Витая пара для гигабитной сети. Витая пара: способы обжима, схема соединений

Витой пары до десяти гигабит

Что нужно учитывать при выборе медных кабельных решений для приложений desyatigigabitnyh?

IEEE 802.3an (10GBASE-T), то передача данных через сбалансированный медный кабель со скоростью 10 Гбит / с, летом 2006 года. Примерно год до начала этого стандарта иностранные специалисты имеют интенсивные дискуссии о двух конкурирующих кабельных решений. Спор не имеет уменьшились. Неэкранированный кабель на основе U / UTP (ранее UTP) против использования экранированных кабелей F / UTP (ранее: FTP), U / FTP (ранее СТП) или S / FTP (ранее S-STP). Каждый из этих вариантов имеет свои преимущества и недостатки.

Тенденции в потреблении каждого типа кабеля зависит от предпочтений местных рынках. Кроме того, в Соединенных Штатах, Канаде, Великобритании и некоторых других Английский-язычных стран, традиционно доминировали неэкранированная решения, из которых около 95%. Диаметрально противоположное положение на европейском континенте. В немецко-говорящих странах (Германия, Австрия, Швейцария) характеризуется проверку решений, доля тех же 90-95%. И политические лидеры на основе кабеля типа U / FTP и S / FTP высших категорий. Во Франции, в соотношении 60/40 в пользу экранированных решений.

Говоря об Украине, которая в настоящее время экранированные решения для примерно 30% рынка. Это решение основывается главным образом на кабель F / UTP категории 5e. Был увеличению доли проверку решений, в том числе ростом спроса на экранированные кабели на основе категории 7 По состоянию на конец 2006 года доля Категория 7 кабель в Украине составило менее 1%. А в первой половине 2007 года она выросла до 1,5-2%. Исходя из этих значений, можно прогнозировать дальнейшее увеличение спроса на высококачественные решения защищены.

Рост интереса к ним в основном объясняется тем фактом, что, наконец, приложение (10GBASE-T), имеет возможность воспользоваться всеми преимуществами высоких классов.

Технические характеристики популярных сетевых приложений

Описание

Скорость передачи данных 100 Мбит / с 1000 Мбит / с 10 Гбит / с
Кабельные системы 5/Klass Категория D Категория D 5e/Klass лучше или Категория 6 / класса E и выше
Максимальная длина канала 100 м 100 м 100 м
Модуляция RAM-памяти 3-5-RAM-16
Требуемое число пар кабеля 2 4 4
Частотная модуляция 125 Mbod 125 Mbod 800 Mbod
Основными источниками помех NEXT FEXT, Эхо Чужеродные Перекрестные (ANEXT, AFEXT)
Метод кодирования MLT-3-8-государственного 4D шпалера, эхо из Томлинсон-Harashima precoding (ТНР) + LDPC DSQ128

Если мы анализируем предложения от отечественных и зарубежных производителей СКС, то выясняется, что в Украине Есть только 3-4 desyatigigabitnyh решения, и все они защищены. Неэкранированная предложения для сетей 10GBASE-T в данный момент, но они, вероятно, некоторое время спустя.

10GBASE-T в деталях

Десять-гигабитные технологии, аналогичные 1000Base-T (Gigabit Ethernet), то двунаправленную передачу всех четырех пар одновременно. Совершенно очевидно, что для достижения требуемой высокой пропускной способностью. Кроме того, сложный метод линейной модуляции сигнала на RAM-16 и тип кодирования сигнала.

10GBASE-T стандарт устанавливает требования к средствам массовой информации на уровне канала (каналов). США, международные и европейские стандарты, требования к компонентам и кабельные системы в целом, сегодня находятся в стадии проекта, а некоторые из них уже были опубликованы. Окончательный ввод в эксплуатацию обновленного стандартов СКС в 2008 году.

Кабели категории 5e (класс D) для 10GBASE-T. Неэкранированная кабелей категории 6 (класс Е), то 10GBASE-T только в том случае, если длина кабеля пути не более 55 М. Следует, однако, с тем чтобы обеспечить соблюдение требований о AX в расширенном диапазоне частот до 500 МГц. То же самое относится и экранированной системы класса Е, но система остается в длину до 100 м.

Полное соответствие требованиям 10GBASE-T, новый класс Е.В. (на основе категории 6A), а также более высокий класс - класс F (категория 7) и нового класса FA (7 класс). Буква "А" означает "увеличить" (продлен, расширен).

Но самой большой проблемой в осуществлении этой 10GBASE-T имеют mezhkabelnye переходных разломов (Чужеродные Перекрестные - AHT). Эта цифра показывает объем navodok между двумя соседними линиями.

Благодаря технологии цифровой обработки сигналов, радио-помехи, вполне возможно, что подавление переходных беспорядков в ближайшем конце (NEXT) или коллегиального временные перебои в конце (EL-FEXT), а также уменьшения затухания (RL). Но mezhkabelnye AHT временного расстройства являются случайными в природе и их последствия не могут быть исключены при обработке сигналов. Как известно, кабели уложены балки. Это можно осуществить 10GBASE-T канал длиной 100 м, необходимо устранить вмешательство соседних AHT кабель - ANEXT и AFEXT.

Mezhkabelnye хирургии видна при передаче desyatigigabitnoy

Максимальная передача мощности (формула Шеннона)

Один из основоположников теории информации и кибернетики Elvud Клод Шеннон (1916-2001) в 1948 году оказалась ставка на способность связи (позднее Шеннона теорема). Важная вещь заключается в том, что каждый рабочий канал шума состоит в том, чтобы ограничить скорость передачи информации (максимальной мощности). Если преступление является неизбежным, ошибки в решении сигнала. Но с точки можно просто иметь соответствующую информацию кодируется угодно малой вероятностью ошибки на шум канала.

Максимальная способность канала может быть рассчитан по формуле:

C = B * log2 (1 + (S / N)),

где:
Р - способность канала (бит / сек);
W - Полоса пропускания (Гц);
S - мощность сигнала на выходе канала (дБ);
N - количество шума по каналу (дБ);
S / N - сигнал / шум.

Максимальная способность канала включает в себя два фактора - с пропускной способностью, а соотношение сигнал и агрегатов различных видов шумов (шумы, затухание, PS NEXT, PS FEXT, PS ANEXT и т.д.). При ставке Шеннона, это возможно, максимальной вместимостью кабель-канал систем различных видов. Самый большой потенциал полностью экранированных кабельных каналов с учетом характера в S / FTP категории 7 Оплата за кабель типа F / UTP категории 6A-то хуже. Неэкранированная кабельная система на основе категории 6A U / UTP имеет среднее и играет система S / FTP почти в 2 раза. Решения компоненты категории 6 U / UTP на границе. Таким образом, экранировки может быть наиболее продуктивными.

Как mezhkabelnye Болезни

Таким образом, основной проблемой в развивающихся desyatigigabitnyh до решения mezhkabelnye временный сбой. Ее существование является известной в течение долгого времени достаточно. Но до недавнего времени они не были в связи с процессом производства компонентов РАН, либо в местах испытаний готовых сценариев.

