Бесконтактная передача электричества. Беспроводная передача электричества

Всем известно, что Никола Тесла является изобретателем таких повсеместно используемых вещей как переменный ток и трансформатор. Но далеко не все ученые знакомы с другими изобретениями Теслы.

Мы используем переменный ток. Мы используем трансформаторы. В любой квартире. Трудно представить как можно обходиться без этих изобретений. Но КАК мы их используем? Тесла использовал эти известные нам (как нам кажется) вещи совсем по-другому. Как мы подключаем любой электроприбор в сеть? Вилкой - т.е. двумя проводниками. Если мы подключим только один проводник, тока не будет - цепь не замкнута.

Тесла демонстрировал эффект передачи мощности по одному проводнику. Более того, в других экспериментах он передавал мощность вообще без проводов. Великий изобретатель смог в конце XIX века передать без проводов электрическую энергию на расстояние свыше 40 километров. Поскольку этот широко известный эксперимент Теслы до сих пор не повторен, нашим читателям наверняка будут интересны подробности этой истории, а также современное состояние проблемы передачи электрической энергии без проводов.

Биография американского изобретателя, серба по происхождению, Николы Теслы достаточно известна, и мы на ней останавливаться не будем. Но сразу уточним: прежде чем продемонстрировать свой уникальный эксперимент, Тесла, сначала в 1892 году в Лондоне, а через год в Филадельфии, в присутствии специалистов продемонстрировал возможность передачи электрической энергии по одному проводу, не используя при этом заземления второго полюса источника энергии.

И тогда же у него возникла идея использовать в качестве этого единственного провода... Землю! И в этом же году на съезде ассоциации электрического освещения в Сант-Льюисе он продемонстрировал электрические лампы, горящие без подводящих проводов, и работающий без подключения к электрической сети электромотор. Эту необычную экспозицию он прокомментировал следующим образом: «Несколько слов об идее, постоянно занимающей мои мысли и касающейся всех нас. Я имею в виду передачу сигналов, а также и энергии на любое расстояние без проводов. Мы уже знаем, что электрические колебания могут передаваться по единственному проводнику. Почему же не воспользоваться для этой цели Землей? Если мы сможем установить период колебаний электрического заряда Земли при его возмущении, связанном с действием противоположно заряженной цепи, это будет фактом чрезвычайной важности, который послужит на благо всего человечества».

Увидя столь эффектную демонстрацию, такие известные олигархи, как Дж. Вестингауз и Дж. П. Морган, вложили в это перспективное дело свыше миллиона долларов, купив у Теслы его патенты (громадные, кстати, по тем временам деньги!). На эти средства в конце 90-х годов XIX века Тесла сооружает в Колорадо-Спрингс свою уникальную лабораторию. Подробные сведения об экспериментах в лаборатории Теслы изложены в книге его биографа Джона О’Нейла «Электрический Прометей» (в нашей стране ее перевод был опубликован в журнале «Изобретатель и рационализатор» №4-11 за 1979 год). Приведем здесь лишь краткую выдержку из нее, чтобы не ссылаться на более поздние перепечатки: «В Колорадо-Спрингс Тесла провел первые испытания беспроводной передачи электроэнергии. Он смог питать током, извлекаемым из Земли во время работы гигантского вибратора, 200 электрических лампочек накаливания, расположенных на расстоянии 42 километа от его лаборатории. Мощность каждой составляла 50 ватт, так что суммарный расход энергии составлял 10 кВт, или 13 л.с. Тесла был убежден, что с помощью более мощного вибратора он смог бы зажечь дюжину электрических гирлянд по 200 лампочек в каждой, разбросанных по всему земному шару».

Самого же Теслу настолько вдохновили успехи этих экспериментов, что он заявил в широкой печати, что намерен осветить Всемирную промышленную выставку в Париже, которую предполагалось провести в 1903 году, энергией электростанции, расположенной на Ниагарском водопаде и переданной в Париж без проводов. Известно по многочисленным фотографиям и описаниям очевидцев и помощников изобретателя, что представлял собой генератор энергии, передаваемой на 42 километра без проводов (правда, это чисто журналистский термин: один провод, в качестве которого выступала Земля, в этой цепи присутствует, и об этом прямо говорят и сам Тесла, и его биограф).

То, что Тесла называл вибратором, было гигантским трансформатором его системы, имевшим первичную обмотку из нескольких витков толстого провода, намотанных на ограде диаметром 25 метров, и размещенную внутри нее многовитковую однослойную вторичную обмотку на цилиндре из диэлектрика. Первичная обмотка вместе с конденсатором, индукционной катушкой и искровым промежутком образовывала колебательный контур-преобразователь частоты. Над трансформатором, располагавшимся в центре лаборатории, возвышалась деревянная башня высотой 60 метров, увенчанная большим медным шаром. Один конец вторичной обмотки трансформатора соединялся с этим шаром, другой - заземлялся. Все устройство питалось от отдельной динамо-машины мощностью 300 л.с. В нем возбуждались электромагнитные колебания частотой 150 килогерц (длина волны 2000 метров). Рабочее напряжение в высоковольтной цепи составляло 30 000 В, а резонирующий потенциал шара достигал 100 000 000 В, порождая искусственные молнии длиной в десятки метров! Вот как объясняет работу вибратора Теслы его биограф: «В сущности, Тесла «накачивал» в Землю и извлекал оттуда поток электронов. Частота накачки составляла 150 кГц. Распространяясь концентрическими кругами все дальше от Колорадо-Спрингс, электрические волны сходились затем в диаметрально противоположной точке Земли. Там вздымались и опадали волны большой амплитуды в унисон с поднятыми в Колорадо. Опадая, такая волна посылала электрическое эхо обратно в Колорадо, где электрический вибратор усиливал волну, и она мчалась обратно.

