Фотодиод принцип работы. Основные характеристики и параметры фотодиода

Фотодиоды – полупроводниковые элементы, обладающие светочувствительностью. Их основная функция – трансформация светового потока в электросигнал. Такие полупроводники применяются в составе различных приборов, функционирование которых базируется на использовании световых потоков.

Принцип работы фотодиодов

Основа действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.

  • При попадании света на p-n переход происходит поглощение световых квантов с образованием фотоносителей
  • Фотоносители, находящиеся в области n, подходят к границе, на которой они разделяются под влиянием электрополя
  • Дырки перемещаются в зону p, а электроны собираются в зоне n или около границы
  • Дырки заряжают p-область положительно, а электроны – n-зону отрицательно. Образуется разность потенциалов
  • Чем выше освещенность, тем больше обратный ток

Если полупроводник находится в темноте, то его свойства аналогичны обычному диоду. При прозванивании тестером в отсутствии освещения результаты будут аналогичны тестированию обычного диода. В прямом направлении будет присутствовать маленькое сопротивление, в обратном – стрелка останется на нуле.

Схема фотодиода

Режимы работы

Фотодиоды разделяют по режиму функционирования.

Режим фотогенератора

Осуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую. Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%. Более прогрессивными являются пленочные элементы.

Режим фотопреобразования

Источник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.

Основные параметры

Свойства фотодиодов определяют следующие характеристики:

  • Вольтамперная. Определяет изменение величины светового тока в соответствии с меняющимся напряжением при стабильных потоке света и темновом токе
  • Спектральная. Характеризует влияние длины световой волны на фототок
  • Постоянная времени – это период, в ходе которого ток реагирует на увеличение затемнения или освещенности на 63% от установленного значения
  • Порог чувствительности – минимальный световой поток, на который реагирует диод
  • Темновое сопротивление – показатель, характерный для полупроводника при отсутствии света
  • Инерционность

Из чего состоит фотодиод?

Разновидности фотодиодов

P-i-n

Для этих полупроводников характерно наличие в зоне p-n перехода участка, обладающего собственной проводимостью и значительной величиной сопротивления. При попадании на этот участок светового потока появляются пары дырок и электронов. Электрополе в данной области постоянно, пространственного заряда нет. Такой вспомогательный слой расширяет диапазон рабочих частот полупроводника. По функциональному назначению p-i-n-фотодиоды разделяют на детекторные, смесительные, параметрические, ограничительные, умножительные, настроечные и другие.

Лавинные

Этот вид отличается высокой чувствительностью. Его функция – преобразование светового потока в электросигнал, усиленный с помощью эффекта лавинного умножения. Может применяться в условиях незначительного светового потока. В конструкции лавинных фотодиодов используются сверхрешетки, способствующие снижению помех при передаче сигналов.

С барьером Шоттки

Состоит из металла и полупроводника, вокруг границы соединения которых создается электрическое поле. Главным отличием от обычных фотодиодов p-i-n-типа является использование основных, а не дополнительных носителей зарядов.

С гетероструктурой

Образуется из двух полупроводников, имеющих разную ширину запрещенной зоны. Гетерогенным называют слой, находящийся между ними. Путем подбора таких полупроводников можно создать устройство, работающее в полном диапазоне длин волн. Его минусом является высокая сложность изготовления.

Области применения фотодиодов

  • Оптоэлектронные интегральные микросхемы. Полупроводники обеспечивают оптическую связь, что гарантирует эффективную гальваноразвязку силовых и руководящих цепей при поддержании функциональной связи.
  • Многоэлементные фотоприемники – сканисторы, фоточувствительные аппараты, фотодиодные матрицы. Оптоэлектрический элемент способен воспринимать не только яркостную характеристику объекта и ее изменение во времени, но и создавать полный визуальный образ.

Другие сферы использования: оптоволоконные линии, лазерные дальномеры, установки эмиссионно-позитронной томографии.

Другие материалы по теме

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

При воспроизведении фотографической фонограммы ис­точником сигнала является фотодиод. Он может работать в фотогальваническом или в фотодиодном режиме. Схема включения фотодиода, работающего в фотогальва­ническом режиме, на вход транзисторного усилителя пока­зана на рис. 45, а. В этом режиме фотодиод работает без источника питания. Под действием света в области n-типа разрушаются ковалентные связи, и освободившиеся элект­роны накапливаются в этой области, заряжая ее отрица­тельно, а дырки втягиваются в область р-типа, заряжая ее положительно. Таким образом, между анодом и катодом соз­дается разность потенциалов - фото-ЭДС Е ф. При постоян­ном световом потоке в режиме покоя под действием этой ЭДС в цепи фотодиода протекает постоянный ток от области р к области п через резистор нагрузки R нф. При воспроизве­дении фонограммы световой поток пульсирует, поэтому пуль­сируют фото-ЭДС и ток в цепи фотодиода. Переменная сос­тавляющая напряжения на нагрузке R нф является напря­жением входного сигнала, которое через конденсатор С с передается на базу транзистора. Переменная составляющая тока фотодиода разветвляется: часть проходит через резис­тор R нф а другая часть - через конденсатор С с и эмиттер­ный переход транзистора.

