывающие количества хладагента, который выкипает в приборах охлаждения, и масла, которое поступает в них (или удаляемого из них), с концентрациями масла x1 и x2:

G / GМ = (1 / x1) – (1 / x2);

x2 / x1 = 1 + G / (DG + GМ).

В случае решения системы уравнений, содержащих концентрации относительно x2, можно получить расчетную зависимость для определения концентрации масла в смеси «масло–фреон», которая выходит из приборов охлаждения, если известны концентрация x1 и условия работы холодильной системы:

x2 = (1 + k1) / (1 + k1 / x1 + k2)

Затем можно получить расчетную зависимость для определения кратности циркуляции хладагента n, если известны концентрации смеси «масло–фреон», которая поступает в приборы охлаждения x1 и выходящая из них x2:

n = (1 – x1) / (1 – x1 / x2).

Анализ данного выражения показывает, что меньшая кратность циркуляции хладагента соответствует большей концентрации масла x2. В том случае, если повысить концентрацию масла x1, кратность циркуляции хладагента немного повышается, особенно при небольших концентрациях масла в жидкости, которая поступает в РТО из приборов охлаждения.

Следует отметить, что увеличение перегрева пара на всасывании компрессора приведет к повышении его коэффициента подачи. Но из-за того, что ограничено количество теплоты, которое отводится в РТО, большие перегревы пара на выходе из компрессора могут получать из-за повышения сухости пара, который поступает в РТО, т. е. за счет понижения DG. Это может привести к понижению кратности циркуляции хладагента через охлаждающие приборы и к увеличению концентрации масла в этих испарителях.

Проанализировав данные уравнения, можно прийти к выводу, что необходимо определять наиболее оптимальные перегревы пара на всасывании компрессора, которые соответствуют наиболее эффективной работе испарителей и компрессора для различных режимов эксплуатации холодильной системы.

24.08.2016, СР, 14:42, Мск

От правильного выбора системы охлаждения ЦОДа напрямую зависит его ключевая характеристика – надежность. Существует несколько способов отвода тепла из дата-центра, но мы рассмотрим только два наиболее распространенных из них – это «фреоновые кондиционеры» (с воздушным охлаждением) и «водяные кондиционеры» (получающие холод от чиллеров). Итак, «фреон» или «вода»?

Как и любая сложная техническая область, тема теплоотвода в ЦОДах обросла большим количеством мифов и предубеждений.

Первая группа мифов говорит о том, что «вода представляет опасность для ИТ-оборудования».

Миф 1: водяное охлаждение – это когда вода внутри сервера

Это не совсем верно: существуют серверные платформы с прямым охлаждением при помощи воды, но это пока экзотика. Наиболее распространенный способ отвода тепла от ИТ-оборудования – при помощи принудительно прогоняемого через его радиаторы воздуха. Описанные выше способы отвода тепла описывают процесс на уровне ЦОДа в целом, а не на уровне единиц ИТ-оборудования.

Миф 2: вода в серверном помещении – это недопустимый риск

Существует множество технических решений по недопущению попадания воды в ИТ-оборудование при протечке. Для этого надо проработать возможные сценарии аварий и принять соответствующие проектные решения.

Вторая группа мифов: водяная система очень дорогая и сложная в эксплуатации, а фреоновая привычнее и эффективнее.

Миф 3: водяная система – это слишком сложно и дорого

Необходимо рассматривать конкретные случаи. Возможна ситуация, когда наоборот – фреоновая система будет слишком сложной и дорогой, особенно если рассматривать не только строительство ЦОД, но и его обслуживание.

Миф 4: водяное охлаждение – это для больших ЦОДов

Да, у вас может быть обычная серверная комната на 20 стоек. Но необходимо произвести оценку, ведь может оказаться, что для этой серверной потребуются 20 отдельных фреоновых кондиционеров, поэтому водяная система будет выгоднее при эксплуатации.

Третья группа мифов порождена незнанием устройства систем охлаждения.

Миф 5: водяная система питается от магистрали водоснабжения

Нет, водяные системы питаются от чиллера специально подготовленной очищенной охлажденной водой или водно-гликолевой смесью с добавлением ингибиторов коррозии.

Миф 6: можно использовать бытовой фреоновый кондиционер

Идея «дуть на оборудование холодом» от бытового кондиционера – следствие неправильного понимания задачи. Необходимо не просто подавать охлажденный воздух на оборудование, а отводить избыточное тепло, чтобы обеспечить соответствующие температурные условия эксплуатации. При этом охлажденный воздух выступает всего лишь в роли теплоносителя для перемещения определенного количества теплоты из помещения ЦОДа на улицу. Как известно из школьного курса физики, количество теплоты равняется удельной теплоемкости, помноженной на массу вещества и на разницу температур до нагрева и после нагрева. Если масса вещества (объем подаваемого из кондиционера воздуха) будет значительно меньше необходимого, то не спасет даже понижение температуры воздуха. Бытовые кондиционеры имеют в несколько раз меньшую производительность подачи воздуха, чем прецизионные. К этому можно добавить, что часть их мощности тратится на осушение воздуха (для создания комфортных условий для человека) и что они имеют малый ресурс (не предназначены для постоянной работы круглые сутки во все времена года).

Нам, людям третьего тысячелетия, ни к чему прозябать среди мифов и заблуждений. Мы можем оценить ситуацию в свете знаний. Ограничимся основными свойствами обоих вариантов, и рассмотрим их более внимательно.

Преимущества фреоновых систем

Относительная простота системы

По сути, фреоновый кондиционер, как и домашняя сплит-система, состоит из двух половинок: собственно кондиционера, устанавливаемого в охлаждаемом помещении, и внешнего блока, который размещается на улице. Обычно в самом кондиционере расположены вентиляторы, охлаждающий воздух теплообменник (испаритель), компрессор и управляющая электроника. Дополнительно в кондиционере могут быть пароувлажнитель, поднимающий влажность воздуха до требуемой, воздушные фильтры, и т. д. Внешний блок прецизионного кондиционера устроен совсем просто: только теплообменник, отдающий тепло в окружающий его воздух, вентилятор, и автоматика, этим вентилятором управляющая.

Соединяются кондиционер и его внешний блок парой медных трубок небольшого диаметра (обычно 15-20 миллиметров, редко больше), которые могут быть проложены даже в стесненных условиях.

Длительность монтажа одного кондиционера обычно не превышает двух-трех дней. Вне зависимости от мощности кондиционера принцип его действия не изменяется: и маленький потолочный аппарат на 7 кВт, и огромная 200-киловаттная машина устроены, в принципе, одинаково.

Полная независимость кондиционеров друг от друга

Если нужны несколько кондиционеров, они устанавливаются как независимые друг от друга агрегаты. Каждому кондиционеру – свой внешний блок с отдельными трубопроводами. Из этого свойства вытекают следующие дополнительные преимущества. Первое – высокая надежность резервированной системы: у нескольких кондиционеров, работающих в одном помещении, нет общих узлов и блоков, они полностью независимы, и, значит, нет единой точки отказа. Выход из строя одного кондиционера никак не влияет на работу остальных. Второе преимущество – простота расширения системы: во многих случаях для увеличения производительности системы в целом можно просто установить в этом же помещении еще один кондиционер.

Меньше начальные капитальные вложения

Как справедливый итог вышеперечисленных (и многих других) объективных свойств, фреоновая система оказывается и в закупке, и в монтаже, и в пуско-наладочных работах значительно (иногда – в два-три раза) дешевле, чем водяная с аналогичной производительностью. Простота прокладки медных труб и установки внешнего блока, полная независимость кондиционеров друг от друга и несложная процедура пусконаладки позволяют разворачивать системы охлаждения достаточно оперативно и сравнительно недорого.

Недостатки фреоновых систем

Сравнительно малая допустимая энергетическая плотность ЦОД

К сожалению, «удельная мощность одного кондиционера» получается не очень большой. Особенно, если рассматривать самый эффективный и популярный в настоящее время конструктив: компактные внутрирядные кондиционеры, устанавливаемые в рядах с серверными шкафами. Мощность в 15-20 кВт для корпуса шириной 600 мм (размером как обычный серверный шкаф) и не более 10-12 кВт для компактного 300-миллиметрового корпуса – практически предел для фреоновых машин. Есть отдельные экземпляры, мощность которых немного выше «средней по рынку», но это достигается уплотнением внутренней компоновки, как следствие – снижением ремонтопригодности аппарата.

В итоге высокая мощность системы может быть достигнута только установкой большого количества кондиционеров: каждый со своим внешним блоком, со своими трубопроводами… В следствие этого использование фреоновых кондиционеров в ЦОД средней плотности, с удельной нагрузкой на стойку от 7 до 10 кВт, представляется затруднительным, а при удельной нагрузке в 15 кВт и более – почти невозможным.

Каждому внутреннему блоку должен соответствовать отдельный внешний блок

Классический случай, когда достоинство оборачивается недостатком, переходя из количества в новое, но уже негативное, качество. Попробуйте представить, как будет выглядеть фасад вашего здания, если на нем повесить десять-пятнадцать внешних блоков (размер каждого, например, полтора на два метра). А шахта с тремя десятками труб? Комментарии к этой картине, пожалуй, излишни. Попытками «оптимизации» можно только усугубить проблему: существуют довольно жесткие ограничения по расстоянию от кондиционера до его внешнего блока. Типичное ограничение по длине трубок составляет 30-40 метров, редко больше, причем считается не настоящая длина, а «эквивалентная»: с учетом всех изгибов и поворотов. Поэтому равномерно распределить внешние блоки по большой площади не получится: они все равно будут создавать «толпу» около машинного зала ЦОДа.

Малая гибкость системы

В варианте охлаждения с подачей воздуха через фальшпол мощность одного кондиционера может достигать величин в 200 и более кВт, это уже довольно крупный агрегат, размером в несколько метров и весом в пару-тройку тонн. С мощностью порядок, но как ее регулировать? У фреоновой холодильной машины есть такой параметр, как минимальная нагрузка: если 100-киловаттный кондиционер заставить удалять из ЦОД всего 5 кВт тепла, то он просто не справится с этой задачей. Слишком маленькая тепловая нагрузка не сможет испарять то количество фреона, которое достаточно для нормальной работы цикла работы холодильной машины. Производители идут на разные ухищрения, чтобы побороть эту проблему, например, оснащают кондиционеры встроенными нагревателями, которые «донагружают» кондиционер дополнительным теплом. Получается абсурдная ситуация: чтобы охладить воздух – надо сначала нагреть воздух, потратив электричество не только на охлаждение, но и на нагрев. Что подводит нас к следующему недостатку фреоновых систем.

Низкая энергоэффективность

Грубо говоря – КПД любого кондиционера составляет 200 и более процентов: для того чтобы «сдуть» с оборудования, например, 100 кВт тепла, кондиционер потребляет от сети не более 50 кВт электричества, а зачастую и еще меньше. Однако на практике все не так хорошо: с учетом проблем регулирования мощности и некоторых «накладных расходов» на охлаждение оборудования фреоновыми кондиционерами вы потратите почти столько же электроэнергии, сколько потребляет само охлаждаемое оборудование. Но, как говорят в «магазине на диване», и это еще не все. Если мы попробуем построить график потребляемого тока во времени, то мы увидим, что электричество потребляется непостоянно, и неравномерно. На графике будут периоды времени, когда потребление мало (в эти моменты времени работают только вентиляторы, а фреоновый компрессор простаивает). Также на графике мы увидим периоды с «нормальным» энергопотреблением (работают и вентиляторы, и компрессор).

Кроме того, на графике будут кратковременные, но очень неприятные моменты с резкими и значительными бросками потребляемого тока. Это моменты включения компрессора после простоя, и броски эти называются «пусковой ток». Величина пускового тока обычно очень ощутима, и превышает номинальное значение в 10-15 раз. Это означает, что все составляющие в системе электропитания кондиционера должны выдерживать кратковременную, но значительную перегрузку. Например, если кондиционер питается от источника бесперебойного питания – этот ИБП должен выдержать перегрузку в 1000% в течение 5-15 секунд. Таких ИБП, к сожалению, не бывает, и для обеспечения работоспособности всей системы приходится использовать заведомо более мощный (переразмеренный) ИБП, который стоит «переразмеренных» денег. То есть фреоновая система предъявляет особые требования к смежной системе, значительно удорожая ее.