А изменения в ситуации с двумя факторами. Первый - увеличение до 500 МГц, второй - применение линейной модуляции сигнала на RAM-16. Если пять-сигнал модуляции PAM-5, который используется в 1000Base-T, между сигналом на выходе передатчика составляет 0,5 V, то shestnadtsatiurovnevoy системы PAM-16 эта разница была только 0.13 V. Расстояние между смежными сигнал на RAM-16, принимая во внимание фактическое достигает величины затухания является очень низким - 0001 В. Кроме того, слабый шум приводит к значительному сокращению качество связи. Таким образом, вероятность того, что ошибки в решении сигнала значительно выше. Отсюда вытекает необходимость шума от соседних кабелей, которые являются наиболее важными. Для контроля за использованием новых вариантов тестирования. Они образуют группу характеристики, как иностранец. По аналогии с традиционным параметры контроля vnutrikabelnyh переходных помех (NEXT, PS NEXT, FEXT, ACR, PS ACR, ELFEXT, PS ELFEXT) аналогичных измерений, связанных с соседними парами кабелей. Новые параметры были следующие имена - ANEXT, PS ANEXT, AFEXT, AACR-N, N-PS AACR, AACR-F, PS AACR-F. Следует отметить, что с введением дополнительных функций в обновленных версиях стандартов поможет выявить имена некоторых показателей vnutrikabelnyh navodok. Прежде всего, это коснется ACR. Утонченная имя этого параметра N ACR (Затухание на Перекрестные соотношение ближе к концу). А ELFEXT вместо F-ACR (Затухание на Перекрестные Соотношение в конце), которые, как правило, логично.

Тип кабелей для поддержки 10GBASE-T

Категория / класс кабель канал Длина, м-стандарты для кабелей
Категория 6/Klass T
неэкранированная решение 55 ISO / IEC TR-24750, TIA / EIA TSB-155
Категория 6/Klass E
Экранированный Решение 100 ISO / IEC TR-24750, TIA / EIA TSB-155
Категория 6A/Klass Е.А. 100 ISO / IEC 11801 (red.2.1), TIA / EIA 568-B.2-1D
Класс F 100 ISO / IEC TR-24750
FA-100 класса ISO / IEC 11801 (red.2.1)

Давайте вернемся к нашему анализу. Имеющиеся результаты тестирования различных ХУНАК свидетельствуют о том, что экранированных кабельных систем на основе кабеля категории 6A и 7-типа U / FTP и S / FTP на такие параметры, как PS ANEXT модель испытания около 6-L-(6-провод вокруг а) иметь запас 20 дБ и более. В то же время, неэкранированная Категория 6A решение, по крайней мере, стремится к нулю. Аналогичная ситуация по остальным параметрам для данного типа иностранца.

В самом деле, можно сказать, что уровень безопасности и системы хранения данных настолько велик, что она не является необходимой для mezhkabelnyh временный сбой. Это не относится к неэкранированная системы. Для таких решений Чужеродные контроля параметров является необходимым условием.

Диаметр кабеля для 10-гигабитных --

В самом деле, Есть три пути к временному нарушению AX - использование экранированных кабелей, пространственно разделенных сотрудничестве с кабелями и улучшения баланса кабель.

Разработчики U / Категория 6A UTP кабели для решения этой проблемы в увеличении расстояния между двумя соседними линиями в перспективе. Это достигается путем изменения характеристик большого кабеля. Кроме того, каждый производитель использует свою собственную марку кабеля строительства, и все эти структуры могут быть по меньшей мере шесть человек. Это - увеличение толщины оболочки кабеля (могавков, Hitachi Кабель Манчестере, Бренд-Rex), с пластиковыми пара специально сепаратор (ADC KRONE), Введение в дизайн пластикового наполнителя проволоки круглого (Siemon, Nexans). Другие представляют собой сочетание указанных выше проектных решений (Belden, Systimax, Panduit).

Поскольку диаметр первая версия оболочки U / UTP категории 6A выше, чем в большинстве на общий внешний вид своей S / FTP (диаметр кабеля U / UTP около 9 мм, кабель S / FTP - 8, 4 мм и диаметр кабеля F / UTP - 6 7 мм).

Производители используют различные проекты по уменьшению последствий mezhkabelnyh navodok системы неэкранированная

Это негативно категорию 6A неэкранированная кабели, экранированные кабели и, следовательно, "плюс". В кабельный канал может быть экранированные кабели проложить более неэкранированная. Например, когда в районе заполнено 40% кабеля в кабельных каналов с размерами 100x50 мм может в 56-Кабель F / UTP, 36-кабель S / FTP кабель, и 31 ед / UTP. Это последний призыв больше места для размещения дополнительных инвестиций в сборке оборудования.

В настоящее время ситуация меняется - производители неэкранированная кабели улучшить свои изделия и сократить внешний U / UTP кабель. Анализ технических описаний U / UTP кабель 8 показывает, что производители в настоящее время, средний наружный диаметр кабеля U / UTP категории 6A составляет 8,3 мм. Тем не менее, самые низкие ставки - всего 7.0 мм, а крупным - 8,9 мм, т.е., разница велика. Проект стандарта TIA/EIA-568-B.2-10 США, которые будут определять требования для компонентов СКС на категорию 6A, планируется на максимальный внешний диаметр 9,0 мм кабель.

Размеры в U / UTP кабель может быть уменьшен путем сбалансированного пары, которая может быть достигнута за счет сокращения меры skrutki. Но положительным откликом кажется предел возможного. Шаг skrutki пар в кабель U / UTP категории 6A настолько мала, что дальнейшее сокращение представляется весьма сомнительной. Возможно заключение эпоху неэкранированная систем, в которых ряд кабельное оборудование категории 6A будет последним.

Пути улучшения экранированные решения далеко не исчерпаны. Наряду с активной продажей продукции категорий 7 и 8, на краю рабочей группы категорий стандартизации кабель 9 с пропускной способностью 2,4 ГГц.

Электромагнитная совместимость

Проблема электромагнитной совместимости (ЭМС), которая до недавнего времени не всегда уделяется достаточно внимания. Но с появлением большого числа различных современного цифрового оборудования для автоматизации различных процессов в предприятиях и отделениях, а также необходимость повышения надежности решающее значение для предприятия PBX систем, ситуация изменилась.

В Европе, в особенности в EMC всегда была под интенсивным наблюдением. Это одна из причин для экранированных систем.

В директиве Европейского союза 89/336/EES, определение совместимости. Все известные марки "Е" на упаковке различных электронных устройств. Наличие в "Е" рассказывает нам о том, что устройства, такие как мобильные телефоны, принтеры, ноутбук, телевизор и т.д., сертификация в специализированной лаборатории и соответствует требованиям директивы.

В области кабельных систем началась сравнительно новая опция Сцепные Затухание (поглощения излучения). Она позволяет оценить ЭМС симметричный кабель и относительно безопасности от внешних электромагнитных помех, а также суммы радиации в неправильном кабеля среды. Сцепные Затухание измеряется в децибелах. Значение этого параметра должно быть больше, чем в два раза выше по типу кабеля S / FTP, как U / UTP.

Амортизирующее муфта состоит в том, чтобы рассмотреть новый вариант европейского стандарта EN 50174-2 "Информационная технология установки кабели - Часть 2: Конструкция и методы монтажа внутри зданий." Практическое применение для расчета минимального расстояния между властью и коммуникационных кабелей, принимая во внимание характер кабельные каналы.