Если привести всю Землю в состояние электрической вибрации, то в каждой точке ее поверхности мы будем обеспечены энергией. Ее можно будет улавливать из мечущихся между электрическими полюсами волн простыми устройствами наподобие колебательных контуров в радиоприемниках, только заземленными и снабженными небольшими антеннами высотой с сельский коттедж. Эта энергия будет обогревать дома и освещать их с помощью трубчатых ламп Теслы, не требующих проводов. Для электромоторов переменного тока понадобились бы только преобразователи частоты».

Сведения об экспериментах Теслы по передаче электроэнергии без проводов вдохновили и других исследователей на работы в этой области. Сообщения об аналогичных экспериментах часто появлялись в печати в начале прошлого века. Стоит привести в связи с этим выдержку из статьи A.M. Горького «Беседы о ремесле», опубликованной в 1930 году: «В текущем году Маркони передал по воздуху электроток из Генуи в Австралию и зажег там электрические лампы на выставке в Сиднее. Это же было сделано 27 лет тому назад у нас, в России, литератором и ученым М.М. Филипповым, который несколько лет работал над передачей электротока по воздуху и в конце концов зажег из Петербурга люстру в Царском Селе (то есть на расстоянии 27 километров. -В.П. ). Тогда на этот факт не было обращено должного внимания, но Филиппова через несколько дней нашли мертвым в своей квартире, а аппараты и бумаги его конфисковала полиция».

Эксперименты Теслы произвели большое впечатление и на другого литератора - Алексея Толстого, бывшего инженером по образованию. А когда Тесла, а затем и Маркони сообщили в печати, что их аппараты принимают странные сигналы внеземного, по-видимому, марсианского происхождения, это вдохновило писателя на написание фантастического романа «Аэлита». В романе марсиане пользуются изобретением Теслы и без проводов передают энергию от расположенных на полюсах Марса электростанций в любую точку планеты. Эта энергия приводит в действие двигатели летающих судов и другие механизмы. Однако построить свою «мировую систему» для обеспечения электроэнергией населения земного шара без использования проводов Тесле не удалось.

Как только в 1900 году он начал возводить на острове Лонг-Айленд под Нью-Йорком научно-исследовательскую лабораторию-городок на 2000 сотрудников и громадную металлическую башню с гигантской медной тарелкой на верхушке, спохватились и «проводные» электрические олигархи: ведь повсеместное внедрение системы Теслы грозило им разорением.

Башня «Уорденклиф» (1902)

На миллиардера Дж.П. Моргана, финансировавшего строительство, последовал жестокий нажим, в том числе и от подкупленных конкурентами правительственных чиновников. (или было наоборот) Начались перебои с поставками оборудования, строительство застопорилось, а когда Морган под этим нажимом прекратил финансирование, и вовсе прекратилось. В начале Первой мировой войны, по наущению тех же конкурентов, правительство США распорядилось взорвать уже готовую башню под надуманным предлогом, что ее могут использовать в целях шпионажа.

Ну а затем электротехника пошла привычным путем.

Долгое время никто не мог повторить эксперименты Теслы хотя бы потому, что потребовалось бы создать аналогичную по размерам и мощности установку. Но в том, что Тесле удалось найти способ передачи электрической энергии на расстояние без проводов, более ста лет назад никто не сомневался. Авторитет Теслы, имевшего рейтинг второго после Эдисона изобретателя, во всем мире был достаточно высок, а его вклад в развитие электротехники переменного тока (в пику Эдисону, ратовавшему за постоянный ток) несомненен. При его экспериментах присутствовало много специалистов, не считая прессы, и никто никогда не пытался уличить его в каких-либо фокусах или подтасовке фактов. О высоком авторитете Теслы свидетельствует и название его именем единицы напряженности магнитного поля. Вот только вывод Теслы о том, что во время эксперимента в Колорадо-Спрингс энергия была передана на расстояние 42 километра с к.п.д., равным около 90%, слишком оптимистичен. Напомним, что общая мощность зажженных на расстоянии ламп составляла 10 кВт, или 13 л.с., в то время как мощность динамо-машины, питавшей вибратор, достигала 300 л.с. То есть можно говорить о к.п.д. всего лишь порядка 4-5%, хотя и эта цифра поразительна. Физическое обоснование экспериментов Теслы по беспроводной передаче электроэнергии до сих пор волнует многих специалистов.
www.elec.ru/news/2003/03/14/1047627665.h tml

Специалисты Массачусетского технологического института сумели заставить гореть лампу накаливания, находящуюся на расстоянии 2-х метров от источника энергии. rus.newsru.ua/world/08jun2007/tesla.html

Беспроводные зарядники от Intel odessabuy.com/news/item-402.html

"Аргументы и факты" №52, 2008 (24-30 декабря):
НАУКА - Электричество без проводов. Говорят, что американские ученые сумели передать без проводов электроэнергию мощностью 800 Вт.

Беспроводное электричествостало известно с 1831 года, когда Майкл Фарадей открыл явление электромагнитной индукции. Он экспериментально установил, что меняющееся магнитное поле, порождаемое электрическим током, может индуцировать электрический ток в ином проводнике. Проводились многочисленные опыты, благодаря чему появился первый электрический трансформатор. Однако полноценно воплотить идею передачи электричества на расстоянии в практическом применении удалось лишь Николе Тесла.