Отсутствие фрикулинга

Кроме того, что фреоновый кондиционер потребляет много электроэнергии – следует отметить тот факт, что он потребляет ее постоянно. Круглый год. А если на улице зима и кругом полным-полно «бесплатного» холодного воздуха – фреоновый кондиционер может потреблять еще больше электричества, потому что он вынужден подогревать свой внешний блок, «чтобы не замерз». Увы, нет никаких возможностей для экономии за счет природы.

Сложности ремонта

И о ремонте. Если из трубы капает вода, то труба обычно мокрая, а под трубой лужа. Это очень упрощает поиск места протечки: где лужа – там и течет. Фреон же течет только при давлении в десятки атмосфер, поэтому при малейшем повреждении трубы он просто незримо улетучивается. Поиск места протечки – занятие нетривиальное и занимает много времени. Для восстановления работы системы во многих случаях требуются остановка кондиционера, удаление хладагента и полная перезаправка после ремонта.

Преимущества водяных систем

Рассмотрев фреоновые кондиционеры, обратим свой взгляд на более сложный и дорогой вариант: водяную систему. Здесь уже трудно говорить об отдельных кондиционерах (представить себе одинокий водяной кондиционер можно, но сложно), будем рассматривать систему из нескольких аппаратов, работающих сообща. Начнем опять с преимуществ.

Фрикулинг и энергоэффективность

Основная причина существования водяных кондиционеров в ЦОДе – это, конечно же, высокая экономическая эффективность, обусловленная как высокой эффективностью системы в целом, так и возможностью «бесплатного» использования «уличного холода» в течение нескольких месяцев в году. В условиях средней полосы России даже типовая система с водяными кондиционерами, работающая в «обычном» температурном режиме и не «заточенная» специально под высокую энергоэффективность, позволяет «бесплатно» охлаждать ИТ-оборудование в течение 4-5 месяцев (когда температура воздуха на улице отрицательная). С применением некоторых технологических хитростей период работы фрикулинга можно увеличить до 7-8 месяцев. Потребление электроэнергии системой кондиционирования в режиме фрикулинга крайне невелико. Например, 100-киловаттная система будет потреблять около 1 кВт на насосы, перекачивающие теплоноситель, приблизительно 3 кВт на вентиляторы, обдувающие теплообменник на улице, и около 12 кВт съедят вентиляторы в кондиционерах. Итого, «условный КПД» составляет приблизительно 600%, а не 200, как у фреоновых систем.

Большая допустимая энергетическая плотность ЦОДа

В отличие от фреонового кондиционера, водяной устроен очень просто: у него внутри нет ни компрессора, ни сложной системы регулирования давления рабочего вещества, ни множества трубок и клапанов… По сути своей, водяной кондиционер – это просто теплообменник с вентиляторами, прокачивающими через него воздух. Освободившееся от сложной начинки место не пропадает даром: его занимает теплообменник, который заметно больше, чем во фреоновом аппарате. А чем больше теплообменник, тем мощнее кондиционер, при прочих равных. То есть в том же размере. Современный внутрирядный водяной кондиционер мощностью 60 кВт может быть собран в корпусе размером в половину серверного шкафа: шириной 300 мм. Благодаря такой компактности и высокой «удельной мощности» водяные кондиционеры позволяют строить «энергетически высокоплотные» ЦОДы с удельной нагрузкой на серверный шкаф в 15-20 кВт и выше, не занимая кондиционерами места больше, чем ИТ-оборудованием.

Возможность выбора

Вспомним, что является источником холода для водяного кондиционера: очень обобщенно говоря – это «труба с холодной водой» (кстати, хоть мы и говорим «вода», в нашем климате под этим словом обычно подразумевается незамерзающая смесь, антифриз). Если система построена правильно, от потребления воды одним аппаратом работа всех остальных кондиционеров никак не зависит. Следствием этого является принципиальная возможность организовать систему таким образом, чтобы «на одной трубе сидели» и мощные кондиционеры для машинного зала ЦОД, и менее производительные кондиционеры для зоны ИБП, и совсем небольшие аппараты для вспомогательных помещений – таких, как электрощитовая, коммутационная, и т. п.

Небольшое количество «внешних блоков»

А откуда в этой трубе, собственно, появляется холодная вода? Воду охлаждает холодильная машина, «чиллер». По принципу действия чиллер очень похож на фреоновый кондиционер, только охлаждает он не воздух, а жидкий теплоноситель. А сколько должно быть в системе чиллеров? Сколько угодно, начиная от одного. Да-да, если мощность холодильной машины достаточна для работы всех кондиционеров, то машина может быть всего одна на любое число кондиционеров. Правда, обычно чиллеров все-таки несколько. Это делается для повышения гибкости, надежности и обеспечения поэтапного развития системы. Но два, три, пять чиллеров – это не десяток, два, или более внешних блоков. ЦОД не похож на елку, увешанную игрушками – и это хорошо.

Нет ограничений по удалению чиллеров от кондиционеров

Одна из проблем фреонового кондиционера – это небольшое расстояние от кондиционера до его внешнего блока. А как далеко можно установить чиллер? Все определяется только производительностью насоса, перекачивающего теплоноситель, и «потерями холода» (нагревом воды «по дороге» от чиллера к кондиционерам) из-за неидеальной теплоизоляции. Но это преодолеваемые сложности, поэтому вполне возможна установка холодильных машин на кровле многоэтажного здания, в дальнем углу территории, и в любом другом удобном месте. Встречаются здания, в которых фреоновые кондиционеры установить в принципе нельзя, а водяные системы в таких условиях вполне работоспособны.

Простое обнаружение протечек и оперативный ремонт магистралей

Как можно обнаружить, что вода уходит из трубы? По падению давления в системе. А как найти место утечки? Визуально! В большинстве случаев не нужны приборы – течеискатели, нет необходимости отключать систему и проводить длительный поиск места утечки. Более того, при наличии оборудования аварийной подпитки водяная система кондиционирования при незначительных утечках может функционировать достаточно долго, чтобы ремонт из экстренного превратился в плановый. Методика ремонта, кстати, зависит от выбранного материала трубопроводов, и в некоторых случаях он возможен без отключения системы. А если предусмотреть резервные трубопроводы, то никакая протечка не станет губительной и не приведет к остановке ЦОДа. Да, в чиллере есть фреон, и он тоже может улетучиться. Но чиллер является комплектным устройством, которое приходит с завода заправленным фреоном и маслом, поэтому вероятность утечки не очень велика.

Недостатки водяных систем

Конечно же, ничего нельзя получить бесплатно. Даже если не упоминать такой недостаток водяной системы, как значительные капитальные затраты на первоначальном этапе (увы, стоимость оборудования и монтажных работ могут превышать аналогичные показатели для фреоновых систем в два и более раза), есть и другие проблемы. О которых конечно, нельзя не упомянуть.

Наличие воды в машинном зале ЦОД

На самом деле – вода в том или ином количестве присутствует в любом ЦОДе. Это и дренаж конденсата из кондиционеров, и отопление в смежных помещениях, есть также риск протечки крыши или водопровода, и т. д. Но в системе кондиционирования вода находится под давлением, которое хоть и невелико (обычно 2-3 атмосферы), но все-таки увеличивает риск протечки и ускоряет вытекание воды через поврежденный трубопровод. В ЦОДе с водяным кондиционированием обязательно нужно предусматривать дренаж воды из-под фальшпола и принимать усиленные меры по гидроизоляции перекрытий и даже стен.

Проблемы с работой на малой нагрузке

Чиллер является фреоновой холодильной машиной, и он, к сожалению, не избавлен от такого недостатка, как неспособность работать со слишком низкой нагрузкой. А поскольку чиллеры обычно довольно мощные – величина минимально допустимой тепловой нагрузки может быть весьма значительной. Поэтому новый ЦОД придется сразу нагружать хотя бы на 30% от мощности единичного чиллера… или запускать в работу осенью: в режиме фрикулинга проблем с минимальной мощностью нет.

Место для установки чиллеров

Обратной стороной малого числа чиллеров и их высокой мощности являются размер и вес. Фреоновый компрессор и вся его обвязка находятся не в кондиционере, а в чиллере, теплообменник для фрикулинга тоже частенько интегрирован в общий конструктив, в итоге даже 50-киловаттный агрегат весит почти полторы тонны. На стену такой агрегат не повесить – нужна площадка на земле либо на крыше. На условный 100-киловаттный ЦОД таких чиллеров нужно три (третий – резервный), в итоге площадка будет размером как автостоянка на три машины и нагружена она будет тоже «на три машины» - почти на пять тонн.

Расширение ассортимента эксплуатируемого оборудования

Ну и, конечно, гидравлика. Насосы, теплообменники, запорная арматура – все это приведет к тому, что в штате ЦОД кроме электрика, дизелиста, и холодильщика придется завести еще и сантеника-гидравлика. Кстати, все трубы придется делать сразу, и на полную мощность, каким бы ни был первый пусковой комплекс.

Как выбирать

Что же в итоге выбрать, «воду» или «фреон»? Поскольку это инженерная задача, ее следует решать, учитывая все параметры строящегося объекта. Вот экспертное мнение: для каждого из реальных случаев существует оптимальное решение, и нет единого рецепта для всех, поэтому выбору архитектуры системы охлаждения необходимо уделять особое внимание, проводя вариантную проработку с обязательным привлечением специалистов. Предварительную оценку «за» и «против» можно сделать при помощи таблицы, приведенной в таблице.

Чеклист для определения вектора выбора технологии

Условия Ответ
Расчетная энергетическая плотность ниже чем 10 кВт на каждый ИТ-шкаф. Да / нет
Количество ИТ-шкафов в серверной или ЦОДе не превышает 10 шт. Да / нет
На расстоянии не более 25 м (по трассе) и на уровне ЦОДа (серверной), есть место для размещения внешних блоков (конденсаторов) кондиционеров. Да / нет
Нет режима жесткой экономии электроэнергии. Да / нет
В помещении машинного зала отсутствует возможность монтажа фальшпола. Да / нет
Тепловая нагрузка в первые месяцы эксплуатации ЦОД будет менее 10% от полной мощности. Да / нет
Существуют проблемы с правильной эксплуатацией систем отопления и водоснабжения. Да / нет
Легче купить мощный ИБП, чем усложнять систему охлаждения? Да / нет
Фрагментарное отключение системы кондиционирования не повлияет на работу основных систем ЦОД. Да / нет
Нет четкого понимания, какими темпами будет развиваться ЦОД и как долго он будет эксплуатироваться до первого расширения? Да / нет
Стоит задача уменьшения капиталовложений именно на первом этапе? Да / нет

Если ответов «да» получилось значительно больше, чем «нет», то вашему ЦОД вполне подойдет фреоновая система. Если ответов «нет» получилось больше, чем «да», рекомендуем присмотреться к водяной системе. Однако точный рецепт все-таки подскажет специалист, когда увидит ваш ЦОД «вживую», его помощью ни в коем случае пренебрегать не стоит.

Олег Сорокин,
эксперт по направлению ЦОД компании ICL-КПО ВС

Прочитав название статьи, читатель может прийти в недоумение. Преобладающей тематикой сайта является моддинг. А тут рассказывают что-то про парокомпрессионные системы… Но, толкование самого термина — моддинг восходит к такому понятию как — модификация. Традиционно модификации касаются в основном внешнего вида компьютера. Но могут относиться и к конструкции. Одним из направлений модификаций является увеличения производительности компьютера. Этот вид моддинга неотделим от такого понятия как оверклокинг.

Оверклокинг(разгон) - повышение производительности компьютера путем повышения частоты работы процессора, видеокарты, памяти…

Не скрою, очень заманчиво купить младший в линейке процессор и разогнать его до, а может быть и выше уровня топового. Неплохая выходит экономия. Разница в цене почти в 800 вечнозеленых. А есть еще и видеокарта…

Но не так это все легко и красиво как кажется на первый взгляд. При работе процессора на повышенной частоте он выделяет большое количество тепла, которое необходимо отводить. А для устойчивой работы процессора на повышенных частотах, частенько приходится значительно увеличивать напряжение питания процессора. Что приводит к еще большему тепловыделению.