Для не-канал или канал с неметаллическими стены рекомендовал разнообразие шнур (230V, 20A) и кабель S / FTP разрешено, 0 мм. Это означает, что кабель может использоваться вместе в течение всей длине пути информацию. Когда U / UTP кабель требовать этого разнообразия на расстоянии не менее 30 мм.

Проверка системы

Следует отметить, что разработка системы должны быть надлежащим образом экранированный кабель для экранирования и надежного заземления телекоммуникационных систем. Иначе, эффект может быть обращен вспять - в EMC экранированные решения могут быть даже хуже, чем их аналоговой неэкранированная.

Это было до недавнего времени распространен миф о сложности осуществления этой заповедной зоны. И сразу последователей неэкранированная решений в определенной степени, были правы. Новости В настоящее время это возможно, простой пример для постепенной установки экранированный канала. Со стороны телекоммуникационных экранированных модульных гнезда для подключения кабеля. Металлические случае, дополнительные контакты с экрана кабеля. В коммутационной панели электрических соединителей и металлических частей тела. При заземлении проводник диаметром 6AWG клавиатура для руководства сборка конструкций (стойки или шкафа). В свою очередь, монтаж конструктивный основывается на Телекоммуникациям Заземление Автобус (TGB), в заземляющий проводник диаметром 6AWG. То же шина заземления могут быть использованы для наземного другого телекоммуникационного оборудования, в той же конструкции в сборе или телекоммуникационной комнаты.

Согласно американскому стандарту ANSI J-STD-607-коммерческое здание заземление (Заземление) и склеивания Требования по телекоммуникациям ", TGB - это точка подключения, используемая для заземления телекоммуникационных систем и оборудования в области, обслуживаемой телекоммуникационной комнатой или аппаратной" .

Все металлические части и оборудование (монтажный конструктив, металлические лотки и т.п.) должны быть также заземлены. То есть при использовании дополнительного металлического оборудования система заземления должна присутствовать в любом случае, вне зависимости от того, какого типа система должна устанавливаться.

Монтаж системы

Вторым мифом является то, что экранированные системы более сложные и более трудоемкие в процессе монтажа. Действительно, в отличие от неэкранированных кабелей, требуется обеспечить дополнительный контакт экрана кабеля с модульным разъемом и выполнить другие операции, связанные с заземлением и экранированием. Но для последних разработок компаний Siemon, Tyco Electronics и некоторых других время терминирования кабеля в экранированный модульный разъем составляет всего 1-1,5 минуты. Данный показатель не уступает неэкранированным решениям. Также упростился процесс заземления коммутационных панелей в монтажном конструктиве.

Для контроля межкабельных помех вводятся дополнительные параметры тестирования Чужеродные Перекрестные

Сторонникам неэкранированных решений категории 6 и 6А приходится следовать новым рекомендациям для ослабления влияния межкабельных помех АХТ. В частности, кабели следует располагать свободно и не параллельно, а заполнение кабельных каналов не должно превышать 40%.

Поэтому при использовании кабелей U / UTP категорий 6 и 6А особое внимание следует уделить проектированию кабельной системы, чтобы минимизировать помехи Чужеродные Перекрестные.

Традиционная практика фиксации кабелей стяжками в случае U / UTP кабелей должна быть по возможности исключена. По меньшей мере, не может осуществляться укладка кабельных линий в пучки на расстоянии 15 метров со стороны телекоммуникационной розетки и коммутационной панели. В определенных ситуациях выполнить это достаточно сложно. Например, при прокладке в вертикальных каналах фиксация кабелей снижает чрезмерные растягивающие нагрузки.

В случае же использования прокладки пучком не рекомендуется совместная укладка более 24 кабелей, так как это может ухудшить параметры системы и затруднить процедуру тестирования.

Также с целью снижения уровня Чужеродные Перекрестные помехи в процессе монтажа следует особо внимательно и качественно устанавливать модульные разъемы, упорядочивать расположение коммутационных шнуров (особенно со стороны коммутационной панели), так как в большинстве случаев помехи Чужеродные Перекрестные сильнее всего проявляют себя на первых 20 метрах от точки оконцовки кабелей.

В целом, сравнивая экранированные (F / UTR U / FTP и S / FTP) и неэкранированные (U / UTP) решения для 10GBASE-T по трудоемкости и сложности монтажа, можно прийти к заключению, что обе разновидности систем оказываются примерно на одном уровне.

Сертификация СКС в полевых условиях

Одним из важных вопросов по внедрению СКС является процедура тестирования в полевых условиях.
Для проведения полевых измерений требуется прибор с уровнем точности измерений IIIe. На рынке уже представлены модели полевых тестеров, способных выполнять такое тестирование на соответствие требованиям 10GBASE-T. Это Fluke DTX-1800 компании Flukenetworks, Wirescope Pro компании Agilent Technologies, Lantek 6A и компании Lantek 7G Идеальный промышленности. При этом производители приборов заявляют более высокий уровень точности IV

Согласно проекту стандарта TIA/EIA-568-B.2-10 тестирование должно проходить в две фазы (похожие рекомендации будут содержаться и в аналогичном международном стандарте). На первой фазе проводится тестирование внутриканальных параметров в частотном диапазоне до 500 МГц. На данном этапе должны оцениваться характеристики 100% каналов.

Экранированные кабели обладают существенной стойкостью к воздействию межкабельных помех

Вторая фаза заключается в оценке параметров Чужеродные Перекрестные. Тестирование параметров АХТ осуществляется выборочным методом. Необходимо выбрать самый длинный канал, а также короткие каналы, расстояние между оконечными разъемами у которых наименьшее. Если эти тракты проходят тест, то принимается, что и все другие каналы также будут его проходить. Рекомендуется проводить такие оценки для каждого из пучков.

При таком новом подходе к тестированию необходимо иметь полную информацию о топологии сети, месторасположении концов кабелей или размещении кабелей в определенных кабельных каналах. Также нужно знать, как проходят кабели в отдельно взятых пучках. Это возможно потребует дополнительной системы маркировки пучков и их учет в базе данных.

В целом, данные рекомендации призваны сократить время на тестирование. Ведь если бы проводилось тестирование межкабельных помех для каналов 100%, то на это ушло бы так много времени, что фактически можно было бы считать процедуру тестирования параметров Чужеродные Перекрестные невыполнимой.

Но все же в большей степени контроль межкабельных помех необходим для неэкранированных решений. Экранированные системы, а тем более категории на базе кабелей 7 S / FTP практически невосприимчивы к внешним электромагнитным помехам и в том числе к Чужеродные Перекрестные. Поэтому для них, возможно, достаточным было бы выполнения фазы 1 из набора рекомендаций проекта стандарта (то есть 100% тестирование внутриканальных помех в диапазоне до 500 МГц с дополнительным тестированием наличия соединения экрана). Однако это пока что только планы, предложения и предположения. Окончательные требования к тестированию станут известными только после публикации соответствующих стандартов. Также в вопросе тестирования экранированной системы следует обращать внимание на рекомендации производителей.