Работа фотодиода в фотогальваническом режиме исполь­зуется в передвижной звуковоспроизводящей аппаратуре типа К3ВП-I0 и К3ВП-14.

При работе фотодиода в фотодиодном режиме (рис. 45, б) на него от источника питания подается постоянное напряже­ние, которое является обратным напряжением электронно-дырочного перехода. При отсутствии светового потока через фотодиод протекает очень малый ток – это темновой ток. Под действием света резко уменьшается обратное сопротивление р - n - переходаи возрастает ток через фото­диод.

При отсутствии сигнала световой поток остается посто­янным и через фотодиод протекает постоянный ток. Он идет от плюса источника питания через сопротивление нагрузки, фотодиода R нф и фотодиод к минусу источника питания. В режиме воспроизведения записанного на фонограмме сигнала световой поток и ток фотодиода, как и в первом ре­жиме, пульсируют, и переменная составляющая тока создает на нагрузке и на входе усилителя входной сигнал.

Рис. 45 Схемы включения фотодиода: а - в фотогальваническом режиме;

б – в фотодиодном режиме

В фотодиодном режиме чувствительность фотодиода повы­шается по сравнению с фотогальваническим режимом, и вход­ ной сигнал увеличивается; внутреннее сопротивление фото­диода для переменного тока также увеличивается.

Работа фотодиода в фотодиодном режиме используется в стационарной транзисторной аппаратуре типа «Звук Т».

Фотодиоды, установленные в фотоячейках на кинопроек­торах разных постов, могут иметь разброс параметров, и частности неодинаковую чувствительность, что приводит к неодинаковой отдаче постов. Чтобы при демонстрации кинофильма не изменялась громкость звука при переходе с поста на пост, в фото­-ячейке предусматрива­ется регулирование от­дачи фотодиода. Схема регулирования (рис. 46) позволяет переменным ре­зистором R уменьшить сигнал, поступающий отданного фотодиода на вход усилителя. В верх­нем положении движка резистора R3 сопротивле­ние цепочки R1, R3, С1, включенной параллельно фотодиоду, максималь­ное, поэтому входной сиг­нал наибольший. По мере перемещения движка вниз сопротивление R3 все больше закорачивается, общее сопротивление цепочки R1, R3, Сl уменьшается, возрастает ее шунтирующее действие, и сиг­нал на входеусилителя уменьшается. Такая схема включения фотодиода типа ФДК155 применена в звуковоспроизводя­щей аппаратуре типа «Звук T2-25,50».

Линия включения фотодиода на вход усилителя должна быть экранирована, как и для других источников сигнала.

Фотодиоды, используемые в аппаратуре киноустановок, имеют чувствительность порядка 4-6 мА/лм и дают ток входного сигнала 1-2 мкА.

Рис.46 Схема регулирования от­дачи фотодиода

Вопросы для самопроверки:

1. Что называется входной цепью, и какие бывают виды схем входа?

2. Нарисовать и объяснить схемы включения звукоснимателя.

3. Нарисовать и объяснить схемы включения микрофона.

4.Почему надо экранировать входные цепи и применять симметричную схему трансформатора входа? ­

5.Почему звукосниматель включают на вход усилителя чаще всего через делитель напряжения, а для включения микрофона и магнитной головки в высококачественной аппаратуре применяют входной трансформатор?

6. Нарисовать и объяснить схемы включение фотодиода.

Фотодиод может работать в фотодиодном и гальваническом режиме.

В фотодиодном режиме p-n переход смещается обратным напряжением величина которого зависит от конкретного фотодиода от единиц до сотни вольт, чем больше смещение тем быстрее он будет работать, и больше токи через него будут течь.

Недостаток фотодиодного режима в том, что с ростом обратного тока, в последствии увеличения напряжения или освещения, увеличивается уровень шумов, а уровень полезного сигнала в целом остается постоянным, считается, что в этом режиме диод имеет меньшую постоянную времени.

В фотогальваническом режиме к диоду не прикладывается ни какое напряжение, он сам становится источником ЭДС с большим внутренним сопротивлением.