Конечно, имеются традиционные, воздушные системы охлаждения. Но с тепловыделением прилично разогнанного процессора они не всегда справляются. Есть жидкостные системы охлаждения. Их эффективность повыше воздушных. Но с экстремально разогнанным процессором не в силах справиться и они.

Как быть? Как с этим теплом бороться? Может быть изготовить холодильник для процессора? На первый взгляд безумная идея. Но нет. Несколько лет назад появились такие системы охлаждения, основанные на принципе фазового перехода(Direct Die).

На сегодняшний день это самые эффективные системы охлаждения, способные работать в режиме 247 и охлаждать до -60 градусов Цельсия. Существуют еще ряд способов заморозить процессор. Сухой лед, жидкий азот… Такие способы имеют серьезные недостатки, препятствующие широкому их применению. Основной недостаток — невозможность работать в режиме 247. Поэтому в рамках этой статьи они рассмотрены не будут. Опять же Direct Die системы самые экономичные.

Выпускается ряд серийных решений — Direct Die систем. Но они труднодоступны и цена на них в большинстве случаев просто фантастическая.

Поэтому многие энтузиасты предпочитают изготавливать подобные системы самостоятельно. Выходит ощутимо дешевле, и частенько случается что эффективнее.

Вот мы и подошли к теме статьи - изготовлению системы криогенного охлаждения для компьютера в домашних условиях. Целью написания статьи является освещение собственно процесса изготовления системы охлаждения на примерах устройств сделанных автором. Аспекты разгона с помощью этих систем рассматриваться не будут. Это слишком обширная тема и она выходит за рамки данной статьи.

Перед тем как идти дальше нужно сказать пару обязательных фраз. Несмотря на то, что статья содержит подробную информацию по самостоятельному изготовлению системы охлаждения основанную на принципе фазового перехода, она не является руководством к действию. Автор не несет ответственности за поврежденное вами оборудование и возможный вред, причиненный вашему здоровью. Все решения вы принимаете самостоятельно и действуете на свой страх и риск.

Статья разбита на части. Название каждой части это вопрос, который может возникнуть, если вы все-таки решитесь пойти по этому пути. А ниже я постараюсь дать подробнейший ответ на поставленный вопрос. Поехали?

1. Для чего это надо?

Ответ прост. Вы получаете возможность купить младшую модель процессора и разогнать ее до уровня топовой. А возможно и выше. Разница в цене младшего и старшего процессора такова, что ваша система довольно быстро себя оправдает.

Но все это звучит как-то приземленно и меркантильно. А что если поставить вопрос немного иначе. Сколько ваших друзей могут похвастаться криогенной системой охлаждения компьютера?

Достоинства системы:

1.Разгон сверх традиционных методов. На данном этапе это дополнительные 500Мгц сверх максимального разгона "на воздухе"

2.Уровень шума издаваемого системой не выше уровня шума высокопроизводительного воздушного кулера. А случается и ниже.

Недостатки системы:

1.Цена фреоновой системы охлаждения на много выше чем воздушных или жыдкостных куллеров.

2.Сложность изготовления.

3.Необходимость приобретения спец инструмента.

Какие температуры реально получить, используя однокаскадную систему фреонового охлаждения?

Температуры, которые можно получить это от -35 °Сдо -60 °С, в зависимости от мощности компрессора и точности регулировки системы. При температурах

60°С и ниже начинает замерзать масло в капилляре. Механизм компрессора расположен в закрытом герметичном корпусе наполненным на определенный уровень маслом. Компрессор работает, разбрызгивает при этом масло и этим маслом сам себя смазывает и охлаждает. Лишнее масло стекает в низ корпуса. И выдает компрессор масляно-фреоновую смесь. Фреон вместе с маслом циркулирует по всей системе. Температура замерзания масла как раз находится в пределах -60градусов. Это масло и начинает замерзать в капилляре. Установка начинает работать циклически. Минус 60, замерзание масла, капилляр забивается, система перестает работать, температура повышается, капилляр оттаивает, и система начинает работать снова.

2. Как это работает?

Система фазового перехода состоит из замкнутого контура с набором стандартных элементов. Компрессор, конденсор(конденсатор), фильтр, капилляр, испаритель. Компрессор нагнетает газообразный фреон в конденсатор. Там он охлаждается и переходит в жидкую фазу. При этом выделяется тепло, которое рассеивает конденсатор. Далее стоит фильтр для предотвращения попадания в капилляр влаги и случайного мусора, который может закупорить его.

После фильтра фреон поступает в капилляр (дросселирующий элемент). Капилляр разделяет контур системы на две зоны. Высокого давления (движется жидкий фреон) и низкого давления (движется газообразный фреон). Пройдя через капилляр, жидкий фреон попадает в область низкого давления (испаритель) и начать кипеть. При этом, поглощается большое количество тепла. Подача фреона через капиллярную трубку должна быть точно дозированна. Фреона должно поступать строго определенное количество, необходимое для охлаждения. При излишней подаче, фреон не будет выкипать полностью в испарителе и может по всасывающей трубке попасть в компрессор, что может привести к выходу его из строя. При недостаточной подаче - недостаточная холодильная мощность.

3.Из чего все это собрать и сколько это стоит? Какие потребуются инструменты и расходные материалы?

Первый вопрос, который обычно возникает у среднестатистического читателя - сколько стоит фреонка? Вопрос на первый взгляд простой и обоснованный. Но сродни вопросу - а сколько стоит автомобиль? Тут же возникает масса встречных вопросов. А какой автомобиль? Грузовой или легковой? Отечественный или иномарка? Бизнес класс или представительский?

Так и с парокомпрессионной системой. На вопрос — сколько стоит, нельзя сразу дать однозначный ответ. А нужно сначала определиться с целью, для которой будет делаться система. Подобрать комплектующие и инструмент. Сложить их цену "столбиком". Только тогда мы сможем получить ответ на этот животрепещущий вопрос. Идем дальше.

Комплектующие. Материалы

1. Компрессор. Сердце системы. Новый стоит от 35$. Высокопроизводительный, известной марки 170-300$.

Перед тем как выбирать компрессор, определимся сначала с количеством испарителей. Фреоновую систему можно собрать с одним и двумя испарителями. Один испаритель на центральный процессор, а другой на графический процессор видеокарты. Вариант с двумя испарителями имеет серьезные недостатки. В такой системе фреон идущий из конденсора делится на два потока и по двум капиллярам идет к двум испарителям. Допустим, вы смогли сделать так, что фреон равномерно распределяется между двумя испарителями.

Если тепловая нагрузка на обоих испарителях одинакова или близка, то ничего страшного не произойдет. Предположим, произойдет так, что нагрузка на центральный процессор велика, а на графический нет. Большее количество тепла, отдаваемое центральным процессором заставит более активно кипеть фреон в испарителе. А в испарителе графического процессора это будет происходить в меньшей степени. Давление в первом испарителе будет больше. А во втором меньше. В результате фреон будет поступать в испаритель с меньшим давлением. То есть в менее нагруженный. И выходит, что в менее нагруженный испаритель поступает большее количество фреона. А в более нагруженный меньше. Ситуация начинает все более и более усугубляться. Получается, что ненагруженный испаритель будет намного холоднее нагруженного! И эта разница может достигать значительной величины. В результате процессор перегревается.

Вывод система с двумя испарителями хорошо подходит только для систем с одинаковой тепловой нагрузкой. Например, для двух видеокарт работающих в режиме SLI. И опасна при работе на процессор и видеокарту.

Остановимся пока на системе с одним испарителем.

Выбираем тип фреона.

А теперь нужно определиться с фреоном, который будем использовать в системе. Оптимальным со всех сторон является фреон R-22. Это самый дешевый и доступный из всех видов фреонов. R-22 кипит при атмосферном давлении при температуре -41. Этот фреон еще хорош тем, что он совместим по маслу с компрессорами, работающими на фреонах R-12 и R-404.

Другими словами этим фреоном можно заправлять компрессоры, рассчитанные на эксплуатацию с R-12 и R-404 фреонами. Компрессоры на R-12 можно добыть из старого ненужного холодильника. Но они заведомо имеют небольшую мощность 70-170 Вт при -15. И систему приемлимой производительности изготовить из такого компрессора не удастся.

Вообще один из самых часто задаваемых вопросов - почему бы просто не поместить компьютер в морозилку? Ответ прост. Это не даст такого прироста производительности. Этим способом не удастся получить достаточно низкую температуру на процессоре. И главное - морозильники не рассчитаны на такой уровень хладопроизводительности. И поэтому просто выйдут из строя через небольшой промежуток времени.

Можно купить компрессор, рассчитанный на работу с R-404 фреоном. Эти компрессоры работают с более высоким давлением, чем те, что рассчитаны на работу с 22-ым. Такой компрессор заправлен синтетическим маслом, совместимым практически со всеми газами и смесями, теоретически в нем применены более качественные комплектующие. Но и стоит он дороже компрессора R-22.

Конечно используя компрессор рассчитанный на 404-ый фреон, да еще и заправив систему 404-м можно получить более низкие температуры, чем используя 22-ой. Но 404-ый стоит в несколько раз дороже 22-го.

Для построения системы необходим поршневой, герметичный компрессор. Компрессоры выпускаются двух видов. Для монтажа методом пайки и развальцовки. Удобнее компрессоры, рассчитанные под пайку.

Выбираем мощность и марку компрессора.

А теперь определимся с мощностью компрессора. Но для этого сначала прикинем тепловыделение процессора. Современные процессоры при работе выделяют 70-110 Вт тепла. При серьезном разгоне с повышением напряжения питания эта цифра возрастает до 200 - 250 Вт.

Для информации приведу характеристики некоторых серийных систем:

VapoChill Extreme Edition XE II имеет следующие характеристики - при нагрузке 180Вт температура испарителя -18 , без нагрузки -44

VapoChill LightSpeed ™ — при нагрузке 200Вт температура испарителя -33 , без нагрузки -50

Последняя является одной из самых мощных выпускаемых на данный момент систем. Итак, выбирать вам. Помощнее и подороже. Будет немного более шумно но и разгон повыше. Или подешевле и попроще.

Наилучшими для изготовления Direct Die системы, считаются компрессоры Danfoss. Все серийные решения выпускаются именно на компрессорах этой фирмы. На втором месте идут компрессоры Aspera. Они же считаются самыми бесшумными. Эти две марки являются самыми популярными среди фанатов фреонового охлаждения всего мира.

Еще немного о мощности. С одной стороны лучше выбрать более мощный компрессор, у него более высокая хладопроизводительность, с его помощью можно получить более низкую температуру под более мощной нагрузкой. Он меньше греется. Но с другой стороны - чем мощнее компрессор, тем сильнее он шумит. Необходимо выбрать для себя оптимальное соотношение между шумом и производительностью. Нужно сразу определиться, что вы хотите. Более мощную, но шумную систему. Или разумно достаточную, но более тихую.

Основной характеристикой компрессора является хладопроизводительность. Она указывается в Ваттах при температуре -25. Следует учитывать, что при температуре -40 эта цифра уменьшится почти вдвое.

Выбирать будем из учета 150-250Вт на испаритель. А при -25или -40 нужно решать самому.

Приведу марки популярных компрессоров, мощностью близкой к выбранной, работающих на R-22. Есть и аналогичные на R 404.

215Вт при -25

Aspera E 2134Е,

300 Вт при -25

450Вт при -25

550Вт при -25

325Вт при -25

415Вт при-25

Danfoss SC15CМ, 510Вт при -25

Danfoss SC18CМ,

585Вт при -25

Скажу только, что компрессоры «младших» марок в списке практически не шумят. А «старшие» шумят ощутимо.

Естественно Aspera и Danfoss не единственные в мире, и свет клином на них не сошелся. Есть еще и Electrolux, Tecumseh, Turk Elektrik, Panasonic и еще Холодмаш. Это тоже очень неплохие агрегаты, хотя «холодмаш» довольно шумные. И, в конце концов, можно поступить так, придти в магазин и попросить продавца порекомендовать тихий компрессор хладопроизводительностью 200-500Вт при температуре -25

Для более получения более подробной информации можно посетить сайты производителей компрессоров. Или посмотреть ссылки приведенные в конце статьи.

Определяем где у компрессора нагнетающяя трубка, а где всасывающя.