На Всемирной выставке в Чикаго в 1893-м году он показал беспроводную передачу электричества, зажигая фосфорные лампочки, которые отстояли друг от друга. Тесла продемонстрировал множество вариаций по передаче электричества без проводов, мечтая, что в будущем данная технология позволит людям передавать энергию в атмосфере на большие расстояния. Но в это время это изобретение ученого оказалось невостребованным. Лишь век спустя технологиями Николы Теслы заинтересовались компании Intel и Sony, а за тем и иные компании.

Как это работает

Беспроводное электричество в буквальном смысле представляет передачу электрической энергии без проводов. Часто эту технологию сравнивают с передачей информации, к примеру, с Wi-Fi, сотовыми телефонами и радио. Беспроводная электроэнергия – это сравнительно новая и динамично развивающаяся технология. Сегодня разрабатываются методы, как безопасно и эффективно передавать на расстоянии энергию без перебоев.

Технология основана на магнетизме и электромагнетизме и базируется на ряде простых принципов работы. В первую очередь это касается наличия в системе двух катушек.

  • Система состоит из передатчика и приемника, генерирующих вместе переменное магнитное поле непостоянного тока.
  • Это поле создает напряжение в катушке приемника, к примеру, для зарядки аккумулятора или питания мобильного устройства.
  • При направлении электрического тока через провод вокруг кабеля появляется круговое магнитное поле.
  • На мотке проволоки, куда не поступает электрический ток напрямую, начнет поступать электрический ток от первой катушки через магнитное поле, в том числе вторую катушку, обеспечивая индуктивную связь.

Принципы передачи

До последнего времени наиболее совершенной технологией передачи электроэнергии считалась магнитно-резонансная система CMRS, созданная в 2007 году в Массачусетском технологическом институте. Данная технология обеспечивала передачу тока на расстояние до 2,1 метра. Однако запустить ее в массовое производство мешали некоторые ограничения, к примеру, высокая частота передачи, большие размеры, сложная конфигурация катушек, а также высокая чувствительность к внешним помехам, в том числе к присутствию человека.

Однако ученые из Южной Кореи создали новый передатчик электроэнергии, который позволит передавать энергию до 5 метров. А все приборы в комнате будут питаться от единого хаба. Резонансная система из дипольных катушек DCRS способна работать до 5 метров. Система лишена целого ряда недостатков CMRS, в том числе применяются довольно компактные катушки размерами 10х20х300 см, их можно незаметно установить в стены квартиры.

Эксперимент позволил передать на частоте 20 кГц:

  1. 209 Вт на 5 м;
  2. 471 Вт на 4 м;
  3. 1403 Вт на 3 м.

Беспроводное электричество позволяет запитывать современные большие ЖК-телевизоры, требующих 40 Вт, на расстоянии 5 метров. Единственное из электросети будет «выкачиваться» 400 ватт, однако не будет никаких проводов. Электромагнитная индукция обеспечивает высокий КПД, но на малом расстоянии.

Существуют и иные технологии, которые позволяют передавать электроэнергию без проводов. Наиболее перспективными из них являются:

  • Лазерное излучение . Обеспечивает защищенность сетей, а также большую дальность действия. Однако требуется прямая видимость между приемником и передатчиком. Работающие установки, применяющие питание от лазерного луча, уже созданы. Lockheed Martin, американский производитель военной техники и самолетов, испытал беспилотный летательный аппарат Stalker, который питается от лазерного луча и остается в воздухе в течение 48 часов.
  • Микроволновое излучение . Обеспечивает большую дальность действия, но имеет высокую стоимость оборудования. В качестве передатчика электроэнергии применяется радиоантенна, которая создает микроволновое излучение. На устройстве-приемнике стоит ректенна, которая преобразует в электроток принимаемое микроволновое излучение.

Данная технология дает возможность существенного удаления приемника от передатчика, в том числе нет прямой нужды прямой видимости. Но с увеличением дальности пропорционально увеличивается себестоимость и размеры оборудования. В то же время микроволновое излучение большой мощности, создаваемое установкой, может наносить вред окружающей среде.

Особенности

  • Самая реалистичная из технологий — беспроводное электричество на основе электромагнитной индукции. Но существуют ограничения. Ведутся работы по масштабированию технологии, но здесь появляются вопросы безопасности для здоровья.
  • Технологии передачи электричества при помощи ультразвука, лазера и микроволнового излучения также будут развиваться и тоже найдут свои ниши.
  • Орбитальные спутники с громадными солнечными батареями нуждаются в ином подходе, потребуется прицельная передача электроэнергии. Здесь уместен лазер и СВЧ. На данный момент нет идеального решения, однако имеется много вариантов со своими плюсами и минусами.
  • В настоящее время крупнейшие производители телекоммуникационного оборудования объединились в консорциум беспроводной электромагнитной энергии с целью создания всемирного стандарта для беспроводных зарядных устройств, которые действуют по принципу электромагнитной индукции. Из крупных производителей поддержку стандарта QI на ряде своих моделей обеспечивают Sony, Samsung, Nokia, Motorola Mobility, LG Electronics, Huawei, HTC. В скором времени QI станет единым стандартом для любых подобных устройств. Благодаря этому можно будет создавать беспроводные зоны подзарядки гаджетов в кафе, на транспортных узлах и в иных общественных местах.