Затухание излучение (МЭК 61156-5:2002)

Тип Сцепные Затухание Частотный диапазон, МГц Сцепные Затухание, дБ
Тип I кабель S / FTP SF / UTP 30-100 ? 85,0
? 100 ? 85,0-20xlog10 (1 / 100)
Тип II кабель F / UTP 30-100 ? 55,0
? 100 ? 55,0-20xlog10 (1 / 100)
Тип III кабель U / UTP 30-100 ? 40,0
? 100 ? 40,0-20xlog10 (1 / 100)

Для полного сопоставления разновидностей кабельных решений необходимо провести анализ стоимости той или иной системы. Но, к сожалению, в Украине пока отсутствует неэкранированное решение категории 6А. А использовать данные, полученные из западных источников не совсем корректно. Ведь помимо стоимости кабельной системы, необходимо принимать в расчет затраты на работы по ее монтажу, стоимость тестирования, учитывать расходы на оборудование, которое может дополнительно понадобиться для установки системы (так называемые скрытые расходы). Также нужно учесть жизненный цикл системы и другие возможные нюансы. В Украине значения этих показателей могут отличаться, причем отличаться существенно.

В дополнение к стоимостному анализу, сопоставлению технических особенностей кабельных систем и их практической реализации могут появиться и другие признаки, по которым можно сравнивать два основных типа решений.

Вместе с тем можно прийти к общему итогу, что если ранее, во времена систем класса D экран кабеля в большей степени обеспечивал защиту от внешних электромагнитных наводок, то сейчас его решающее назначение в подавлении переходных межкабельных помех. Конечно, существуют определенные сложности монтажа экранированных систем и их заземления, но они в настоящее время сведены к минимуму. В то же время, с появлением принципиально новых конструкций кабелей U / UTP, могут появиться определенные трудности, связанные с особенностями монтажа и проектирования, а также с процедурой тестирования кабельных трактов.

Современный мир все больше входит в зависимость от объемов и потоков информации, идущей в различных направлениях по проводам и без них. Все началось достаточно давно и с более примитивных средств, чем сегодняшние достижения цифрового мира. Но описывать все виды и способы, при помощи которых один человек доносил нужные сведения до сознания другого, мы не намерены. В данной статье хочется предложить читателю рассказ о не так давно созданном и успешно развивающемся сейчас стандарте передачи цифровой информации, который называется Ethernet.

Рождение самой идеи и технологии Ethernet происходило в стенах корпорации Xerox PARC вместе с другими первыми разработками этого же направления. Официальной датой изобретения Ethernet стало 22 мая 1973 года, когда Роберт Меткалф (Robert Metcalfe) составил докладную записку для главы PARC о потенциале технологии Ethernet. Однако запатентовали ее только через несколько лет.

В 1979 году Меткалф ушёл из Xerox и основал компанию 3Com, главной задачей которой стало продвижение компьютеров и локальных вычислительных сетей (ЛВС). Заручившись поддержкой таких именитых компаний как DEC, Intel и Xerox был разработан стандарт Ethernet (DIX). После официальной публикации 30 сентября 1980 года он начал соперничество с двумя крупными запатентованными технологиями - token ring и ARCNET, которые впоследствии были полностью вытеснены, из-за их меньшей эффективности и большей себестоимости, чем продукция для Ethernet.

Изначально по предложенным стандартам (Ethernet v1.0 и Ethernet v2.0) собирались использовать в качестве передающей среды коаксиальный кабель, но в дальнейшем пришлось отказаться от этой технологии и перейти на использование оптических кабелей и витой пары.

Основным преимуществом в начале развития технологии Ethernet стал метод управления доступом. Он подразумевает множественные соединения с контролем несущей и обнаружение коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных при этом равна 10 Мбит/с, размер пакета от 72 до 1526 байт, в нем же описаны методы кодирования данных. Предельное значение рабочих станций в одном разделяемом сегменте сети ограничено числом 1024, но возможны и другие более малые значения при установке более жестких ограничений к сегменту тонкого коаксиала. Но такое построение очень скоро стало неэффективным и на смену ему в 1995 году пришел стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с, а позже был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с. На данный момент уже в полной мере используется 10 Gigabit Ethernet IEEE 802.3ae, обладающий скоростью в 10 000 Мбит/с. Кроме того, уже имеем разработки направленные на достижение скорости в 100 000 Мбит/с 100 Gigabit Ethernet, но обо всем по порядку.

Очень важной позицией, лежащей в основе стандарта Ethernet, стал формат его кадра. Однако его вариантов существует довольно много. Вот некоторые из них:

    Variant I первенец и уже вышедший из применения.

    Ethernet Version 2 или Ethernet-кадр II, ещё называемый DIX (аббревиатура первых букв фирм-разработчиков DEC, Intel, Xerox) - наиболее распространена и используется по сей день. Часто используется непосредственно протоколом интернет.

    Novell - внутренняя модификация IEEE 802.3 без LLC (Logical Link Control).

    Кадр IEEE 802.2 LLC.

    Кадр IEEE 802.2 LLC/SNAP.

    В качестве дополнения, Ethernet-кадр может содержать тег IEEE 802.1Q, для идентификации VLAN, к которой он адресован, и IEEE 802.1p для указания приоритетности.

    Некоторые сетевые карты Ethernet, производимые компанией Hewlett-Packard использовали при работе кадр формата IEEE 802.12, соответствующий стандарту 100VG-AnyLAN.

Для различных типов кадра имеют и различные форматы и значения MTU.

Функциональные элементы технологии G igabit Ethernet

Отметим, что производители Ethernet-карт и других устройств в основном включают в свою продукцию поддержку нескольких предыдущих стандартов скоростей передачи данных. По умолчанию, используя автоопределение скорости и дуплексности, сами драйвера карты определяют оптимальный режим работы соединения между двумя устройствами, но, обычно, есть и ручной выбор. Так покупая устройство с портом Ethernet 10/100/1000, мы получаем возможность работать по технологиям 10BASE-T, 100BASE-TX, и 1000BASE-T.

Приведем хронологию модификаций Ethernet , разделив их по скоростям передачи.

Первые решения:

    Xerox Ethernet - оригинальная технология, скорость 3 Мбит/с, существовала в двух вариантах Version 1 и Version 2, формат кадра последней версии до сих пор имеет широкое применение.

    10BROAD36 - широкого распространения не получил. Один из первых стандартов, позволяющий работать на больших расстояниях. Использовал технологию широкополосной модуляции, похожей на ту, что используется в кабельных модемах. В качестве среды передачи данных использовался коаксиальный кабель.

    1BASE5 - также известный, как StarLAN, стал первой модификацией Ethernet-технологии, использующей витую пару. Работал на скорости 1 Мбит/с, но не нашёл коммерческого применения.

Более распространенные и оптимизированные для своего времени модификации 10 Мбит/с Ethernet:

    10BASE5, IEEE 802.3 (называемый также «Толстый Ethernet») - первоначальная разработка технологии со скоростью передачи данных 10 Мбит/с. IEEE использует коаксиальный кабель, с волновым сопротивлением 50 Ом (RG-8), с максимальной длиной сегмента 500 метров.