Мы выбрали компрессор. Теперь рассмотрим его поближе. Обтекаемый черный корпус на основании, из которого выходят три трубки. Обычно это три трубки. Бывает у компрессоров большой мощности пять. Две дополнительные - масляное охлаждение. Но мы рассматривать этот случай не будем, ввиду его большой редкости.

Две трубки большего диаметра - всасывающие. Одна диаметром поменьше - нагнетающая. На одну из всасывающих трубок (на какую удобнее) припаивается клапан Шредера, для заправки системы. К другой припаивается всасывающая трубка идущая от испарителя. К более тонкой (нагнетающей), припаивается трубка идущая к конденсору. К ней же, через тройник обычно припаивают клапан Шредера, для контроля давления на линии нагнетания.

Как подключить компрессор к электрической сети. Электрические схемы включения компрессоров

Если вы купили новый компрессор, то проблем с подключением его к электросети у вас не будет. Снимаете крышку пускозащитного реле и смотрите на ее обратную сторону. На ней нарисована схема подключения. Для подключения компрессора подойдет любой провод сечением не менее 0,75 квадратных миллиметров.

Но если вы где-то раздобыли бывший в употреблении компрессор, у вас могут возникнуть сложности с подключением. Приведу несколько типовых схем включения компрессоров. Реле и конденсаторы можно приобрести в магазинах торгующих холодильной техникой.

Как проверить имеющийся в наличии БУ компрессор

Предположим у вас есть бывший в употреблении компрессор. Но вы не знаете, исправен он или нет. Это можно легко проверить. Для этого понадобиться прибор — мультиметр.

Сначала снимаем крышку пускозащитного реле и само реле. Потом замеряем сопротивление между выходящими из компрессора контактами. Оно должно быть примерно таким: между правым и левым контактом — 30 Ом; между правым и верхним — 15 Ом; между левым и верхним — 20 Ом.

Если полученные цифры сильно отличаются от указанных, то можно предположить, что компрессор неисправен. Точнее определить неисправность, можно только замерив потребляемый компрессором ток. Если на какой-нибудь паре контактов прибор покажет обрыв, то компрессор неисправен

Затем замеряем сопротивление между контактами и кожухом компрессора. Для этого подсоединяем один щуп прибора к каждому из контактов, а другой щуп к медной части одного из штуцеров мотора.

Прибор должен показывать обрыв. Если прибор покажет какое-нибудь сопротивление — компрессор неисправен.

Если неисправностей электрической части компрессора обнаружено не было, проверяем его на давление. Для этого подключаем к штуцеру нагнетания имитатор (шланг с отводом из капиллярной трубки), подключаем к имитатору манометр, запускаем компрессор и замеряем давление по манометру.

Если манометр показал давление больше 6 атмосфер, и давление продолжает повышаться, немедленно отключите компрессор. Иначе можете повредить манометр. Это значит, что компрессор находиться в очень хорошем состоянии.

Если сопротивление обмоток не отличается от нормы, а компрессор не запускается, и есть подозрение на неисправность пускозащитного реле, можно попробовать запустить мотор "напрямую", т.е. минуя реле.

ВНИМАНИЕ! Напряжение 220В опасно для жизни. Если Вы не имеете опыта работы с электрическими цепями, то эту проверку лучше доверить специалисту.

Изготавливаем шнур для подключения мотора и подключаем через него компрессор, как показано на схеме:

Выключатель можно не ставить, но тогда после запуска мотора необходимо отсоединить провод от пусковой обмотки. На компрессорах горизонтального типа левый контакт — общий, правый верхний — рабочая обмотка, правый нижний — пусковая обмотка.

2. Конденсатор — радиатор с вентилятором. Один конденсатор, без вентилятора от 35$. Можно купить в сборе с вентилятором. Можно и без вентилятора и придумать что-то самому.

Какой использовать конденсатор?

Конденсор рациональнее купить готовый. Но можно сделать и самостоятельно. Простейший конденсор это 7-15 метров медной трубки свитой в спираль с шагом не менее 4мм. Диаметр спирали подбирается по габаритам платформы, на которой будет производиться монтаж системы. Но такой конденсатор не отличается высокой эффективностью из-за небольшой площади поверхности. Повысить эффективность работы такого конденсатора можно, припаяв к нему дополнительные ребра. Использовать радиаторы от автомобильных печек опасно. Давление в системе будет в пределах 10-14 атмосфер. И далеко не каждая автопечка может справиться с такой нагрузкой.

Главной характеристикой конденсатора является мощность. С конденсатором дело обстоит так же как с компрессором, чем мощность выше, тем лучше. Но есть одно правило, она не должна быть меньше мощности компрессора. Лучше если она будет превышать мощность компрессора раза в полтора-два. Конденсатор должен обязательно охлаждаться вентилятором. Можно купить конденсатор в сборе с вентилятором. А можно приспособить для охлаждения конденсатора корпусные вентиляторы от компьютера. Но тогда для них нужен дополнительный блок питания на 12 вольт мощностью, не менее суммарной мощности вентиляторов, примененных для обдува конденсатора.

3. Фильтр-осушитель. Самый простой стоит от 3,5 $. Есть и дороже. Покупать фильтр дороже 15$, на мой взгляд, ни к чему.

Какой использовать фильтр?

Фильтр служит для фильтрации фреона от нежелательных примесей. Случайно попавшего мусора - стружки, окалины. Иначе все это может забить капилляр, и система будет неработоспособной. Фильтр также поглощает влагу, случайно попавшую в систему. Необходим для надежной работы системы.

Конструктивно он выполнен в виде медного баллона с отверстиями на концах. Внутри фильтра с одного конца установлена решётка, с другого тончайшая сетка. Пространство между ними заполняется веществом, интенсивно поглощающим воду. Обычно это гранулированный цеолит или силикагель. Конец фильтра с решёткой является входом, конец с сеткой — выходом. Выход фильтра обычно имеет отверстие под капиллярную трубку, если оба отверстия фильтра одинаковы, загляните внутрь него, часть с сеткой будет выходом.

При монтаже нужно быть внимательным и не перепутать направление установки фильтра. Фильтр обычно выбирают объемом от 15 кубических сантиметров.

4. Капилляр. Самый ходовой типоразмер, это капилляр с внутренним диаметром 0,8мм. Цена 1метра - около 1$

Точную длину капилляра для самодельной системы рассчитать невозможно. Ее нужно подбирать экспериментальным путем, что является частью настройки системы. Исходя из таблицы, берем капилляр с запасом по длине, для последующей регулировки. Рекомендуемый запас 0,5-1 метр.

Потом в процессе регулировки отрезают капилляр небольшими кусочками. И перепаивают. После заправляют систему по новой. И смотрят, насколько возросла хладопроизводительность. Потом процедуру повторяют.

Но если вам не хочется возиться с настройкой такого уровня, можно взять длину капилляра точно по таблице. И настроить систему только количеством заправляемого фреона.

Газ (фреон)

Мощность испарителя (Ватт)

0.65мм

0.7мм

0.8мм

0.26 дюйма

0.28 дюйма

0.31 дюйма

R404A/R507

R22/R290

Таблица составлена Гари Ллойдом (Gary Lloyd)

5. Трубки.

Для соединения между собой комплектующих системы необходима медные трубки с внешним диаметром 6мм, 8мм, 10мм. Цена 1 метра трубки от 1,5$

Какие использовать трубки для монтажа системы?

Для монтажа системы используют медные трубки диаметром равным диаметру патрубков компрессора. Но на нагнетание можно поставить и меньший диаметр. Обычно монтаж делают трубкой диаметром 6мм. Десятимиллиметровую можно использовать в качестве всасывающей. Из 8мм делают переходы с 6мм на 10мм.

По принципу действия напоминают клапан в газовой зажигалке. Потребуется две штуки. Необходимы для заправки и контроля давления в системе. Впаиваются в контура низкого и высокого давления. Примерно 1,5$ штука. Нужны для заправки системы и контроля давления в системе.

7. Уголки, тройники медные, под диаметр трубок.

Пригодятся для пайки клапанов Шредера и для выполнения резких поворотов.

8. Испаритель.

Единственная часть, которая практически не выпускается промышленностью. Испаритель - самая проблематичная часть. Придется или заказывать у знакомых на заводе, или делать самому. На заказ испаритель будет стоить от 35$.

Где взять испаритель?

Наилучшим и пожалуй единственным материалом для испарителя является медь. Испаритель, это емкость с возможно большей внутренней площадью поверхности. В нем кипит фреон, поглощая тепло, вырабатываемое процессором. Лучшие конструкции испарителей можно и нужно посмотреть на сайте www.xtremesystems.org

Есть несколько вариантов самостоятельного изготовления испарителя. Первый вариант. Приобрести обычный воздушный кулер, радиатор которого изготовлен из меди. И запаять его в коробку из листовой меди. Я сделал два подобных испарителя из кулера Volcano7+. Радиатор я распилил на две части по линии крепежной клипсы. Толщина листа меди, из которой нужно сделать коробку должна быть не менее 2-х миллиметров. Более тонкую коробку раздувает давлением в системе.

Есть еще вариант. Для его воплощения необходимо несколько брусков меди толщиной 10-14мм и размерами 50на 50 мм. С помощью электродрели, начиная от центра квадрата, начинаем насверливать отверстия. Как можно ближе друг к другу. Что бы получилась расходящаяся спираль. Отверстия должны соединяться друг с другом. Сверлить нужно на такую глубину, что бы осталось 4-6мм до нижней грани.

Если у вас брусок только один, тогда в центр спирали припаиваем капилляр. А на выходе спирали всасывающую трубку и накрываем все это дело медной крышкой и все хорошенько пропаиваем. Если найдется еще брусок. То делаем из него второй этаж. Что бы фреон пройдя по спирали первого, через отверстие попадал на второй этаж и опять по спирали попадал в центр второго бруска. И уже сюда припаиваем капилляр и всасывающею трубку. Двухэтажный испаритель будет работать более эффективно, чем одноэтажный. Более двух этажей делать не к чему. Прироста производительности почти не будет. Диаметр сверла 3-5мм.

9. Всасывающая трубка.

Можно обойтись медной трубкой диаметром 10мм. Или купить газовую подводку из гофрированной нержавеющей стали. Она стоит от 10$, в зависимости от длинны.

Какую использовать всасывающею трубку, и где ее взять?

Всасывающая трубка, это трубка идущая от испарителя к компрессору. Она должна быть по возможности гибкой. Вам же придется монтировать испаритель на процессор? И гибкая мягкая трубка намного облегчит эту задачу.

Можно в качестве всасывающей трубки использовать медную трубку диаметром 10мм. Она достаточно гибкая и может работать на скручивание. Иногда для установки испарителя на процессор его необходимо немного повернуть и медная трубка позволит это сделать. Но у нее есть и недостатки. Все-таки она недостаточно гибкая и от многократных перегибов может сломаться.

Этих недостатков лишена трубка сделанная из газовой подводки. Это гофрированная трубка из тонкой нержавеющей стали. Выдерживает давление в 16 атмосфер. Но и у нее есть недостатки. Для ее пайки необходим специальный флюс. Можно конечно припаять штуцеры к системе и прикрутить подводку через фторопластовые прокладки. Но штуцера обычно латунные, а для их пайки тоже необходим флюс. И еще один недостаток есть у такой трубки. Она не работает на скручивание.

Нельзя в качестве всасывающей трубки использовать резиновые шланги, газовые шланги. Даже если они выдержат давление в системе, то фреон утекает сквозь резину. И через какое то время придется дозаправлять систему.

10.Вакуумный насос для вакуумирования системы.

Желателен, но необязателен. Можно вместо вакуумного насоса использовать еще один компрессор. Можно сделать так, что компрессор системы будет вакуумировать сам себя. А можно обойтись совсем без вакуумирования. Как это сделать на практике будет изложено в главе о заправке системы. На фотографии компрессор, немного доработанный для использования в качестве вакуумного насоса.

11. Манометрическая станция.

Цена от 65$. Необходима для заправки и контроля давления в системе. Очень удобна при заправке и регулировке системы. Можно конечно обойтись и краном с манометром. Он стоит уже от 17$. А можно просто впаять в систему манометры. Они по отдельности еще дешевле. А можно обойтись вообще без манометров. Но в этом случае заправка будет происходить «на глазок», что естественно не является сильной стороной метода.