Применение

  • Микроволновый вертолет. Модель вертолета имела ректенну и поднималась на высоту 15 м.
  • Беспроводное электричество применяется для питания электрических зубных щеток. Зубная щетка имеет полную герметичность корпуса и не имеет разъемов, что позволяет избежать удара током.
  • Питание самолетов при помощи лазера.
  • В продаже появились системы беспроводной зарядки мобильных устройств, которые можно использовать повседневно. Они работают на базе электромагнитной индукции.
  • Универсальная зарядная площадка. Они позволяют питать энергией большую часть популярных моделей смартфонов, которые не оборудованы модулем для беспроводной зарядки, в том числе обычные телефоны. Кроме самой зарядной площадки будет нужно купить чехол-приемник для гаджета. Он соединяется со смартфоном через USB-порт и через него заряжается.
  • На текущий момент на мировом рынке продается свыше 150 устройств до 5 Ватт, которые поддерживают стандарт QI. В будущем появится оборудование средней мощности до 120 Ватт.

Перспективы

Сегодня ведутся работы над крупными проектами, которые будут использовать беспроводное электричество. Это питание электромобилей «по воздуху» и бытовые электросети:

  • Густая сеть автозарядных точек позволит уменьшить аккумуляторы и значительно снизить себестоимость электромобилей.
  • В каждой комнате будут устанавливаться источники питания, которые будут передавать электроэнергию аудио- и видеоаппаратуре, гаджетам и бытовым приборам, оборудованными соответствующими адаптерами.

Достоинства и недостатки

Беспроводное электричество имеет следующие преимущества:

  • Не требуются источники питания.
  • Полное отсутствие проводов.
  • Упразднение необходимости использования батарей.
  • Требуется меньше технического обслуживания.
  • Огромные перспективы.

К недостаткам также можно отнести:

  • Недостаточная проработанность технологий.
  • Ограниченность по расстоянию.
  • Магнитные поля не являются полностью безопасными для человека.
  • Высокая стоимость оборудования.

В 1968 году американский специалист в области космических исследований Питер Е. Глэйзер (Peter E. Glaser) предложил размещать крупные панели солнечных батарей на геостационарной орбите, а вырабатываемую ими энергию (уровня 5-10 ГВт) передавать на поверхность Земли хорошо сфокусированным пучком СВЧ-излучения, преобразовывать её затем в энергию постоянного или переменного тока технической частоты и раздавать потребителям.


Такая схема позволяла использовать интенсивный поток солнечного излучения, существующий на геостационарной орбите (~ 1,4 кВт/кв.м.), и передавать полученную энергию на поверхность Земли непрерывно, вне зависимости от времени суток и погодных условий . За счёт естественного наклона экваториальной плоскости к плоскости эклиптики с углом 23,5 град., спутник, расположенный на геостационарной орбите, освещён потоком солнечной радиации практически непрерывно за исключением небольших отрезков времени вблизи дней весеннего и осеннего равноденствия, когда этот спутник попадает в тень Земли. Эти промежутки времени могут точно предсказываться, а в сумме они не превышают 1% от общей продолжительности года.

Частота электромагнитных колебаний СВЧ-пучка должна соответствовать тем диапазонам, которые выделены для использования в промышленности, научных исследованиях и медицине. Если эта частота выбрана равной 2,45 ГГц, то метеорологические условия, включая густую облачность и интенсивные осадки, практически не влияют на КПД передачи энергии. Диапазон 5,8 ГГц заманчив, поскольку дает возможность уменьшить размеры передающей и приемной антенн. Однако влияние метеорологических условий здесь уже требует дополнительного изучения.

Современный уровень развития СВЧ-электроники позволяет говорить о довольно высоком значении КПД передачи энергии СВЧ пучком с геостационарной орбиты на поверхность Земли - порядка 70-75%. При этом диаметр передающей антенны обычно бывает выбран равным 1 км, а наземная ректенна имеет размеры 10 км х 13 км для широты местности 35 град. СКЭС с уровнем выходной мощности 5 ГВт имеет плотность излучаемой мощности в центре передающей антенны 23 кВт/кв.м., в центре приемной – 230 Вт/кв.м.


Были исследованы различные типы твёрдотельных и вакуумных СВЧ-генераторов для передающей антенны СКЭС. Вильям Браун показал, в частности, что хорошо освоенные промышленностью магнетроны, предназначенные для СВЧ-печей, могут быть использованы также и в передающих антенных решётках СКЭС, если каждый из них снабдить собственной цепью отрицательной обратной связи по фазе по отношению к внешнему синхронизирующему сигналу (так называемый, Magnetron Directional Amplifier - MDA).

Наиболее активно и планомерно исследования в области СКЭС проводила Япония. В 1981 году под руководством профессоров М.Нагатомо (Makoto Nagatomo) и С.Сасаки (Susumu Sasaki) в Институте космических исследований Японии были начаты исследования по разработке прототипа СКЭС с уровнем мощности 10 МВт, который мог бы быть создан с использованием существующих ракетоносителей. Создание такого прототипа позволяет накопить технологический опыт и подготовить основу для формирования коммерческих систем.


Проект был назван СКЭС2000 (SPS2000) и получил признание во многих странах мира.

В 2008 доцент кафедры физики Массачусетского Технологического Института (МИТ) Марин Солджачич (Marin Soljačić) был пробуждён от сладкого сна настойчивым пиканьем мобильного телефона. «Телефон не умолкал, требуя, чтобы я поставил его заряжаться», - рассказывает Солджачич. Уставший и не собиравшийся вставать, он стал мечтать о том, чтобы телефон, оказавшись дома, начинал заряжаться сам по себе .

В 2012-2015 гг. инженеры Вашингтонского университета разработали технологию, позволяющую использовать Wi-Fi в качестве источника энергии для питания портативных устройств и зарядки гаджетов. Технология уже признана журналом Popular Science как одна из лучших инноваций 2015 года. Повсеместное распространение технологии беспроводной передачи данных само по себе произвело настоящую революцию. И вот теперь настала очередь беспроводной передачи энергии по воздуху, которую разработчики из Вашингтонского университета назвали PoWiFi (от Power Over WiFi).