    10BASE2, IEEE 802.3a (называемый «Тонкий Ethernet») - используется кабель RG-58, с максимальной длиной сегмента 200 метров. Для присоединения компьютеров друг к другу и подключения кабеля к сетевой карте нужен T-коннектор, а на кабеле должен быть BNC-коннектор. Требуется наличие терминаторов на каждом конце. Многие годы этот стандарт был основным для технологии Ethernet.

    StarLAN 10 - Первая разработка, использующая витую пару для передачи данных на скорости 10 Мбит/с. В дальнейшем, эволюционировал в стандарт 10BASE-T.

    10BASE-T, IEEE 802.3i - для передачи данных используется 4 провода кабеля витой пары (две скрученные пары) категории 3 или категории 5. Максимальная длина сегмента 100 метров.

    FOIRL - (акроним от англ. Fiber-optic inter-repeater link). Базовый стандарт для технологии Ethernet, использующий для передачи данных оптический кабель. Максимальное расстояние передачи данных без повторителя 1 км.

    10BASE-F, IEEE 802.3j - Основной термин для обозначения семейства 10 Mбит/с Eethernet-стандартов, использующих оптоволоконный кабель на расстоянии до 2 километров: 10BASE-FL, 10BASE-FB и 10BASE-FP. Из перечисленного только 10BASE-FL получил широкое распространение.

    10BASE-FL (Fiber Link) - Улучшенная версия стандарта FOIRL. Улучшение коснулось увеличения длины сегмента до 2 км.

    10BASE-FB (Fiber Backbone) - Сейчас неиспользуемый стандарт, предназначался для объединения повторителей в магистраль.

  • 10BASE-FP (Fiber Passive) - Топология «пассивная звезда», в которой не нужны повторители – разработана, но никогда не применялась.

Самый распространенный и недорогой выбор на момент написания статьи Быстрый Ethernet (100 Мбит/с) (Fast Ethernet ):

    100BASE-T - Основной термин для обозначения одного из трёх стандартов 100 Мбит/с Ethernet, использующий в качестве среды передачи данных витую пару. Длина сегмента до 100 метров. Включает в себя 100BASE-TX, 100BASE-T4 и 100BASE-T2.

    100BASE-TX, IEEE 802.3u - Развитие технологии 10BASE-T, используется топология «звезда», задействован кабель витая пара категории 5, в котором фактически используются 2 пары проводников, максимальная скорость передачи данных 100 Мбит/с.

    100BASE-T4 - 100 MБит/с Ethernet по кабелю категории 3. Задействованы все 4 пары. Сейчас практически не используется. Передача данных идёт в полудуплексном режиме.

    100BASE-T2 - Не используется. 100 Mбит/с Ethernet через кабель категории 3. Используется только 2 пары. Поддерживается полнодуплексный режим передачи, когда сигналы распространяются в противоположных направления по каждой паре. Скорость передачи в одном направлении - 50 Mбит/с.

    100BASE-FX - 100 Мбит/с Ethernet с помощью оптоволоконного кабеля. Максимальная длина сегмента 400 метров в полудуплексном режиме (для гарантированного обнаружения коллизий) или 2 километра в полнодуплексном режиме по многомодовому оптическому волокну.

    100BASE-LX - 100 Мбит/с Ethernet с помощью оптоволоконного кабеля. Максимальная длина сегмента 15 километров в полнодуплексном режиме по паре одномодовых оптических волокон на длине волны 1310 нм.

    100BASE-LX WDM - 100 Мбит/с Ethernet с помощью оптоволоконного кабеля. Максимальная длина сегмента 15 километров в полнодуплексном режиме по одному одномодовому оптическому волокну на длине волны 1310 нм и 1550 нм. Интерфейсы бывают двух видов, отличаются длиной волны передатчика и маркируются либо цифрами (длина волны) либо одной латинской буквой A (1310) или B (1550). В паре могут работать только парные интерфейсы, с одной стороны передатчик на 1310 нм, а с другой на 1550 нм.

Gigabit Ethernet

    1000BASE-T, IEEE 802.3ab - Стандарт Ethernet 1 Гбит/с. Используется витая пара категории 5e или категории 6. В передаче данных участвуют все 4 пары. Скорость передачи данных - 250 Мбит/с по одной паре.

    1000BASE-TX, - Стандарт Ethernet 1 Гбит/с, использующий только витую пару категории 6. Передающие и принимающие пары разделены физически по две пары в каждом направлении, что существенно упрощает конструкцию приемопередающих устройств. Скорость передачи данных - 500 Мбит/с по одной паре. Практически не используется.

    1000Base-X - общий термин для обозначения технологии Гигабит Ethernet со сменными трансиверами GBIC или SFP.

    1000BASE-SX, IEEE 802.3z - 1 Гбит/с Ethernet технология использует лазеры с допустимой длиной излучения в пределах диапазона 770-860 нм, мощность излучения передатчика в пределах от -10 до 0 дБм при отношении ON/OFF (сигнал/нет сигнала) не меньше 9 дБ. Чувствительность приемника 17 дБм, насыщение приемника 0 дБм. Используя многомодовое волокно, дальность прохождения сигнала без повторителя до 550 метров.

    1000BASE-LX, IEEE 802.3z - 1 Гбит/с Ethernet технология использует лазеры с допустимой длиной излучения в пределах диапазона 1270-1355 нм, мощность излучения передатчика в пределах от 13,5 до 3 дБм, при отношении ON/OFF (есть сигнал/нет сигнала) не меньше 9 дБ. Чувствительность приемника 19 дБм, насыщение приемника 3 дБм. При использовании многомодового волокна дальность прохождения сигнала без повторителя до 550 метров. Оптимизирована для дальних расстояний, при использовании одномодового волокна (до 40 км).

    1000BASE-CX - Технология Гигабит Ethernet для коротких расстояний (до 25 метров), используется специальный медный кабель (Экранированная витая пара (STP)) с волновым сопротивлением 150 Ом. Заменён стандартом 1000BASE-T, и сейчас не используется.

    1000BASE-LH (Long Haul) - 1 Гбит/с Ethernet технология, использует одномодовый оптический кабель, дальность прохождения сигнала без повторителя до 100 километров.

Стандарт

Тип кабеля

Полоса пропускания (не хуже), МГц*Км

Макс. расстояние, м *

1000BASE-LX (лазерный диод 1300 нм)

Одномодовое волокно (9 мкм)

Многомодовое волокно
(50 мкм)

Многомодовое волокно
(62,5 мкм)

1000BASE-SX (лазерный диод 850 нм)

Многомодовое волокно
(50 мкм)

Многомодовое волокно
(62,5 мкм)

Многомодовое волокно
(62,5 мкм)

Экранированная витая пара STP
(150 ОМ)

* стандарты 1000BASE-SX и 1000BASE-LX предполагают наличие дуплексного режима
** Оборудование некоторых производителей может обеспечивать большее расстояние, оптические сегменты без промежуточных ретрансляторов/усилителей могут достигать 100 км.

Технические характеристики стандартов 1000Base-X

10 Gigabit Ethernet

Еще достаточно дорогой, но вполне востребованный, новый стандарт 10 Гигабит Ethernet включает в себя семь стандартов физической среды для LAN, MAN и WAN. В настоящее время он описывается поправкой IEEE 802.3a и должен войти в следующую ревизию стандарта IEEE 802.3.