12.Фреон для заправки.

Обычно это самый дешевый и доступный фреон марки R22. Дешевый и доступный не значит плохой. Он идеально подходит самодельщику. Баллон 13,5кг. - 54$. Для заправки системы конечно столько не надо. Обычный расход на одну заправку, в зависимости от внутреннего объема, системы от 30 до 300 грамм. Но меньшей расфасовки я не видел. Можно конечно обратиться в сервисный центр по ремонту холодильников и кондиционеров и договориться с мастерами о заправке там. Обойдется такая процедура от 10$. Но тогда о регулировке можно забыть. Да и не будет того адреналина, который буквально переполняет при первой заправке.

14. Платформа для монтажа системы.

Металлическая или любая другая площадка, способная выдержать вес компрессора и других комплектующих. Или корпус, в который вы собираетесь все это поместить.

Инструмент

Для монтажа системы необходим инструмент, как обычный, так и специальный. Перечислю необходимый инструмент и цены на него. Цены взяты из прайсов нескольких фирм и усреднены. Приведены для того, что бы можно было иметь представление о материальных затратах ожидающих человека, собравшегося двигаться по этому пути.

1. Инструмент для резки медных трубок.

Лучше труборез как на фотографии. Он режет трубки от 1/8 до 5/8 дюйма, другими словами от 3мм и до 15мм. Им можно и надрезать, а потом обломить капилляр. И стоит недорого, от 4,5$.

Можно резать и ножовкой по металлу. Но в этом случае велика вероятность попадания стружки в систему с непредсказуемыми результатами. В случае резки ножовкой нужно быть внимательным и тщательно удалять стружку из внутренних полостей трубок.

2. Горелка с газом.

Можно купить специализированную с баллоном МАРР газа. А можно приобрести и что-то подешевле. Горелка необходима для пайки трубок соединяющих детали системы. В системе высокое давление, порядка 7-14 атмосфер и другой метод пайки, например паяльником и обычным оловянно-свинцовым припоем непригоден.

Припой к горелке.

Вполне подойдет недорогой, с 5-6 процентным содержанием серебра. Цены примерно такие. Горелка - 60$. Баллон МАРР газа - 20$. Но можно найти горелку и значительно дешевле. Например, на радиорынке. Припой 5-6% серебра, один пруток 0,8$. Для сборки системы обычно требуется 3-5 прутков.

3. Необходимы так же обычные инструменты.

Такие как плоскогубцы, кусачки, нож, напильник, отвертки… Нелишним будет иметь дрель со свёрлами.

По вышеприведенным ценам можно посчитать, во что примерно обойдется система. Обычно, если не покупать очень дорогой компрессор, можно вполне уложиться в 300$. В этом случае вы получите довольно тихую, домашнюю «фреонку», не отличающеюся выдающимися характеристиками. Под нагрузкой на этой системе реально получить -25на испарителе. Если же вы планируете собрать более серьезное устройство с более низкими температурами, то придется потратиться уже на 400-500$. В основном цена вырастает за счет стоимости более мощного компрессора. Но это уже будет устройство, превосходящее по своим характеристикам лучшие серийные экземпляры.

4. Рекомендации по компоновке системы. Оформление системы. Сборка и пайка.

Монтируют систему на платформе, лучше металлической. Удобнее будет при пайке, не обгорит. Но можно и из ДСП или толстой фанеры. Но тогда под спаиваемые детали лучше подкладывать лист металла. Неплохо если платформа будет иметь коробчатый каркас. Очень удобно привернуть к ней мебельные колеса. Конструкция получится тяжелой, и данные рекомендации значительно облегчат ее перемещения. Классическая конструкция фреоновой системы, это прямоугольный блок, сверху которого выходит испаритель. На такую конструкцию можно поставить стандартный компьютерный корпус. Придется только в его дне прорезать отверстие для испарителя.

А теперь рекомендации по расположению элементов системы. Конденсор устанавливаем так, что бы вентилятор на нем втягивал через него воздух и обдувал компрессор. Это нужно для дополнительного охлаждения компрессора. В процессе работы компрессор ощутимо нагревается. Нормальная рабочая температура компрессора 55-70 градусов.

Компрессор крепится к платформе через резиновые амортизаторы. Делается это для предотвращения передачи вибраций работающего компрессора корпусу. У компрессора обычно имеется три трубки. Две большего диаметра - всасывающие. Одна диаметром поменьше - нагнетающая. На одну из всасывающих трубок(на какую удобнее) припаивается клапан Шредера, для заправки системы. К другой припаивается всасывающая трубка идущая от испарителя. К более тонкой - нагнетающей, припаивается трубка, идущая к конденсору. В разрыв этой трубки я припаял тройник, а к нему клапан Шредера, для вакуумирования и последующего контроля давления в системе.

Вход конденсора - его верхняя трубка. Выход - нижняя. Это делается для облегчения стекания сконденсировавшегося фреона.

К выходу конденсатора припаиваем фильтр. Фильтр ставиться так, что бы выход фильтра(где припаян капилляр) был ниже входа. Делается это для предотвращения попадания пузырьков несконденсировавшегося фреона в капилляр. Пузырьки снижают производительность системы.

Капиллярную трубку помещают внутри отсасывающей трубки для понижения температуры хладагента в капиллярной трубке.

Это повышает эффективность охлаждения. Так же такое расположение способствует докипанию фреона на линии всасывания. Помогает исключить попадание жидкого фреона в компрессор, что может привести к выходу его из строя. При использовании в качестве всасывающей трубки газовой подводки капилляр необходимо помещать в трубку изогнутым в виде синусоиды. Дело в том, что от давления длинна такой трубки увеличивается, и она может порвать капилляр. Капилляр не «убравшийся» во всасывающею трубку скручивается в бухточку и крепится в любом удобном месте.

Испаритель к всасывающей трубке удобнее всего прикручивать, а не припаивать. Для этого к испарителю можно припаять латунный штуцер с полудюймовой резьбой.

Такая же резьба на газовой подводке. Прикручивать испаритель нужно через фторопластовую прокладку. Можно использовать специальные переходы под развальцовку. Но тогда понадобиться покупать дополнительный инструмент.

В этом случае конструкцию испарителя надо предусмотреть такую, что бы капилляр не припаивался, а вставлялся в испаритель. Разъемное соединение удобно тем, что потом всегда можно заменить испаритель.

Перед крепежом деталей фреоновой системы лучше всего расставить их на платформе и прикинуть, как пойдут соединительные трубки. Можно смоделировать их тонкой проволокой. Согнуть ее, так как потом пойдут реальные соединения. Потом по этим заготовкам будет легче и точнее нарезать и выгнуть необходимые отрезки труб. Трубки диаметром до 10мм включительно хорошо гнуться руками. И, как правило, можно обойтись без трубогиба.

Нужно продумать последовательность пайки. Иначе может получиться, что потом, что бы запаять какое-то соединение, возникнет необходимость разрезать другое.

Как уменьшить шум фреоновой системы охлаждения?

Основным источником шума работающей Direct Die системы охлаждения является компрессор. При работе он ощутимо вибрирует, и эти вибрации передаются корпусу системы. В результате шум усиливается. Не спасают ситуацию и резиновые амортизаторы, на которых крепится компрессор. Так же вибрации компрессора через нагнетающую трубку передаются конденсатору, и он тоже начинает вибрировать.

Что бы уменьшить это явление, корпус можно сделать из толстого гасящего вибрацию материала. Например ДСП. Для уменьшения передачи вибраций от компрессора к корпусу можно закрепить компрессор на небольшое основание, которое в свою очередь закрепить через дополнительные амортизаторы к основному корпусу. Некоторые даже подвешивают компрессор на резиновых кольцах.

Для снижения вибраций передаваемых компрессором конденсатору нагнетающую трубку можно свить в спираль.

А боковые стенки конденсатора оклеить вибропоглощающим материалом. Конденсатор так же можно прикрепить к основанию через прокладки. Будет не лишним и внутренние части корпуса оклеить таким материалом.

В качестве вибропоглощающего материала можно применить автомобильную шумоизоляцию. Или пенофол. Пенофол пористый полимерный материал, применяется для утепления и шумоизоляции систем вентиляции. Приклеивают его 88-ым клеем или на двусторонний скотч.

Внутри корпуса можно предусмотреть шумопоглощающие экраны. Они должны быть оклеены очень рыхлым материалом. Например, толстым синтепоном.

Для уменьшения передачи вибраций от вентиляторов к конденсатору, диффузор, к которому прикреплены вентиляторы тоже неплохо закрепить через вибропоглощяющие прокладки.

Шумоизоляция производится после сборки и пайки системы. Иначе горелкой ее легко повредить.

Как паять? Сборка системы.

Для пайки хорошо подходит горелка с МААР газом. Но горелка и баллоны с газом к ней, довольно дороги. Можно приобрести инструмент и попроще. Большой ассортимент таких устройств можно увидеть на радиорынке. Приобрести горелку там выйдет намного дешевле.

Горелкой нагреваем спаиваемые детали, они почти сразу приобретают ярко желтый цвет. Продолжаем нагрев до темно красного свечения. Потом вводим в факел горелки пруток припоя и проводим им по месту пайки. Припой расплавляется и растекается по спаиваемым деталям. Если припой прилипает и остается комком, значит спаиваемые детали недостаточно разогреты.

Для увеличения прочности спаиваемых соединений детали должны немного входить друг в друга. Например, для спаивания трубок одинакового диаметра, одну из трубок лучше развальцевать.

Или применить переход из трубки большего диаметра. Если трубки сильно отличаются по диаметру, то большую трубку нужно обжать пассатижами.

МАРР газ имеет более высокую температуру горения, чем пропан. Поэтому им быстрее и легче паять. Припой плавиться при температуре 700С-800 градусов в зависимости от состава. Температура плавления меди близка к 1080 градусам. Следует быть аккуратным и не перегреть место пайки. Тонкие трубки легко могут расплавиться. Особенно нужно быть внимательным при пайке капилляра. При такой пайке нужно в основном нагревать сам фильтр. На глаз точкой плавления меди является яркое, желто-белое свечение.

Соединения медь-медь паяются без флюса. Если же вам необходимо припаять латунный штуцер или всасывающую трубку из нержавеющей стали, то придется приобрести специальный флюс. Я паяю такие соединения флюсом Ultra flux. Но можно приобрести в специализированном магазине и другой, подобный.

При такой пайке флюс наносится на соединение, а затем пайка производится так, как описано выше.

Спаиваемые детали необходимо предварительно зафиксировать. Пайка производиться двумя руками и придержать сползающею в процессе пайки деталь будет нечем. Разве что… Ну нет это уже чересчур. Лучше зафиксировать проволокой, тисками, струбциной. Что найдется.

Один небольшой совет. Раньше я паял клапаны шредера, не разбирая их. Но когда клапан паяется долго, или патрубок у него короткий, из него лучше выкрутить нутро. В нем есть полимерная прокладка, которая может подгореть от пайки и клапан, потом будет травить. Выкручивается клапан колпачком. У него есть для этого штырек с прорезью.

А теперь пара слов о пайке испарителя. Испаритель обычно имеет довольно большую массу. И поэтому прогреть его одной горелкой проблематично. Да и расход газа будет велик. Поэтому лучше всего паять испаритель на включенной газовой конфорке. Ставим на нее испаритель, поджигаем газ и ждем минут 10. Испаритель прогреется и можно приступать к пайке обычным способом.

Шов пайки должен быть ровным, гладким без каверн и раковин. Это потенциальное место протечки.

Испарители после пайки для полной уверенности лучше всего опрессовать. Сделать это можно при помощи старого компрессора. Компрессор для этого придется немного модернизировать. После модернизации такой компрессор можно использовать и для опрессовки и как вакуумный насос. Доработка сводится к тому, что надо припаять по клапану Шредера на линии нагнетания и всасывания. Вторую трубку на всасывание нужно заглушить. Шредер на нагнетание и используется для опрессовки испарителей. На фотографии показано еще одно приспособление это клапан и переход. Сделав такое приспособление можно легко подсоединить любой испаритель к компрессору.

Еще интересный момент. Если вы сами спаяли испаритель. Установили его на фреонку. Опрессовали фреоном из баллона и он держит давление, то это еще ничего не значит. Высокое давление при такой опрессовке не получить.