На стадии тестирования исследователи сумели успешно заряжать литий-ионные и никель-металл-гидридные аккумуляторы небольшой емкости. Используя роутер Asus RT-AC68U и несколько сенсоров, расположенных на расстоянии 8,5 метров от него. Эти сенсоры как раз и преобразуют энергию электромагнитной волны в постоянный ток напряжением от 1,8 до 2,4 вольта, необходимых для питания микроконтроллеров и сенсорных систем. Особенность технологии в том, что качество рабочего сигнала при этом не ухудшается. Достаточно лишь перепрошить роутер, и можно будет пользоваться им как обычно, плюс подавать питание к маломощным устройствам. На одной из демонстраций была успешно запитана небольшая камера скрытого наблюдения с низким разрешением, расположенная на расстоянии более 5 метров от роутера. Затем на 41% был заряжен фитнес-трекер Jawbone Up24, на это ушло 2,5 часа.

На каверзные вопросы о том, почему эти процессы не сказываются негативно на качестве работы сетевого канала связи, разработчики ответили, что это становится возможным благодаря тому, что перепрошитый роутер, во время своей работы, по незанятым передачей информации каналам рассылает пакеты энергии. К этому решению пришли когда обнаружили, что в периоды молчания энергия попросту утекает из системы, а ведь ее можно направить для питания маломощных устройств.

Во время исследований систему PoWiFi разместили в шести домах, и предложили жильцам пользоваться интернетом как обычно. Загружать веб-страницы, смотреть потоковое видео, а потом рассказать, что изменилось. В результате оказалось, что производительность сети не изменилась никак. То есть интернет работал как обычно, и присутствие добавленной опции не было заметным. И это были лишь первые тесты, когда по Wi-Fi собиралось относительно небольшое количество энергии .

В перспективе технология PoWiFi вполне сможет послужить для питания датчиков, встроенных в бытовую технику и военную технику, чтобы управлять ими беспроводным способом и осуществлять дистанционную зарядку/подзарядку.

Актуальным является передача энергии для БПЛА (вероятнее всего уже по технологии PoWiMax или от радиолокатора самолёта носителя):


Для БПЛА негатив от закона обратных квадратов (изотропно-излучающая антенна) частично «компенсирует» ширина луча антенны и диаграмма направленности:

Ведь БРЛС ЛА в импульсе может выдавать под 17 кВт энергии ЭМИ.

Это не сотовая связь -где ячейка должна обеспечить связь конечным элементам на 360 градусов.
Допустим такая вариация:
Самолёт носитель (для Perdix) это F-18 обладает (сейчас) БРЛС AN/APG-65:


максимальная средняя излучаемая мощность по 12000 Вт

Или в перспективе будет иметь AN/APG-79 AESA:


в импульсе должен выдавать под 15 кВт энергии ЭМИ

Этого вполне достаточно, что бы продлить активную жизнь Perdix Micro-Drones с нынешних 20 минут до часа, а может и больше.

Скорее всего будет использоваться промежуточный дрон Perdix Middle, которого будет облучать на достаточном расстоянии БРЛС истребителя, а он в свою очередь осуществит «раздачу» энергии для младших братьев Perdix Micro-Drones по PoWiFi/PoWiMax, параллельно обмениваясь с ними информацией (полётно -пилотажной, целевыми задачами, координацией роя).

Возможно вскоре дело дойдет и до зарядки сотовых телефонов, и других мобильных устройств, которые находятся в зоне действия Wi-Fi, Wi-Max или 5G?

Послесловие: 10-20 лет, после широкого внедрения в повседневную жизнь многочисленных электромагнитных излучателей СВЧ (Мобильные телефоны, Микроволновые печи, Компьютеры,WiFi,Blu tools и т.д.) внезапно тараканы в больших городах вдруг превратились в раритет! Теперь таракан- насекомое, которое можно встретить разве что в зоопарке. Они неожиданно исчезли из домов, которые раньше так любили.

ТАРАКАНЫ КАРЛ!
Эти монстры лидеры списка «радиорезистентных организмов» бесстыдно капитулировали!
Справка
LD 50 - средняя летальная доза, то есть доза убивает половину организмов в эксперименте; LD 100 - летальная доза убивает всех организмов в эксперименте.

Кто следующий на очереди?

Допустимые уровни излучения базовых станций мобильной связи (900 и 1800 МГц, суммарный уровень от всех источников) в санитарно-селитебной зоне в некоторых странах заметно различаются:
Украина: 2,5 мкВт/см². (самая жесткая санитарная норма в Европе)
Россия, Венгрия: 10 мкВт/см².
Москва: 2,0 мкВт/см². (норма существовала до конца 2009 года)
США, Скандинавские страны: 100 мкВт/см².
Временно допустимый уровень (ВДУ) от мобильных радиотелефонов (МРТ) для пользователей радиотелефонов в РФ определён 10 мкВт/см² (Раздел IV - Гигиенические требования к подвижным станциям сухопутной радиосвязи СанПиН 2.1.8/2.2.4.1190-03 «Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи»).
В США Сертификат выдается Федеральной комиссией по связи (FCC) на сотовые аппараты, максимальный уровень SAR которых не превышает 1,6 Вт/кг (причем поглощенная мощность излучения приводится к 1 грамму ткани органов человека).
В Европе, согласно международной директиве Комиссии по защите от неионизирующего излучения (ICNIRP), значение SAR мобильного телефона не должно превышать 2 Вт/кг (при этом поглощенная мощность излучения приводится к 10 граммам ткани органов человека).
Сравнительно недавно в Великобритании безопасным уровнем SAR считался уровень равный 10 Вт/кг. Такая же примерно картина наблюдалась и в других странах.
Принятую в стандарте максимальную величину SAR (1,6 Вт/кг) даже нельзя с уверенностью отнести к «жестким» или к «мягким» нормам.
Принятые и в США и в Европе стандарты определения величины SAR (все нормирование микроволнового излучения от сотовых телефонов, о котором идет речь базируется только на термическом эффекте, то есть связанном с нагреванием тканей органов человека).