    10GBASE-CX4 - Технология 10 Гигабит Ethernet для коротких расстояний (до 15 метров), используется медный кабель CX4 и коннекторы InfiniBand.

    10GBASE-SR - Технология 10 Гигабит Ethernet для коротких расстояний (до 26 или 82 метров, в зависимости от типа кабеля), используется многомодовое оптоволокно. Он также поддерживает расстояния до 300 метров с использованием нового многомодового оптоволокна (2000 МГц/км).

    10GBASE-LX4 - использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому оптоволокну. Также поддерживает расстояния до 10 километров при использовании одномодового оптоволокна.

    10GBASE-LR и 10GBASE-ER - эти стандарты поддерживают расстояния до 10 и 40 километров соответственно.

    10GBASE-SW, 10GBASE-LW и 10GBASE-EW - Эти стандарты используют физический интерфейс, совместимый по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET/SDH. Они подобны стандартам 10GBASE-SR, 10GBASE-LR и 10GBASE-ER соответственно, так как используют те же самые типы кабелей и расстояния передачи.

    10GBASE-T, IEEE 802.3an-2006 - принят в июне 2006 года после 4 лет разработки. Использует экранированную витую пару. Расстояния - до 100 метров.

И наконец, что мы знаем про 100-Gigabit Ethernet (100-GE), еще достаточно сырую, но вполне востребованную технологию.

В апреле 2007 года, после собрания комитета IEEE 802.3 в Оттаве, исследовательской группой Higher Speed Study Group (HSSG) было принято мнение о технических подходах в формировании оптических и медных каналов 100-GE. На данное время окончательно сформирована рабочая группа 802.3ba по разработке спецификации 100-GE.

Как и в предыдущих разработках, стандарт 100-GE будет учитывать не только экономические и технические возможности его осуществления, но и их обратную совместимость с имеющимися системами. На данное время потребность в таких скоростях неоспоримо доказана ведущими компаниями. Постоянно растущие объемы персонализированного контента, в том числе при доставке видео с порталов типа YouTube и других ресурсов, применяющих технологии IPTV и HDTV. Нужно упомянуть также видео по требованию. Все это определяет потребность в 100 Gigabit Ethernet операторов и сервис-провайдеров.

Но на фоне большого выбора старых и перспективно новых технологических подходов в рамках группы Ethernet мы хотим более подробно остановиться на технологии, которая сегодня только приобретает полноценную массовость использования в связи с понижением стоимости ее компонентов. Gigabit Ethernet может полноценно обеспечить работу таких приложений, как потоковое видео, видеоконференции, передача сложных изображений предъявляющих повышенные требования к пропускной способности канал. Преимущества повышения скоростей передачи в корпоративных и домашних сетях становятся все более бесспорным, с падением цен на оборудование такого класса.

Сейчас получил максимальную популярность стандарт IEEE. Принятый в июне 1998 года, он был утвержден как IEEE 802.3z. Но поначалу в качестве среды передачи использовался только оптический кабель. С утверждением в течение последующего года дополнения стандарта 802.3ab средой передачи стала неэкранированная витая пара пятой категории.

Gigabit Ethernet является прямым потомком Ethernet и Fast Ethernet, хорошо зарекомендовавших себя за почти двадцатилетнюю историю, сохранив их надежность и перспективность использования. Наряду с предусмотренной обратной совместимостью с предыдущими решениями (кабельная структура остается неизменной) он обеспечивает теоретическую пропускную способность в 1000 Мбит/сек, что приблизительно равно 120 Мб в секунду. Стоит отметить, что такие возможности практически равны скорости 32-битной шины PCI 33 МГц. Именно поэтому гигабитные адаптеры выпускаются как для 32-битной PCI (33 и 66 МГц), так и для 64-битной шины. Наряду с таким увеличением скорости Gigabit Ethernet унаследовал все предыдущие особенности Ethernet, такие как формат кадров, технологию CSMA/CD (чувствительный к передаче множественный доступ с обнаружением коллизий), полный дуплекс и т.д. Хотя высокие скорости внесли и свои нововведения, но именно в наследовании старых стандартов состоит огромное преимущество и популярность Gigabit Ethernet. Конечно, сейчас предложены и другие решения, такие как ATM и Fibre Channel, но здесь сразу теряется главное преимущество для конечного потребителя. Переход на другую технологию ведет за собой массовую переделку и переоборудование сетей предприятия, тогда как Gigabit Ethernet позволит плавно наращивать скорость и не изменять кабельное хозяйство. Такой подход и позволил Ethernet-технологии занять доминирующее место в области сетевых технологий и завоевать более 80 процентов мирового рынка передачи информации.

Структура построения сети Ethernet с плавным переходам на более высокие скорости передачи данных.

Изначально все стандарты Ethernet разрабатывались с использованием в качестве среды передачи только оптического кабеля - так и Gigabit Ethernet получил интерфейс 1000BASE-X. Он основывается на стандарте физического уровня Fibre Channel (это технология взаимодействия рабочих станций, устройств хранения данных и периферийных узлов). Так как эта технология уже была одобрена ранее, такое заимствование сильно сократило время на разработку стандарта Gigabit Ethernet. 1000BASE-X

Нас, как и простого обывателя, больше заинтересовал 1000Base-CX в виду его работы на экранированной витой паре (STP «twinax») на короткие расстояния и 1000BASE-T для неэкранированной витой пары категории 5. Главным отличием 1000BASE-T от Fast Ethernet 100BASE-TX стало то, что используются все четыре пары (в 100BASE-TX использовались только две). Каждая пара при этом может передавать данные со скоростью 250 Мбит/сек. Стандарт обеспечивает дуплексную передачу, причем поток по каждой паре обеспечивается в двух направлениях одновременно. В связи с сильными помехами при такой передаче технически реализовать гигабитную передачу по витой паре было намного сложнее, чем в 100BASE-TX, что потребовало разработки специальной скремблированной помехоустойчивой передачи, а также интеллектуального узла распознавания и восстановления сигнала на приеме. В качестве метода кодирования в стандарте 1000BASE-T было использовано 5-уровневое импульсно-амплитудное кодирование PAM-5.

Критерии по выбору кабеля тоже стали более жесткими. Для уменьшения наводок, однонаправленной передачи, возвратных потерь, задержек и фазового сдвига, была принята к использованию категория 5e для неэкранированной витой пары.

Обжим кабеля для 1000BASE-T производится по одной из следующих схем:

Прямой (straight-through) кабель.

Перекрестный (crossover) кабель.

Схемы обжима кабеля для 1000BASE-T

Нововведения коснулись и уровня MAC-стандарта 1000BASE-T. В Ethernet-сетях максимальное расстояние между станциями (коллизионный домен) определяется исходя из минимального размера кадра (в стандарте Ethernet IEEE 802.3 он равнялся 64 байтам). Максимальная длина сегмента должна быть такой, чтобы передающая станция могла обнаружить коллизию до окончания передачи кадра (сигнал должен успеть пройти в другой конец сегмента и вернуться обратно). Соответственно, при увеличении скорости передачи нужно либо увеличивать размер кадра, тем самым увеличивая минимальное время на передачу кадра, либо уменьшать диаметр коллизионного домена.