Далее вы заправляете фреонку, но в испарителе опять же высокого давления не будет. Испаритель находится в контуре низкого давления и при работе системы давление в нем находится в пределах 0,5-1 атмосферы. И испаритель может прекрасно держать такое давление.

После заправки и регулировки системы вы выключаете систему. После выключения давление в контуре низкого и высокого давления начинает выравниваться. Давление в испарителе начинает расти. И поднимается примерно до 7-10 атмосфер. При некачественной пайке испаритель может дать течь. Причем через некоторое время.

Для избежания такого конфуза лучше перед установкой в систему опрессовать испаритель. Для этого к трубке испарителя либо припаивается клапан Шредера, либо присоединяется методом развальцовки. Потом через манометрическую станцию испаритель подключается к линии нагнетания модернизированного компрессора. Из клапана Шредера на линии всасывания выкручивается механизм. Делается это для того, чтобы открыть клапан. Компрессор включается. Контролируя давление по манометру высокого давления, нагнетаем в испаритель воздух до 12-15атмосфер. Выключаем компрессор и опускаем испаритель в емкость с водой. Если утечка присутствует, вы увидите пузырьки воздуха, вырывающиеся из проблемных мест.

ВНИМАНИЕ:

Нужно быть очень осторожным и не превышать указанное давление. Можно повредить манометр. Возможно, что в случае некачественной пайки может разорвать испаритель.

Несколько слов о технике безопасности. Работайте в хорошо проветриваемом помещении. Пайка должна проводится на негорючем основании. Например, листе металла. При работе с горелкой обязательно наличие ведра с водой рядом с местом работы. Лучше пару раз по запарке опрокинуть его, чем потом в случае пожара метаться в поисках, чем залить пламя. Неплохо иметь и кусок негорючей ткани. Например, брезента. Для того, что бы накрыть им случайно загоревшейся предмет.

Во время пайки детали быстро нагреваются. Но долго остывают.

При пайке нужно внимательно следить за направлением пламени горелки, даже на расстоянии около метра занавеска может загореться. Работать надо обязательно в негорючих перчатках. И главное внимание, и еще раз внимание.

Установка вентиляторов.

Система собрана, спаяна. Пора устанавливать вентиляторы. Если вы приобрели конденсатор в комплекте с вентилятором, то никаких проблем возникнуть не должно. Другое дело, если вы решили использовать имеющиеся у вас корпусные вентиляторы от компьютера. Тут есть несколько моментов, которые нужно учесть.

Первое.

Для вентиляторов нужен собственный блок питания. Из-за того, что при эксплуатации фреоновой системы охлаждения сначала включается она, а через некоторое время и сам компьютер. Делается это для того, что бы она успела охладить процессор. А уже после выхода системы в режим можно включить и сам компьютер. Так что один блок питания и для компьютера и для питания вентиляторов использовать не получиться.

Второе.

Для эффективной работы вентилятора необходимо использовать диффузор. Если просто закрепить вентилятор на конденсатор. Он будет протягивать воздух только через небольшую его часть, равную площади самого вентилятора. Эффективность охлаждения фреона будет невысокой. Диффузор выровняет воздушный поток. И продуваться будет вся поверхность конденсатора.

Диффузор должен плотно прилегать к конденсатору. Щели снижают эффективность охлаждения.

5. Заправка системы. Вакуумирование

Итак, система собрана, спаяна. Пора приступать к заправке. Но сначала нужно удалить воздух из системы. Если этого не сделать то влага, содержащаяся в воздухе, при работе системы замерзнет и забьет капилляр. Система окажется неработоспособной. Так же воздух в системе значительно снижает ее хладопроизводительность. Происходит это из-за того, что система заправляется небольшим количеством фреона, а воздух занимает определенный объем внутри системы, но не участвует в процессе.

Удалить воздух из системы можно несколькими способами. Основным и самым эффективным методом является вакуумирование. Для вакуумирования нужно специальное устройство - вакуумный насос. Это довольно дорогостоящая штука и приобретать ее самодельщику ни к чему. Можно заменить вакуумный насос другим компрессором. Конечно с помощью компрессора не получить вакуума такой глубины, как при помощи вакуумного насоса. Но существует метод, позволяющий приблизиться к его результату. А можно обойтись вообще без вакуумирования. Ниже я изложу все известные мне методы.

Но для начала проверим, насколько качественно удалось спаять систему. Для этого привернем желтый шланг от манометрической станции к баллону с фреоном и приоткрыв немного баллон продуем шланги фреоном. Для этого надо приоткрыть вентили на манометрической станции. После этой процедуры закрываем все вентили и присоединяем красный шланг к клапану Шредера на линии нагнетания.

Потом открываем вентиль на баллоне, и с помощью вентиля на манометрической станции (красный, линия нагнетания) пускаем фреон в систему. Можно в это время немного приоткрыть клапан Шредера на линии всасывания нажав на штырек клапана. Этим мы вытесним воздух из системы. Конечно не весь. Но тем не менее. Выпустив воздух, и закрыв все краны, ненадолго включаем компрессор. Потом повторяем процедуру еще раз. Далее закручиваем этот клапан колпачком (всасывание). И продолжаем поднимать давление в системе. Увеличиваем давление до 3 атмосфер. Заворачиваем все краны и оставляем систему на час, два. Если по прошествии этого времени давление в системе не снизится, нам повезло. Утечек нет. Все спаяно качественно.

Если давление упало, поднимаем давление по вышеизложенному методу и начинаем искать место утечки. Делается это мыльной водой. Кисточкой наносим мыльную воду на места соединений и смотрим, не появятся ли пузыри. Места утечек пропаиваем. Естественно перед пайкой выпускаем фреон из системы. Иначе может произойти небольшой, малоприятный взрыв. Затем повторяем всю процедуру проверки.

Система проверена, утечек нет. Идем дальше. Прикручиваем синий шланг к шредеру на линии всасывания. Красный у нас уже подсоединен. Отсоединяем баллон с фреоном. И к освободившемуся желтому шлангу присоединяем вакуумный насос. Если его нет, то специально доработанный компрессор. Он будет выполнять роль вакуумного насоса. Доработка заключается в припаивании клапанов Шредера на патрубки нагнетания и всасывания этого компрессора.

Вакуумирование производим из клапана нагнетания (высокое давление). Для этого открываем красный вентиль и включаем компрессор-вакуумный насос. На манометре низкого давления(синий) стрелка должна поползти вниз. Вакуумируем пару минут. Но так глубокого вакуума не получить. Поэтому включаем еще и компрессор системы. В результате давление на всасывании (низкое давление) станет еще ниже. Компрессоры будут работать последовательно. Это будет почти результат вакуумирования хорошим вакуумным насосом. Учитывая, что после заправки хладагент сожмет оставшийся воздух еще примерно в 10 раз — воздух практически не будет снижать холодильной мощности. Система вакуумирования получается условно двухступенчатая.

Далее выключаем компрессоры. Заворачиваем краны. Отключаем вакуумирующее устройство и на его место подключаем баллон с фреоном. Включаем компрессор системы и начинаем потихоньку подавать в нее фреон из баллона. В линию всасывания. Подача осуществляется синим вентилем. Стрелка манометра обратного потока (синий) скакнет до 3-х 4-х атмосфер. Остановим подачу и подождем несколько минут.

Потом повторяем процедуру снова. Подавать газ надо небольшими порциями. Это важно. С промежутками в несколько минут. Через некоторое время испаритель начнет покрываться инеем.

Заправку фреоном производим до тех пор, пока всасывающая трубка не покроется инеем до входа в компрессор. Это и будет окончанием заправки.

И одновременно предварительной настройкой системы.

Такая регулировка позволяет исключить попадание жидкого фреона в компрессор. Под нагрузкой фреон гарантированно выкипит раньше, не дойдя до компресора. А попадание жидкого фреона чревато выходом компрессора из строя.

Подробнее о процессе регулировки системы будет написано ниже.

Можно ли обойтись без вакуумного насоса?

Без вакуумного насоса обойтись можно. Сначала изложу способ, когда компрессор системы будет вакуумировать сам себя. Для этого между фильтром Шредера и конденсором (линия высокого давления) ставится кран. Кран должен быть такой конструкции, что бы исключить потери фреона в атмосферу.

Практически все краны, так или иначе, травят фреон. Исключение составляют сильфонные краны. Но стоимость такого крана равна стоимости недорогого компрессора. Мы же для этого применим такой вот порт от кондиционера. Особенностью этого устройства является крышка с прокладкой из алюминия. После регулировки механизм крана, который пропускает фреон, будет закрыт этой крышкой и затянут. Алюминиевая прокладка мягкая и усилием закручивания будет расплющена так, что соединение будет герметично и утечки фреона не будет.

А теперь принцип работы. Перекрываем кран. Нажимаем на штырек клапана Шредера на линии нагнетания, тем самым открывая клапан. И включаем компрессор, который начинает выкачивать воздух из системы. Кончено такого глубокого вакуума как при двухступенчатом вакуумировании, изложенном выше не получить. Но и это неплохо. Перестаем давить на штырек. Клапан закрывается, и мы немедленно выключаем компрессор. Система вакуумирована. Затем открываем кран, заворачиваем крышку на кране. С адекватным усилием. И приступаем к заправке системы, как говорилось выше. Перед такой процедурой нелишним будет несколько раз продуть систему фреоном.

Продувая систему, впускаем в нее из баллона фреон до давления в две, три атмосферы, включаем компрессор. Стравливаем фреон. И снова повторяем процедуру.

В принципе можно обойтись и без крана. Просто несколько раз продувать систему по методу, изложенному выше. И лишний воздух и влага выйдут из системы вместе с фреоном. Фреон R-22 недорогой. И поэтому такой метод выходит все же дешевле покупки дополнительного компрессора.

Выше изложено три метода вакуумирования. Каждый последующий немного хуже предыдущего. Но они позволяют сэкономить. Пусть и за счет небольшой потери производительности.

Добавлю. Все эти методы неоднократно проверены. И не только мной.

Но может случиться и такой момент. При покупке компрессора, вы его получаете с заткнутыми резиновыми пробками штуцерами. Вынимать эти пробки нужно только непосредственно перед пайкой системы. Если же вы вынули эти пробки давно, или что еще хуже, включали для проверки компрессор на прокачку воздуха, масло в нем могло впитать влагу. Из этого самого воздуха. Результат известен. Периодически перестает морозить испаритель. Исправить такую ситуацию можно только длительным вакуумированием системы с прогревом фильтра до 200 градусов. Если и это не помогает. Придется менять масло.

6. Конденсат, что это такое? Как с этим бороться? Изоляция. Установка системы в компьютер.

Все люди, так, или иначе, по несколько раз на дню сталкиваются с тем, что стакан с холодным пивом (соком, ненужное вычеркнуть) снаружи быстро запотевает и покрывается каплями воды. Это и есть конденсат. Конденсация влаги из воздуха происходит на поверхностях, температура которых ниже температуры окружающей среды. Интенсивность зависит от влажности воздуха и разности температур. Скажу только, что при 50-ти процентной влажности конденсат начинает выпадать на поверхностях, температура которых на 7 градусов ниже температуры окружающей среды. Или около того. Точных цифр я к сожалению не помню.

Такая же беда, как на стакане с пивом, но в более серьезных масштабах (все-таки температуры около -40) произойдет и с испарителями и всасывающей трубкой. Да и с сокетом процессора и даже с обратной стороной материнской платы. Только влага где-то частично замерзнет, а где-то начнет собираться в лужи. А влага на компьютерных платах чревата внеочередным апгрейдом.

Защитить электронные компоненты от конденсата можно теплоизолировав их от окружающей среды, заодно изолировав их и от влажного воздуха. Я пишу влажного потому, что воздух в жилых помещениях абсолютно сухим не бывает. Для теплоизоляции нужны определенные материалы. И определенные манипуляции с этими материалами.

Для теплоизоляции пригодны только материалы с закрытыми порами. Ели применить обычный поролон, то через несколько минут работы системы он превратиться в мокрую губку. Хорошо подойдет неопрен или все тот же пенофол. Пенофол это вспененный полиэтилен. Продается как виброшумоизоляция. Можно использовать пенопласт и монтажную пену.