ПОЛНЫЙ ХАОС.
Медицина до сих пор пока не дала внятного ответа на вопрос: вреден ли мобильный/WiFi и насколько?
А как будет с беспроводной передачей электроэнергии СВЧ технологиями?
Тут мощности не ватты и мили ватты, а уже кВт…

Прим: Типичная WiMAX базовая станция излучает мощность на уровне приблизительно +43 дБм (20 Вт), а станция мобильной связи обычно передает на +23 дБм (200 мВт).


Теги:

  • Электроэнергия
  • СВЧ
  • PoWiFi
  • дроны
  • БПЛА
Добавить метки

Это простая схема, которая может обеспечить энергией электролампочку без каких-либо проводов, на расстоянии почти 2,5 см! Эта схема действует и как повышающий преобразователь напряжения, и как беспроводной передатчик электроэнергии и приемник. Её очень просто сделать и, если усовершенствовать, то можно использовать различными способами. Итак, приступим!

Шаг 1. Необходимые материалы и инструменты.

  1. NPN транзистор. Я использовал 2N3904, но можно использовать любой NPN транзистор, например, ВС337, BC547 и т.д. (Любой PNP транзистор будет работать, только соблюдайте полярность соединений.)
  2. Обмоточный или изолированный провод. Около 3-4 метров провода должно быть достаточно (провода обмоточные, просто медные провода с очень тонкой эмалевой изоляцией). Подойдут провода от большинства электронных устройств, таких как трансформаторы, колонки, электродвигатели, реле и т.д.
  3. Резистор с сопротивлением 1 кОм. Этот резистор будет использоваться для защиты транзистора от перегорания в случае перегрузки или перегрева. Вы можете использовать более высокие значения сопротивления до 4-5 кОм. Можно не использовать резистор, но при этом существует риск более быстрого разряда батареи.
  4. Светодиод. Я использовал светодиод диаметром 2 мм ультра яркий белый. Вы можете использовать любой светодиод. Фактически назначение светодиода здесь - только показывать работоспособность схемы.
  5. Батарея размера АА напряжением 1,5 Вольт. (Не используйте батареи высокого напряжения, если не хотите повредить транзистор.)

Необходимые инструменты:

1) Ножницы или нож.

2) Паяльник (Необязательно). Если у вас нет паяльника, можно просто сделать скрутку проводов. Я делал это, когда у меня не было паяльника. Если вы хотите попробовать схему без пайки, это только приветствуется.

3) Зажигалка (Необязательно). Мы будем использовать зажигалку, чтобы сжечь изоляцию на проводе, а затем используем ножницы, или нож, чтобы соскоблить остатки изоляции.

Шаг 2: Посмотрите видео, чтобы узнать, как это сделать

Шаг 3: Краткий повтор всех шагов.

Итак, прежде всего вы должны взять провода, и сделать катушку, намотав 30 витков вокруг круглого цилиндрического объекта. Назовем эту катушку А. С тем же круглым предметом, начинаем делать вторую катушку. После наматывания 15-го витка создать ответвление в виде петли из провода и затем намотайте на катушку еще 15 оборотов. Так что теперь у вас есть катушка с двумя концами и одним ответвлением. Назовем эту катушку В. Свяжите узлы на концах проводов, так чтобы они не раскручивались сами по себе. Обожгите изоляцию на концах проводов и на ответвлении на обоих катушках. Также вы можете использовать ножницы или нож для снятия изоляции. Убедитесь, что диаметры и количество витков обоих катушек равны!

Создайте передатчик: Возьмите транзистор и поместите его так, чтобы плоская его сторона была обращена вверх и обращена к Вам. Контакт слева будет присоединен к излучателю, средний будет базовым, а контакт справа будет присоединен к коллектору. Возьмите резистор и подключите один из его концов к базовому контакту транзистора. Возьмите другой конец резистора и соедините его с одним из концов (не с ответвлением) катушки B. Возьмите другой конец катушки B и подключите его к коллектору транзистора. Если хотите, можете подключить небольшой кусок проволоки к эмиттеру транзистора (Она будет работать в качестве расширения Эмитента.)

Настройте приемник. Чтобы создать приемник, возьмите катушку А и присоедините ее концы к разным контактам вашего светодиода.

Вы собрали схему!

Шаг 4: Принципиальная схема.

Здесь мы видим принципиальную схему нашего соединения. Если вы не знаете каких-то обозначений на схеме, не волнуйтесь. В следующих изображениях все показано.

Шаг 5. Чертеж соединений схемы.

Здесь мы видим объяснительный чертеж соединений нашей цепи.

Шаг 6. Использование схемы.

Просто возьмите ответвление катушки B и присоедините его к положительному концу батареи. Подключите отрицательный полюс батареи к эмиттеру транзистора. Теперь, если вы приближаете катушку с светодиодом к катушке B, светодиод загорается!

Шаг 7. Как это объясняется с научной точки зрения?

(Я просто попытаюсь объяснить науку этого явления простыми словами и аналогиями, и я знаю, что могу ошибиться. Для того, чтобы правильно объяснить сие явление, мне придется углубляться во все подробности, что я не в состоянии сделать, поэтому я просто хочу провести общие аналогии для объяснения схемы).