Фотодиодная схема включения.

Приведенная схема (рис.1.) включения фотодиода является универсальной и подходит для тестирования и выбора, применительно к окончательной схеме своей конструкции.


Изменяя положение подстроечного резистора, в приведенной схеме, можно протестировать и выбрать оптимальный режим работы фотодиода.

Изменяя сопротивление резистора от минимального до максимального, можно подобрать наилучший режим смещения на фотодиоде.

Вывернув резистор на минимум, замкнув подвижный контакт на землю, мы переведем схему в фотогальванический режим.

Можно попробовать работу фотодиода и в прямом смещении (он все равно будет реагировать на свет), для этого надо поменять схему включения, перевернув диод.

Сопротивление в 50 Ком, не должно дать повредить фотодиод, а по переменной составляющей оно оказывается включенным параллельно с нагрузкой (меньше 5 КОм), и полезный сигнал практически не ослабляет. Конденсатор избавляет нас от постоянной составляющей. Если мы принимаеи импульсный сигнал то от постоянной составляющей, которая меняется в зависимости от фоновой засветки, лучше избавится сразу, смысла ее усиливать нет.

Еще одна стандартная схема включения фотодиода показана на рис.2.


В данной установке для уменьшения влияния шумов и наводок в схему добавлены буферные конденсаторы в цепи питания, накопительный конденсатор С3 и интегрирующая цепочка R2С4 на выходе.

C1- электролитический конденсатор большой ёмкости С = 100 мкФ, С2 - быстрый керамический 0,1 мкФ, С3, С4 - керамические по 100 пФ, R1 - 8 кОм, R2- 5,6 кОм.

Нагрузкой для достижения максимального быстродействия должен быть или каскад с общей базой (рис.3.) или быстродействующий операционник (рис.4.) включенный по схеме преобразователя ток-напряжение. Эти усилители имеют минимальное входное сопротивление.



Практическая схемотехника включения фотодиода со смещением (рис.5.).



Величина R фильтра подбирается в зависимости от засвечивания фотодиода в рабочем варианте с установленной оптикой, учитывается направление по азимуту (юг,запад и т.д.) в разных направлениях разные засветки от солнца.

Ёмкость Сф=0.1мкФ ещё и замыкает цепь фотодиода по высокой частоте на землю.

Вместо Rн можно поставить дроссель, либо трансформатор, надо смотреть, не будет ли искажений или затяжек импульсов или прочих подводных камней.

Включение фотодиода в каскад с общей базой.

Схема включения фотодиода ФД 263 в каскад с общей базой (рис.6.).



В схеме с ОБ - база разделяет входную и выходную цепи, и практически исключает влияние выходного напряжения на вход схемы (подобно экранной сетке в пентоде) по-этому имеется возможность увеличить нагрузочное сопротивление и получить больший размах напряжения на выходе схемы без ущерба для скорости.


При поглощении световых квантов в p-n переходе или в примыкающих к нему областях генерируются новые носители заряда (электроны и дырки), которые проходя через него и вызывают появление напряжение на выводах фотодиода или протекание тока в замкнутой цепи. Величина, на которую возрастает обратный ток протекающий через переход, называют фототоком.

Фотодиод, в зависимости от материала из которого он изготовлен, используется для регистрации светового потока в оптическом инфракрасном, и ультрафиолетовом диапазоне. Эти радиокомпоненты обычно изготавливают из германия, кремния, арсенида галлия, индия и т.п.

В фотодиодном режиме применяется внешний источник питания, который смещает полупроводниковый прибор в обратном направлении. В этом случае через протекает обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.

В фотогальваническом режиме фотодиод работает в роли датчики или в роли слаботочного элемента питания, так как под воздействием светового потока на выводах фотоэлемента генерируется напряжение, зависящее от потока излучения и нагрузки.

Чтобы лучше разобраться с режимами работы этого компонента, рассмотрим его вольтамперную характеристику.


При отсутствии светового излучения график представляет собой обратную ветвь ВАХ типичного диода. Присутствует небольшой ток обратки, называемый темновым током обратно смещенного.

При наличии излучения, сопротивление фотодиода снижается и обратный ток увеличивается. Чем больший световой поток падает на фотоэлемент, тем больший обратный ток протекает через фотодиод. Зависимость в этом режиме линейная. Как видим из ВАХ обратный ток фотодиода практически не зависит от обратного напряжения.

Фотогальваническому режиму соответствует работа в четвертой четверти графика. И здесь можно выделить два предельных варианта: режим холостого хода и короткого замыкания.