Теплоизолировать необходимо испаритель, всасывающую трубку, пространство вокруг сокета и обратную сторону материнской платы в области распайки сокета. Размер пространства вокруг сокета подлежащее теплоизоляции примерно 150 на 150мм. Во время выполнения теплоизоляции нужно быть внимательным и не теплоизолировать греющиеся элементы платы. Их надо обойти теплоизоляцией. Необходимо так же предусмотреть обдув околосокетного пространства дополнительным вентилятором. Это поможет охладить силовые транзисторы цепей питания процессора. А так же поможет высыханию влаги, которая может выступить и на теплоизоляции.

Перед теплоизоляцией пространство вокруг сокета и обратную сторону материнской платы необходимо смазать токонепроводящей силиконовой смазкой. Подойдет и из серии автохимии. Это делается для исключения замыканий, которые может вызвать случайно возникший конденсат.

На сам сокет нужно нанести более густую токонепроводящюю смазку. Например, вазелин. Нужно забить им отверстия сокета. Иначе в них может образоваться конденсат с непредсказуемыми результатами.

После этого по размеру сокета вырезаем теплоизоляционную прокладку с отверстиями под греющиеся элементы. Толщина теплоизоляции не менее 10мм.

На обратную сторону платы вырезаем коврик такого же размера. И изготавливаем пластину для прижима прокладки. Очень важно прижать теплоизоляцию к плате для избежания проникновения в щели воздуха и образования в них конденсата.

Испаритель должен прижиматься к процессору и материнской плате длинными винтами. Крепление к рамке сокета не подходит. Слишком хрупка и ненадежна рамка. Подробно описывать крепеж не имеет смысла ввиду большого разнообразия сокетов. Скажу только, что между теплоизоляцией испарителя и изолирующей прокладкой платы не должно быть щелей. После первого крепления испарителя его необходимо снять и по отпечатку термопасты проконтролировать прижим испарителя к процессору. Щели в теплоизоляции обнаруживаются визуально.

Необходимо качественно теплоизолировать и сам испаритель. И всасывающую трубку. С трубкой легче всех. Для изоляции трубок выпускается специальная теплоизоляция. Она продается как в специализированных холодильных, так и в сантехнических магазинах. Название одного из видов такой теплоизоляции рубафлекс. Теплоизолировать трубку нужно после пайки системы. Для этого ее необходимо разрезать ее вдоль и склеить, после того как теплоизоляция одета на трубку. Для надежности можно обмотать обычной изолентой. Туго обматывать не следует. Изоляция от этого со временем плющиться, и теряет свои свойства.

Изолировать испаритель немного сложнее. Можно нарезать листовую изоляцию и приклеить к испарителю. А можно поместить испаритель в коробку и залить монтажной пеной. После высыхания лишнее обрезается. Толщина теплоизоляции должна приближаться к двум сантиметрам. Сантиметровый слой теплоизоляции при -40 покрывается конденсатом.

Рекомендуется после теплоизоляции и установки системы охлаждения в компьютер включить систему, без включения компьютера. И после 15 минут работы выключить и разобрать систему для проверки. Не образовался ли где конденсат.

Система теплоизолированная и установлена. Теперь самое время ее немного подрегулировать.

7. Регулировка системы.

Регулировка системы под конкретное железо осуществляется двумя путями. Хладопроизводительность регулируют количеством фреона, заправленным в систему. А также регулировкой длинны капилляра. Укорачивая капилляр, мы увеличиваем подачу фреона в испаритель. Но значительно увеличивать подачу фреона нельзя. Недоиспарившийся фреон (жидкий) может попасть в компрессор и вывести его из строя. Фреон должен полностью выкипать в испарителе и всасывающей трубке. Нужно найти оптимальную середину.

На первое время можно просто взять длину капилляра по таблице и регулировать производительность количеством фреона. Включаем систему, после выхода ее в режим, включаем компьютер. И при минимальной загрузке разогнанного процессора добавляем в систему фреон. Пока всасывающая трубка не промерзнет до входа в компрессор. Это гарантирует, что при полной загрузке фреон выкипит полностью и не попадет в компрессор. Этим способом можно пользоваться даже при отсутствии манометров.

Компрессор сжимает газообразный фреон и подает его в конденсор. Температура нагнетающей трубки (а значит и температура газа) должна находиться в пределах 55-85 градусов. Конденсатор охлаждает фреон и он конденсируется. На выходе из конденсора температура хладагента должна быть 30-45 градусов.

Если компрессор очень горячий, а конденсатор холодный. То система перезаправлена. Нужно при помощи клапана стравить лишний фреон.

Если испаритель не морозит, то или в системе недостаточно фреона или забился капилляр. Проверить забился капилляр или нет можно по звуку внутри испарителя. Во время работы испаритель шипит.

Так же не должна обмерзать область компрессора вокруг всасывающего штуцера. Это означает, что капилляр короток. Чем короче капилляр, тем меньше давление на линии нагнетания, а значит выше температура испарителя. Чем длиннее, тем ниже температура, но ниже хладопроизводительность. Давление на линии всасывания не должно превышать 1,5атмосфер.

Иногда для предотвращения попадания жидкого фреона в компрессор применяют докипатель. Это небольшая емкость перед компрессором. Ее обычно располагают между вентилятором и компрессором, и служит она для полного докипания фреона. Но докипатель существенно снижает хладопроизводительность системы за счет потерь.

8. На что следует обратить внимание во время эксплуатации фреоновой системы охлаждения?

В системах с воздушным охлаждением кулер охлаждающий процессор включается одновременно с компьютером. Ему не надо «входить в режим», он начинает отводить тепло от процессора сразу, что нельзя сказать о системах охлаждения основанных на принципе фазового перехода. Этой системе для выхода в штатный режим необходимо некоторое время. И поэтому сначала надо включить систему охлаждения, а когда она охладит процессор до определенной температуры, включить уже сам компьютер.

Можно конечно это делать вручную, но нет никакой гарантии, что в один прекрасный день вы ничего не перепутаете и не включите компьютер или вообще без фреонки, или одновременно, что может повлечь перегрев разогнанного процессора и невосполнимые потери в области комплектующих системного блока.

Для безопасной эксплуатации компьютера с криогенной системой охлаждения необходим блок автоматики, который будет «разрешать» включать компьютер только после того, как система охладит процессор до заданной температуры. С возможностью выставить эту температуру вручную.

Фабричные системы оснащаются подобными устройствами, а что делать самодельщикам? Существует два пути решения проблемы. Сконструировать и изготовить подобное устройство самому. Но это под силу далеко не каждому. Для этого необходимы не только теоретические знания в области электроники, но и практические навыки в изготовлении подобных устройств. Не говоря уже о затратах времени.

Но можно для этих целей приспособить готовые устройства, имеющиеся в свободной продаже. Расскажу как это сделать на примере электронного контроллера Dixell XR20C. Это устройство и обеспечит автоматическое включение компьютера по достижении определенной температуры на испарителе, значение которой можно установить вручную.

Существует целый ряд подобных устройств. Для использования в качестве автоматики они требуют минимальной доработки. Я использовал простейшее устройство, содержащее только контакты управления компрессором.

Работает прибор следующим образом. После включения устройство самодиагностируется, после чего замыкает контакты, которые по замыслу конструкторов и включают компрессор. По достижении на датчике определенной температуры размыкают контакты, отключая тем самым компрессор. После того как температура повысится, цикл повторяется.

В нашем случае компрессор работает постоянно, и управлять им не нужно. И требуется не выключать, а включить компьютер по достижении определенной температуры. Для этого нужно инвертировать выход устройства. Люди, хорошо разбирающиеся в электронике, без труда сами могут составить такую схемку, например, на "логике". Я же покажу, как собрать подобную схему человеку, далекому от электроники.

Мне кажется, что проще всего это можно сделать на автомобильном реле. У реле есть несколько контактов. Два контакта - контакты катушки электромагнита. При подаче напряжения на них электромагнит притягивает коромысло, которое и замыкает одну группу контактов, размыкая другую. В нашем случае нам нужны контакты, замкнутые при отключенном питании катушки электромагнита реле. Если включить реле подобным образом,

происходит следующее. При включении терморегулятор подает напряжение на реле. Контакты, отвечающие за включение компьютера, размыкаются и остаются разомкнутыми до момента, когда термодатчик зафиксирует температуру, необходимую для включения компьютера. Тогда контакты терморегулятора размыкаются, а в реле замыкаются.

Конденсатор с сопротивлением нужен для имитации работы кнопки включения компьютера. Работает эта цепь следующим образом. При замыкании контактов Power ON конденсатором в цепи потечет ток зарядки конденсатора - аналог нажатия кнопки Power ON. После зарядки конденсатора ток в цепи прекращается - аналог отпускания кнопки Power ON. Емкость конденсатора должна быть в пределах 200-400 мкФ, сопротивление 15-20 кОм.

Для работы такой автоматики необходим источник питания напряжением 12 вольт. Также для работы фреоновой системы необходим обдув конденсатора вентилятором. А как они будут работать, если блок питания включится только после того, как система должна набрать заданный минус? Поэтому специально для автоматики и работы вентиляторов нужно ставить в корпус отдельный блок питания, выдающий 12 вольт постоянного тока. Назову его блоком питания дежурного режима. К нему и подключаются автоматика и вентиляторы. Нужно только обратить внимание на максимальный ток нагрузки такого блока. Он должен быть больше суммы токов потребляющих вентиляторами.

Ну вот вроде все и собрано, спаяно, отрегулировано. Включаем-смотрим. Наслаждаемся.

А теперь еще один важный момент. После нескольких дней эксплуатации необходимо проверить надежность крепления процессора. Дело в том, что пористая изоляция, если она сжата, со временем уменьшается в объеме. Поры слипаются, и она как бы садиться. Поэтому крепеж процессор — испаритель не должен сильно давить на изоляцию иначе через некоторое время — неделя, две. Изоляция настолько сплющится, что перестанет выполнять свои функции и возможно возникновение конденсата. Поэтому лучше периодически проверять качество изоляции. И степень прижима испарителя к процессору.

В качестве профилактики рекомендуется раз в месяц-два контролировать давление в системе. Возможно, в системе существует микроутечка и через нее фреон постепенно улетучивается. Найти такую утечку сложно. И поэтому можно просто периодически дозаправлять систему. Или лишний раз убедиться, что все в порядке.

Скрин результатов разгона процессора

Несколько фотографий систем изготовленных автором.

Вот как бы и все что планировалось рассказать. Если вышеизложенное заинтересует посетителей сайта http://www.megamod.ru/ , то продолжение обязательно будет.

10. Дополнительная информация по фреоновым системам охлаждения. Ссылки.

Наилучшие сайты по фреоновым системам охлаждения.

  • www.xtremesystems.org
  • www.phase-change.com
  • www.overclockers.ru

Дополнительная информация по компрессорам

Похоже, Россия становится не только "родиной слонов" и великих комбинаторов, но и местом рождения остроумных технических решений для современных высокопроизводительных вычислительных систем.

В начале двадцатого века паровозы доставляли пассажиров из Москвы в Санкт-Петербург за десять часов. При этом их КПД не превышал семи процентов. То есть использовалась только одна четырнадцатая часть энергии дров и угля, а остальные тринадцать обогревали атмосферу. Конструкторы тех лет придумывали самые изощренные способы, дабы сохранить тепло. Процессоры в современных серверных стойках тоже обогревают атмосферу, однако в данном случае конструкторы преследуют диаметрально противоположную цель - отвести от чипа как можно больше избыточного тепла.

Современные высокопроизводительные процессоры греются не хуже ламп накаливания; "топовые" модели производят до 130 Вт тепла, а порой и больше. Теперь представьте, что в одном сервере толщиной в один юнит (1,75 дюйма, около 4,4 см) может находиться два таких процессора, а юнитов в стойке - до сорока двух штук. Количеству выделяемых стойкой калорий позавидует иная тепловая пушка, обогревающая производственные помещения.

Но это не все трудности, встающие на пути инженеров-разработчиков высокопроизводительных систем. Вторая проблема - малый размер процессоров. Чтобы отвести тепло с небольшой площади радиатора, необходимо обдувать его очень большим количеством воздуха, а значит, вентиляторы должны быть высокопроизводительными и, как следствие, шумными.