Схема передатчика, который мы только что создали это схема Осциллятора. Вы, возможно, слышали о так называемой схеме Вор джоулей, так вот она имеет поразительное сходство с цепью, которую мы создали. Схема Вор джоулей принимает электроэнергию от батареи напряжением 1,5 Вольт, выводит электроэнергию с более высоким напряжением, но с тысячами интервалов между ними. Светодиоду достаточно напряжения 3 вольт, чтобы загореться, но в данной схеме он вполне может загореться и с батареей напряжением 1,5 вольт. Так схема Вор джоулей известна как повышающий напряжение конвертер, а также как излучатель. Схема, которую мы создали также является излучателем и конвертером, повышающим напряжение. Но может возникнуть вопрос: "Как зажечь светодиод на расстоянии?" Это происходит из-за индукции. Для этого можно, к примеру, использовать трансформатор. Стандартный трансформатор имеет сердечник с обеих своих сторон. Предположим, что провод на каждой стороне трансформатора равен по величине. Когда электроток проходит через одну катушку, катушки трансформатора становятся электромагнитами. Если через катушку протекает переменный ток, то колебания напряжения происходят по синусоиде. Поэтому, когда переменный ток протекает через катушку, проволока приобретает свойства электромагнита, а затем снова теряет электромагнетизм, когда падает напряжение. Моток проволоки становится электромагнитом, а затем теряет свои электромагнитные характеристики с такой же скоростью, с какой магнит движется из второй катушки. Когда же магнит быстро движется через катушку провода, вырабатывается электроэнергия, таким образом колебательное напряжение одной катушки на трансформаторе, индуцирует электричество в другой катушке провода, и электричество передается от одной катушки к другой без проводов. В нашей цепи, ядром катушки является воздух, и напряжение переменного тока проходит через первую катушку, таким образом вызывает напряжение во второй катушке и зажигает лампочки!!

Шаг 8. Польза и советы по улучшению.

Таким образом, в нашей схеме мы просто использовали светодиод, чтобы показать эффект схемы. Но мы могли бы сделать больше! Схема приемника получает электричество от переменного тока, так что мы могли бы использовать ее, чтобы осветить люминесцентные лампы! Также с помощью нашей схемы можно делать интересные фокусы, забавные подарки и др. Чтобы максимизировать результаты, вы можете поэкспериментировать с диаметром катушек и числом оборотов на катушках. Также Вы можете попробовать сделать катушки плоскими, и посмотреть, что получится! Возможности безграничны!!

Шаг 9. Причины, по которым схема может не работать.

С какими проблемами вы можете столкнуться и как их возможно исправить:

  1. Транзистор слишком сильно нагревается!

Решение: Вы использовали резистор с нужными параметрами? Я не использовал резистор в первый раз, и транзистор у меня задымился. Если это не помогает, попробуйте использовать термоусадку или используйте транзистор более высокого класса.

  1. Светодиод не горит!

Решение: Может быть очень много причин. Для начала проверьте все соединения. Я случайно поменял базу и коллектор в своем соединении, и это стало большой проблемой для меня. Итак, проверьте все связи в первую очередь. Если у вас есть такой прибор, как мультиметр, можете использовать его, чтобы проверить все соединения. Также убедитесь, что обе катушки у вас одного и того же диаметра. Проверьте, вдруг в вашей сети имеется короткое замыкание.

Я не знаю о каких-либо еще проблемах. Но если вы таки с ними столкнулись, дайте мне знать! Я постараюсь помочь, чем смогу. Кроме того, я ученик 9 класса школы и мои научные познания крайне ограничены, и поэтому, если вы обнаружите у меня ошибки, сообщите мне о них. Предложения по улучшению более чем приветствуется. Удачи вам в вашем проекте!


Со времен открытия электричества человеком многие ученые пытаются изучить удивительное явление токов и повысить полезный коэффициент действия, проводя многочисленные опыты и изобретая более современные материалы, обладающие улучшенными свойствами передачи энергии с нулевым сопротивлением. Наиболее перспективным направлением в подобном научном труде является беспроводная передача электроэнергии на большие расстояния и с минимальными затратами на транспортировку. В данной статье рассмотрены способы передачи энергии на расстояние, а также виды устройств для подобных действий.

Беспроводная передача энергии – это способ транспортировки, при котором не используются какие-либо проводники или сети кабелей, а ток передается на значительное расстояние до потребителя с максимальным коэффициентом полезной мощности по воздуху. Для этого применяются устройства для генерации электричества, а также передатчик, который накапливает в себе ток и рассеивает его во всех направлениях, а также приемник с потребляющим прибором. Приемник улавливает электромагнитные волны и поля и путем их концентрации на коротком участке проводника передает энергию на лампу или любой другой прибор определенной мощности.

Существует множество способов для беспроводной передачи электричества, которые изобретались в процессе изучения токов многими учеными, но наибольших результатов в практическом плане добился Никола Тесла. Он сумел изготовить передатчик и приемник, которые были отдалены друг от друга на расстояние, равное 48 километрам. Но в то время не существовало технологий, которые смогли бы передать электричество на такую дистанцию с коэффициентом выше 50%. В связи с этим ученый выражал большую перспективу не для передачи готовой сгенерированной энергии, а для вырабатывания тока из магнитного поля земли и использования его в бытовых нуждах. Транспортировка подобного электричества должна была осуществляться беспроводным способом, путем передачи по магнитным полям.