При переходе к Fast Ethernet воспользовались вторым вариантом и сократили диаметр сегмента. В Gigabit Ethernet это было неприемлемо. Ведь в этом случае стандарт, наследовавший такие составляющие Fast Ethernet, как минимальный размер кадра, CSMA/CD и время обнаружения коллизии (time slot), сможет работать в коллизионных доменах диаметром не более 20 метров. Поэтому было предложено увеличить время на передачу минимального кадра. Учитывая, что для совместимости с предыдущими Ethernet минимальный размер кадра был оставлен прежним - 64 байта, а к кадру добавилось дополнительное поле carrier extension (расширение носителя), которое дополняет кадр до 512 байт, но поле не добавляется в случае, когда размер кадра больше 512 байт. Таким образом, результирующий минимальный размер кадра получился равным 512 байтам, время на обнаружение коллизии возросло, и диаметр сегмента увеличился до тех же 200 метров (в случае 1000BASE-T). Символы в поле carrier extension не несут смысловой нагрузки, контрольная сумма для них не вычисляется. При приеме кадра это поле отбрасывается еще на уровне MAC, поэтому вышележащие уровни продолжают работать с минимальными кадрами длиной 64 байта.

Но и тут возникли подводные камни. Хоть расширение носителя и позволило сохранить совместимость с предыдущими стандартами, оно привело к неоправданной трате полосы пропускания. Потери могут достигать 448 байт (512-64) на кадр в случае коротких кадров. Поэтому стандарт 1000BASE-T был модернизирован - ввели понятие Packet Bursting (пакетная перегруженность). Она позволяет намного эффектней использовать поле расширения. А работает это следующим образом: если у адаптера или коммутатора есть несколько небольших кадров, требующих отправки, то первый из них отправляется стандартным образом, с добавлением поля расширения до 512 байт. А все последующие отправляются в оригинальном виде (без поля расширения), с минимальным интервалом между ними в 96 бит. И, что самое главное, этот межкадровый интервал заполняется символами расширения носителя. Это происходит до тех пор, пока суммарный размер отправляемых кадров не достигнет предела 1518 байт. Таким образом, среда не замолкает на всем протяжении передачи малых кадров, поэтому коллизия может возникнуть только на первом этапе, при передаче первого правильного малого кадра с полем расширения носителя (размером 512 байт). Этот механизм позволяет существенно повысить производительность сети, особенно при больших нагрузках, за счет уменьшения вероятности возникновения коллизий.

Но и этого оказалось мало. Сначала Gigabit Ethernet поддерживал только стандартные размеры кадров Ethernet - от минимального 64 (дополняемых до 512) до максимального 1518 байт. Из них 18 байт занимает стандартный служебный заголовок, а для данных остается от 46 до 1500 байт соответственно. Но даже пакет данных размером 1500 байт слишком мал в случае гигабитной сети. Особенно для серверов, передающих большие объемы данных. Давайте немного посчитаем. Для передачи файла размером 1 гигабайт по незагруженной Fast Ethernet сети, сервер обрабатывает 8200 пакетов/сек и затрачивает на это минимум 11 секунд. В этом случае только на обработку прерываний у компьютера мощностью 200 MIPS уйдет около 10 процентов времени. Ведь центральный процессор должен обработать (посчитать контрольную сумму, передать данные в память) каждый пришедший пакет.

Скорость

10 Мбит/сек

100 Мбит/сек

1000 Мбит/сек

Размер кадра

Кадры/сек

Скорость передачи данных, Мбит/сек

Интервал между кадрами, мкс

Характеристики передачи сетей Ethernet.

В гигабитных сетях ситуация еще печальней - нагрузка на процессор возрастает примерно на порядок из-за сокращения временного интервала между кадрами и соответственно запросами на прерывания к процессору. Из таблицы 1 видно, что даже в наилучших условиях (использование кадров максимального размера) кадры отстоят друг от друга на временной интервал, не превышающий 12 мкс. В случае использования кадров меньшего размера этот временной интервал только уменьшается. Поэтому в гигабитных сетях узким местом, как ни странно, стал именно этап обработки кадров процессором. Поэтому на заре становления Gigabit Ethernet фактические скорости передачи были далеки от теоретического максимума - процессоры просто не справлялись с нагрузкой.

Очевидным выходом из сложившейся ситуации является следующее:

    увеличение временного интервала между кадрами;

    перекладывание части нагрузки обработки кадров с центрального процессора на сам сетевой адаптер.

В настоящее время реализованы оба метода. В 1999 году было предложено увеличить размер пакета. Такие пакеты получили название гига-кадры (Jumbo Frames), и их размер мог быть от 1518 до 9018 байт (в настоящее время оборудование от некоторых производителей поддерживает и большие размеры гига-кадров). Jumbo Frames позволили уменьшить нагрузку на центральный процессор до 6 раз (пропорционально своему размеру) и, таким образом, значительно повысить производительность. Например, максимальный пакет Jumbo Frame в 9018 байт, кроме 18-байтового заголовка, содержит 9000 байт под данные, что соответствует шести стандартным максимальным кадрам Ethernet. Выигрыш в производительности достигается не из-за избавления от нескольких служебных заголовков (трафик от их передачи не превышает нескольких процентов общей пропускной способности), а за счет уменьшения времени на обработку такого кадра. Точнее, время на обработку кадра осталось прежним, но вместо нескольких небольших кадров, каждый из которых потребовал бы для себя N тактов процессора и одно прерывание, мы обрабатываем только один, больший кадр.

Довольно быстро развивающийся мир скорости обработки информации предоставляет все более быстрые и недорогие решения по использованию специальных аппаратных средств, для снятия части нагрузки по обработке трафика с центрального процессора. Используется и технология буферизации, обеспечивающая прерывание процессора для обработки нескольких кадров сразу. На данное время технология Gigabit Ethernet становится все более доступной для использования в домашних условиях, что напрямую заинтересует простого пользователя. Более быстрый доступ к домашним ресурсам обеспечит качественный просмотр видео большого разрешения, займет меньше времени для перераспределения информации и, наконец, позволит вживую кодировать видеопотоки на сетевые диски.

При подготовке статьи использовались метериалы ресурсов http://www.ixbt.com/ и http://www.wikipedia.org/ .

Статья прочитана 14104 раз(а)

Подписаться на наши каналы

Витая пара: десять гигабит под прицелом

За десять лет существования в реализациях Ethernet на витой паре удалось обеспечить стократное увеличение производительности. Казалось бы, витая пара уже не располагает возможностями для роста, но сегодня ведутся работы по стандартизации решений, которые позволят покорить десятигигабитный рубеж.

Не надо быть истинным знатоком автоспорта, чтобы понять, что максимум скорости от гоночного болида можно получить только на специальной трассе. В принципе, подобные автомобили могут ездить и по обычным дорогам. К тому же один из них совсем недавно покорил вершину Ай-Петри. Но выходить на штатные режимы, а уж тем более демонстрировать все свои способности в гонке современные болиды могут на специально подготовленной трассе, и то если на ней нет мусора, деталей конструкции поврежденных машин или пролитого масла. Причем такая трасса может проходитьпо городу.