Компания Cray - всемирно известная своими суперкомпьютерами, пошла по иному пути. Например, в модели ETA-10 была применена система охлаждения процессоров жидким азотом, что позволило вдвое повысить производительность. С эффективностью такой системы не поспоришь, однако ее цена заставляет задуматься даже военные ведомства. Так что применение этой технологии пока остается уделом сверхплотных и сверхпроизводительных систем стоимостью несколько сот тысяч и даже миллионов долларов.

Другой способ - закрытые кондиционированные шкафы, куда подается уже сильно охлажденный воздух. Но и здесь есть свои трудности. Во-первых, стоимость подобных шкафов и затраты на их эксплуатацию хоть и в разы меньше, чем у системы на азоте, тем не менее весьма высоки. Несмотря на кажущуюся простоту, приходится искать решения множества технологических задач, таких как равномерное распределение холодного воздуха в стойке, интенсивный отвод теплого воздуха, герметичность. Становится очень важным правильное распределение (не всегда совпадающее с желаемым) серверов внутри стойки и прочие тонкости. Да и КПД такой системы охлаждения тоже оказывается не на высоте: получается тройная передача тепловой энергии - сначала охлаждается фреон, который затем охлаждает воздух, а воздух, в свою очередь, охлаждает процессоры.

Специалисты российской компании Kraftway, изучив проблему, подумали: а зачем вообще нужен воздух в этой системе "теплых взаимоотношений"? И решили охлаждать процессоры сразу фреоном кондиционера.

Однако не все так просто. Подумайте, легко ли конфигурировать систему, насквозь пронизанную трубками с фреоном?! Поэтому было решено охлаждать не сами процессоры, которые располагаются в разных серверах по-разному, а сначала отводить тепло от раскаленных невероятной вычислительной мощностью ядер тепловыми трубками. То есть один ее конец располагается на самом процессоре, отбирая тепло, а другой - выводится на заднюю стенку сервера. Тем самым упрощается не только конструкция охладителя, но и процесс замены серверов: достаточно отвинтить тепловую трубку и вынуть корпус из стойки, не останавливая и не разбирая всю систему охлаждения.

Устройство тепловой трубки тоже заслуживает упоминания. Как известно, в них применяются самые разные теплоносители (вода, эфир, фреон). Однако большинство из них не обладают достаточной производительностью. Даже вода, несмотря на свою впечатляющую теплоемкость, не может справиться с той скоростью отвода тепла, которая требуется для современных процессоров. [Главная проблема - скорость циркуляции. Есть, однако, примеры и удачного применения воды. Компания Icebear System построила систему водяного охлаждения для стоек. Мне, правда, не приходилось встречать сообщений о ее реальных применениях. К тому же прототип этой системы был предназначен только для машин на базе процессоров Opteron]. Есть и другой момент: представьте, что трубка вдруг начнет протекать... это явно не обрадует электрические схемы материнской платы.

Применение фреона позволяет добиться необходимой производительности и безопасности. В случае протечки он тут же улетучивается, а теплоемкость его испарения сравнима с водой. Устроена трубка следующим образом. Жидкий фреон по капиллярной губке направляется к процессору, там, испаряясь, поднимается к "утюжкам" (рис. 2), прикрепленным к постоянно охлаждаемой металлической колонне (о ней будет рассказано ниже), в которых он охлаждается и, конденсируясь, стекает вниз в горизонтальную часть трубки, где благодаря капиллярному эффекту попадает обратно к ядру процессора. Далее - по кругу. Надежность такой замкнутой и герметичной системы очень высока.

Однако выведя процессорное тепло наружу, мы решили только половину задачи. Ведь его все равно нужно каким-то образом передать дальше, "на улицу". Тут и выступает на сцену вышеупомянутая колонна, к которой прикреплены горячие "утюжки" тепловых трубок. Несмотря на свой заурядный вид, она вовсе не является копией морозилки бытового холодильника.

Внутри этой прямоугольной тепловой колонны расположена медная трубка с массой мельчайших отверстий [Как утверждают разработчики, для их изготовления пришлось применить лазерное сверление, ведь диаметр отверстий не превышает нескольких десятков микрон], в которую специальная помпа подает хладагент [Используется опять же фреон, однако любителям природы не стоит волноваться, - применяется безопасная для озонового слоя марка хладона (HFC R142b)]. Протекая по трубке, фреон через отверстия разбрызгивается на внутреннюю поверхность колонны. Испаряясь на ней, он отбирает тепло у "утюжков" и уходит по трубке к основному компрессору [Вообще, "теплый конец" - это стандартный внешний блок сплит-системы кондиционирования воздуха], который может быть расположен далеко за пределами стойки (например, на улице вместе с радиатором охлаждения хладагента). Дополнительная помпа (рис. 1) понадобилась для того, чтобы регулировать нагрузку: стойка с серверами может быть заполнена только частично, и охлаждать колонну целиком - пустая трата энергии. С другой стороны, основной компрессор кондиционера работает на постоянных оборотах, и снижать их недопустимо, так как он может просто-напросто сгореть (можно вспомнить частые случаи перегорания компрессоров холодильников в сельской местности из-за пониженного напряжения). Поэтому оказалось рациональнее (хоть это немного и усложнило конструкцию) поставить дополнительную помпу непосредственно в стойке и управлять уже ее оборотами. Таким образом, инженеры продолжают бороться за общее повышение КПД системы.

Итак, получается двойная, а не тройная система охлаждения. Сначала нагревается непосредственно фреон, минуя воздушную стадию (нагревом корпуса трубок можно пренебречь), и уже он отдает тепло окружающему воздуху, причем далеко за пределами серверной стойки.

Если мы избавились от воздушного охлаждения процессоров, то нет необходимости в большом количестве вентиляторов внутри каждого сервера. По утверждению разработчика, для охлаждения всех оставшихся схем, включая жесткий диск и блок питания, достаточно лишь одного вентилятора на корпус. Это радикально снижает шум, что позволяет размещать такие стойки внутри рабочих комнат, не вынося их в специальные помещения.

Представители компании Kraftway очень неохотно отвечали на вопрос о возможной стоимости подобной системы. Ссылаясь на то, что пока существует только прототип и многие решения еще не вышли на стадию массового производства, говорить о конкретных расчетах слишком трудно. Однако мне удалось в приватной беседе выяснить, что ориентировочная стоимость в расчете на один процессор не должна превышать пятидесяти долларов (не забывайте, что речь идет о многопроцессорных системах с количеством чипов около сотни). Это, согласитесь, уже близко к цене обычных медных радиаторов и, разумеется, гораздо меньше стоимости систем на жидком азоте.

Похоже, Россия становится не только "родиной слонов" и великих комбинаторов, но и местом рождения остроумных технических решений для современных высокопроизводительных вычислительных систем. Возможно, недалек тот день, когда первые строчки знаменитого Top 500 будут занимать компьютеры, построенные именно у нас.

Из журнала "Компьютерра"

От редактора (ALT-F13): Так уж получилось, что статью мы смогли опубликовать аж через два месяца после ее написания. За это время автор не сидел, сложа руки, а двигался дальше в сторону более экстремального охлаждения. Сейчас Steff занимается сборкой самодельных phase-change direct-die систем, в просторечии - «фреонок». На момент написания этих строк, он продемонстрировал уже второй вариант своей системы. Впрочем, первый также прекрасно работал. Так что строки, с которых начинается текст этой статьи - «Экстремальными методами охлаждения компьютера я увлёкся совсем недавно, так что это - описание моего первого эксперимента в этой области» можно считать недействительными:)

Экстремальными методами охлаждения компьютера я увлёкся совсем недавно, так что это - описание моего первого эксперимента в этой области.

Водяное охлаждение я использовал на протяжении нескольких лет, но пришёл момент, когда захотелось большего. Можно было конечно купить готовую систему Asetek VapoChill или nVentiv Mach II (экс-Prometeia), но у фреонок есть свои недостатки. Во-первых это цена, во-вторых - способность охлаждать только один элемент системы. Для охлаждения, к примеру, видеокарты пришлось бы покупать еще одно устройство и серьезно заморачиваться с установкой.
Начинать свое знакомство с экстремальным охлаждением с постройки самодельной direct-die системы показалось мне достаточно сложной задачей, поэтому я выбрал другой путь.
Альтернативой direct-die охлаждения являются ватерчиллеры, то есть системы на базе водяного охлаждения с эффективным охлаждением хладагента, позволяющие достичь температур ниже окружающих.
Серийный ватерчиллер на сегодня есть только один, это достаточно неэффективная (около 0 градусов при загрузке 50-70Вт) и дорогостоящая ($330) система от Swiftech. Голландцы OC-Shop.com обещают начать продажи своего чиллера, но за последние полгода не слишком продвинулись к цели. Известна лишь цена продукта - 600 евро, что еще больше, нежели у продукта Swifttech.
По причине отсутствия эффективных серийных чиллеров, остаются два пути - сделать самому или купить чиллер, предназначенный для другого применения.
Существует два основных вида ватерчиллеров: на основе фазового перехода (phase-change) или с использованием модулей Пельтье. Первые представляют собой двухконтурную систему, где испаритель "фреонки" охлаждает хладагент в контуре жидкостного охлаждения. Во втором случае вода или другой хладагент проходит через ватерблок, охлаждаемый модулями Пельтье. Этот вид чиллеров компактнее и проще в изготовлении, но сильно проигрывает в температурах и соотношении "эффективность/потребляемая энергия". Так, 500Вт суммарной мощности модулей дают температуру жидкости чуть ниже нуля градусов при нагрузке около 100Вт...
Итак, решено - будем делать phase-change waterchiller с тремя охлаждаемыми элементами (процессор, северный мост, ядро видеокарты).

Компоненты системы

Проще всего собирать чиллер на базе бытового конциционера. Желательно найти кондиционер, который использует газ R22, а не R134а, так как R22 испаряется при низшей температуре. Для данных целей также подходит система от холодильника. Я использовал кондиционер 5000BTU, обычно в них устанавливаются компрессоры мощностью в 1/2 л.с.

В качестве резервуара подойдет любая ёмкость с теплоизоляцией, а в крайнем случае можно сделать самому. В моем случае - это изолированный бачок для холодной воды.

Главная головная боль тех, кто рискнул заниматься экстремальным охлаждением - теплоизоляция для предотвращения конденсата. Простых методов, описанных в статье "Теплоизоляция ватерблоков" перестанет хватать, если температура приблизится к нулю и ниже. Поэтому в ход пойдет "тяжелая артиллерия". Для теплообменников - монтажная пена-заполнитель и изолента, для трубок и шлангов - поролон с закрытыми порами. Обязательно использование диэлектрической смазки для мест установки ватерблоков (также можно использовать силиконовое покрытие, но его потом невозможно удалить с плат).

Собственно компоненты системы водяного охлаждения, ватерблоки и помпа. Мой комплект состоит из PolarFlo CPU waterblock, Danger Den Z-Chip block, Swiftech MCW50 VGA block и помпы Rio Aqua 1400.

Следующий вопрос - выбор хладагента. В данном случае я руководствовался двумя параметрами: жидкость не должна замерзать при низких температурах и иметь как можно большую теплопроводность. Для низких температур подходят антифриз (кто бы сомневался;)), водка или смесь вода+метанол. Я выбрал метанол: он ядовит (внимание!), но обладает наилучшей теплопроводностью. Один из самых простых способов его достать - купить в автомагазине жидкость для стеклоочистителя.

Сборка

Здесь фотографии помогут больше, чем длительное описание на словах.

Я начал с теплоизоляции ватерблоков. Блок заливался пеной, после высыхания ставилась изоляция на трубки и всё вместе закрывалось изолентой.

Таким образом я теплоизолировал все три ватерблока.

Осталось изолировать материнскую плату. Всё пространство вокруг сокета и чипсета намазал диэлектрической смазкой, тоже самое проделал с блоками, потом сделал прокладки из поролона. Аналогичным образом обработал заднюю сторону материнки и видеокарты, затем установил поролон и закрепил пластинами из акрила.

Когда блоки были готовы, занялся кондиционером. Полностью разобрал его, стараясь ничего не сломать.

Для легкого и безболезненного сгибания трубок в нужных местах рекомендую использовать инструмент под названием "pipe bender" (не знаю точного русского названия).