Режим приближенный к холостому ходу применяется для получения энергии от фотодиода, хотя КПД у него невысокий. Но если соединить последовательно и параллельно много таких компонентов, то такой получившейся батареей можно запитать мало-потребляющую схему.

В режиме короткого замыкания, напряжение на фотоэлементе стремится к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим применяется для построения фотодатчиков.

Характеристики фотодиода

Помимо ВАХ, рассмотренной выше существкует еще ряд основных параметров фотоэлемента.

Световая характеристика фотодиода , зависимость фототока от освещенности, которая прямопропорционально генерируемому фототоку от освещенности. Это объясняется тем, что толщина базы фотодиода гораздо меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, появившиеся в базе, учувствуют в образовании фототока.

Спектральная характеристика фотодиода - это зависимость фототока от длины волны светового потока воздействующего на фотоэлемент.

постоянная времени - в течение этого времени фототок фотоэлемента изменяется после освещения или после затемнения фотодиода по отношению к установившемуся значению.

темновое сопротивление - сопротивление радиокомпонента при отсутствии освещения.

1. Энергетические характеристики фотодиода связывают фототок со световым потоком, падающим на фотодиод. Зависимость фототока от светового потока при работе фотодиода в генераторном режиме - является строго линейной только при короткозамкнутом фотодиоде . С ростом нагрузочного сопротивления характеристики все больше искривляются и при больших имеют ярко выраженную область насыщения (рис. 3.12, а). При работе фотодиода в схеме с внешним источником напряжения энергетические характеристики значительно ближе к линейным. При увеличении приложенного напряжения фототок несколько возрастает (рис. 3.12, б). Это объясняется расширением области -перехода и уменьшением ширины базы, в результате чего меньшая часть носителей заряда рекомбинирует в базе при движении к -переходу.

2. Абсолютные и относительные спектральные характеристики фотодиода аналогичны соответствующим характеристикам фоторезистора и зависят от материала фотодиода и введенных примесей (рис. 3.12, в).

Спектральные характеристики практически захватывают всю видимую (300-750 нм) и инфракрасную области спектра.

4. Частотная характеристика показывает изменение интегральной чувствительности при изменении яркости светового потока с разной частотой излучения (рис. 3.12, г). Иногда инерционные свойства фотодиода характеризуют граничной частотой, на которой интегральная чувствительность уменьшается в раз по сравнению со своим статическим значением.

Рис. 3.12. Энергетические характеристики фотодиода в режиме (а) и при работе с внешним источником (б); относительные спектральные и частотные характеристики

Граничная частота быстродействующих кремниевых фотодиодов - порядка Гц.

Для повышения быстродействия и увеличения чувствительности в последние годы разработан ряд фотодиодов; со встроенным электрическим полем; на основе с барьерами Шотки; лавинные фотодиоды и т. д.

В фотодиодах с встроенным электрическим полем базу получают с помощью процесса диффузии. Из-за неравномерного распределения концентрации примесей в ней возникает внутреннее электрическое поле, которое ускоряет движение неосновных носителей заряда к -переходу.

Вследствие наложения диффузионного и дрейфового движений фотодиода несколько возрастает.

Фотодиоды, выполненные на основе , имеют значительно большую толщину области, обедненной основными носителями заряда, так как между р- и -областями имеется -область с собственной электропроводностью. К переходу без риска пробить его можно приложить значительные напряжения. В результате возникает ситуация, когда световое излучение поглощается непосредственно в области, обедненной основными носителями заряда, в которой создано электрическое поле высокой напряженности. Электроны и дырки, возникающие в области перехода при световом облучении, мгновенно перекидываются в соответствующие области. В результате быстродействие резко возрастает и f достигает значений Гц.

Аналогичными по быстродействию являются фотодиоды на основе барьера Шотки. Они выполняются из кремния, на поверхность которого нанесено прозрачное металлическое покрытие из пленок золота мкм) и сернистого цинка 01 к 0,05 мкм), создающее барьер Шотки. Благодаря минимальному сопротивлению базы и отсутствию процессов накопления и рассасывания избыточных зарядов быстродействие получается достаточно высоким Гц).

В лавинных фотодиодах используется лавинный пробой -перехода или барьера Шотки. От обычных фотодиодов они отличаются тем, что возникшие в результате светового облучения носители заряда лавинно размножаются в области -перехода вследствие ударной ионизации. Выбором внешнего напряжения и параметров цепи обеспечивается возникновение лавинного пробоя только при световом облучении. Этот процесс приводит к тому, что ток в цепи увеличивается по сравнению с током , обусловленным световой генерацией и тепловым током перехода, в раз (М-коэффициент лавинного умножения носителей.

Коэффициент лавинного умножения описывается зависимостью