Способы беспроводной передачи электричества

Большинство теоретиков и практиков, изучающих работу электрического тока, предлагали свои методы передачи его на расстояние без использования проводников. В начале подобных исследований многие ученые пытались заимствовать практику из принципа работы радиоприемников, которые используются для передачи азбуки Морзе или коротковолнового радио. Но такие технологии не оправдали себя, так как рассеивание тока было слишком малым и не могло покрыть большие расстояния, к тому же транспортировка электричества по радиоволнам была возможна только при работе с малыми мощностями, не способными приводить в действие даже самый простейший механизм.

В результате экспериментов было выявлено, что для передачи электричества без провода наиболее приемлемы СВЧ волны, которые имеют более устойчивую конфигурацию и напряжение, а также при рассеивании теряют гораздо меньше энергии, чем любой другой метод.

Впервые успешно применить данный способ смог изобретатель и конструктор Вильям Браун, который смоделировал летающую платформу, состоящую из металлической площадки с двигателем, мощностью около 0,1 лошадиной силы. Платформа была выполнена в виде принимающей антенны с сеткой, улавливающей СВЧ волны, которые передавались специально сконструированным генератором. Через всего четырнадцать лет тот же конструктор представил летательный аппарат малой мощности, который принимал энергию от передатчика на расстоянии 1,6 километра, ток передавался сконцентрированным пучком по СВЧ волнам. К сожалению, широкого распространения данный труд не получил, так как на тот момент не существовало технологий, которые могли бы обеспечить транспортировку таким методом тока с высоким напряжением, хотя коэффициент полезного действия приемника и генератора был равен более 80%.

В 1968 году американские ученые разработали проект, подкрепленный научным трудом, в котором предлагалось размещение больших солнечных батарей на околоземной орбите. Приемники энергии должны были быть направлены на солнце, а в их основании размещались накопители тока. После поглощения солнечной радиации и трансформации ее в СВЧ или магнитные волны через специальное устройство ток направлялся на землю. Прием должен был осуществляться специальной антенной большой площади, настроенной на определенную волну и преобразующей волны в постоянный или переменный ток. Такая система была высоко оценена во многих странах как перспективная альтернатива современным источникам электричества.

Питание электрокара беспроводным способом

Многие производители автомобилей, работающих на электрическом токе, проводят разработки альтернативной подзарядки авто без его подключения к сети. Больших успехов в этой области добилась технология зарядки транспорта от специального дорожного полотна, когда машина принимала энергию от покрытия, заряженного магнитным полем или СВЧ волнами. Но подобная подпитка была возможна только при условии, когда расстояние между дорогой и приемным устройством было не более 15 сантиметров, что в современных условиях не всегда исполнимо.

Данная система находится на стадии разработок, поэтому можно предполагать, что подобный тип передачи питания без проводника еще получит свое развитие и, возможно, будет внедряться в современную транспортную индустрию.

Современные разработки передачи энергии

В современных реалиях беспроводное электричество вновь становится актуальным направлением изучения и конструирования приборов. Существуют наиболее перспективные пути развития беспроводной передачи энергии, к которым относятся:

  1. Использование электричества в горной местности, в случаях, когда нет возможности проложить несущие кабеля до потребителя. Несмотря на изученность вопроса электричества, на земле имеются места, в которых нет электроэнергии, и проживающие там люди не могут пользоваться таким благом цивилизации. Конечно, часто там применяются автономные источники питания, такие как солнечные батареи или генераторы, но данный ресурс ограничен и не может восполнить потребности в полном объеме;
  2. Некоторые производители современной бытовой техники уже внедряют в свою продукцию устройства для передачи энергии без проводов. Например, на рынке предлагается специальный блок, который подключается к сетевому питанию и путем преобразования постоянного тока в СВЧ волны передает их окружающим приборам. Единственное условие использования данного прибора – это наличие у бытовой техники принимающего устройства, преобразующего данные волны в постоянный ток. В продаже имеются телевизоры, которые полностью работают от принимаемой от передатчика беспроводной энергии;
  3. В военных целях, в большинстве случаев в оборонной сфере, существуют разработки приборов связи и других вспомогательных устройств.

Большой прорыв в данной сфере технологий произошел в 2014 году, когда группа ученых разработала устройство для генерации и приема энергии на расстояние без проводов, используя при этом систему линз, размещенных между передающей и приемной катушками. Ранее считалось, что передача тока без проводника возможна на дистанцию, не превышающую размер приборов, поэтому для транспортировки электричества на большое расстояние требовалось огромное сооружение. Но современные конструкторы изменили принцип работы данного устройства и создали передатчик, направляющий не СВЧ волны, а магнитные поля с низкими частотами. Электроны в данном случае не теряют мощность и передаются на расстояние сконцентрированным пучком, к тому же потребление энергии возможно, не только подключившись к приемной детали, но и просто находясь в зоне действия полей.

К сведению. Первым прибором, который будет принимать беспроводную энергию, технологи планируют сделать мобильный телефон или планшетный компьютер, разработки такой системы уже ведутся.

Наиболее перспективные направления

Беспроводное электричество постоянно изучается многими физиками, рассматриваются наиболее перспективные направления в данной сфере, к которым относятся:

  1. Подзарядка мобильных устройств без подключения к кабелю;
  2. Осуществление питания для беспилотных летательных аппаратов – это направление, которое будет пользоваться большим спросом и в гражданской, и в военной индустрии, так как подобные устройства в последнее время стали часто использоваться для различных целей.

Сама процедура передачи данных на расстояние без использования проводов некоторое время назад считалась прорывом в исследованиях физики и энергетики, сейчас это уже никого не удивляет и стало доступным для любого человека. Благодаря современному развитию технологий и разработкам, транспортировка электроэнергии таким методом становится реальностью и вполне может быть воплощена в жизнь.

Видео