В какой-то степени задачу, подобную организации трассы "Формулы-1" в городской черте, решает сейчас рабочая группа IEEE 802.3an, занимающаяся реализацией чемпионского в секторе локальных сетей приложения, десятигигабитного Ethernet, на столь привычных всем медных линиях. Вопрос только в том, какими должны быть эти линии и каковы особенности десятигигабитной передачи по ним.

Время разбрасывать камни

Работы над стандартом 10 Gigabit Ethernet на витой паре ведутся с ноября 2002 года. Тогда комитетом IEEE 802.3 была сформирована исследовательская группа, задача которой состояла в определении возможностей для передачи десятигигабитного трафика с использованием технологии Ethernet по витой паре с длиной линии до ста метров. Это приложение получило обозначение 10GBaseT – широкополосная передача данных со скоростью 10 Гбит/с по витой паре (T – twisted pair).

Потребность в подобном решении изначально мотивировалась высокой стоимостью оптических вариантов 10 Gigabit Ethernet. Такой исходный посыл является далеко не бесспорным, ведь для достижения столь высокой скорости передачи по витой паре требуются изощренные алгоритмы обработки сигнала, которые должны быть куда более сложными, чем у гигабитного предшественника. Впрочем, подобный момент прекрасно отображает предкризисную ситуацию в телекоммуникациях, когда всем предлагалось взять как можно больше пропускной способности, ведь неизвестно, какой производительности информационных систем потребует день грядущий.

Этот день настал, и большинство подобных призывов, за которыми фактически ничего не стояло, оказалось мыльными пузырями.

В последнее время в некоторых публикациях (десятигигабитная реализация Ethernet на витой паре пользуется широкой популярностью в средствах масс-медиа, в чем легко можно убедиться, если задать на поисковом сервере запрос 10GBaseT) откровенно пропагандируется кабельное оборудование улучшенной шестой и седьмой категории. Мол, медь дорожает, и нужно поспешить с инвестициями в кабельную систему на уровне самых современных требований. Возможно, это вынудило рабочую группу определить для себя, что основным ориентиром в исследованиях является поддержка уже установленных кабельных систем, то есть что она придерживается нынешних тенденций, касающихся продвижения телекоммуникационного оборудования.

Итак, суммарное количество установленных портов неэкранированных кабельных систем превышает 800 млн., довольно значительную долю которых уже составляют решения класса E. В этом случае, даже если число проектов, использующих 10GBaseT, после принятия стандарта будет соответствовать уровню реализации Gigabit Ethernet по меди, можно получить приличные объемы поставок оборудования. Еще одной сферой применения является реализация кластерных подключений в центрах данных. Причем в презентации IEEE 802 10GBaseT Tutorial, представленной в ноябре 2003 года на встрече IEEE в Альбукерке, данное применение приводится под номером один. Благодаря использованию десятигигабитного Ethernet на меди предполагается повышение плотности размещения компьютерного оборудования (поскольку нет необходимости устанавливать медиа-конверторы), достижение наибольшей эффективности в агрегировании трафика, которая, в частности, будет выше, чем в случае 1000BaseT. В качестве дополнительного преимущества для такого применения был представлен тот факт, что многие центры данных находятся в стадии планирования или начальной стадии развертывания. Следовательно, для них не должно возникать проблем в плане соответствия используемых технологий существующим кабельным решениям.

Технически предпосылки

Помимо рыночных возможностей и позиционирования приложения 10GBASE T по передаче данных, исследовательская группа определила основные технические ориентиры, которым должна соответствовать разработка новой спецификации Ethernet. Прежде всего, это преемственность решений нафизическом уровне, включая поддержку формата кадра Ethernet и сохранение величин минимальной и максимальной длины кадра согласно требованиям действующих стандартов группы 802.3, а также автоматический выбор (автосогласование) портом сетевого устройства скорости передачи из ряда от 10 Мбит/с до 10 Гбит/с, в зависимости от того, какая разновидность сетевой технологии используется там, где регистрируется данный порт.

Кроме того, функционирование 10 Gigabit Ethernet на витой паре должно осуществляться только в полнодуплексном режиме.
Основой для построения физического уровня определены электрические кабельные решения, соответствующие требованиям последних редакций стандартов ISO/IEC и TIA. Это системы на базе четырехпарного кабеля с волновым сопротивлением 100 Ом, в которых используется принцип "иерархической звезды" и модель построения горизонтальных кабельных трактов с четырьмя коннекторами (коммутационная панель для подключения активного оборудования, коммутационная панель горизонтальной подсистемы, точка консолидации в линии и телекоммуникационная розетка на рабочем месте).

Единственное "но", причем весьма существенное с точки зрения стандартов, – это сокращение длины кабельных трактов. Так, одной из задач исследовательской группы IEEE 802. 3an была оценка возможности передачи десятигигабитного трафика по кабельным трактам на меди длиной до 100 м в случае использования компонентов седьмой категории или 55–100 м для компонентов шестой категории. Возможное сокращение длины до 55 м мотивируется тем, что при стандартной длине канала класса E не может гарантироваться передача с требуемой скоростью, поскольку рабочие частоты превышают граничную частоту для данного кабельного оборудования. Выбор длины был сделан на основании оценок количества кабельных трактов разной длины. Согласно данным IEEE, до 70%кабельных трактов не превышают 55 м.

В этом году в IEEE принято окончательное решение о стандартизации 10 Gigabit Ethernet, к которой приступила рабочая группа IEEE 802.3an. Первая черновая редакция стандарта должна появиться в конце текущего года, а его окончательное утверждение запланировано на июль 2006 года. Причем существенным моментом, характеризующим разработку стандарта, должно стать сотрудничество рабочей группы с ISO/IEC JTC 1/SC 25 и TIA на предмет уточнения длины и других характеристик кабельных трактов, а также разработки спецификаций для улучшенного кабельного оборудования класса E.

Оглядываясь назад

Для того чтобы лучше уяснить технические особенности реализации 10 Gigabit Ethernet на витой паре, необходимо сделать небольшой экскурс в историю развития этой сетевой технологии, начиная с 10BaseT.

Рассчитанная на работу по двум парам третьей категории технология 10BaseT отличалась простотой и неприхотливостью. Это позволило ей стать лидером среди технологий, применяющихся в секторе локальных сетей. Причем данная технология продолжает широко использоваться и поныне как довольно эффективное средство для подключений сетевых устройств на рабочих местах. Первые подвижки в направлении стомегабитных решений касались категории 3:это была использующая все четыре пары технология 100BaseT4. Следующий прорыв в завоевании рынка сделала двухпарная технология 100BaseTX, рассчитанная на работу с кабельным оборудованием пятой категории. Она также оказалась более чем успешной, и на сегодняшний день сетевые интерфейсные карты на 10/100 Мбит/с являются стандартным выбором в комплектации тех же офисных компьютеров.

Гигабитный Ethernet на витой паре изначально позиционировался как технология для использования инсталлированной базы категории 5. Но вместо этого пришлось осуществить радикальную ревизию кабельных стандартов и ввести контроль дополнительных параметров. Поэтому произошло отклонение от сроков окончательной стандартизации, длившееся немногим более года. Это время потребовалось на уточнение особенностей обработки сигнала, а также разработки спецификаций для параметров эквивалентного переходного затухания на дальнем конце и величины возвратных потерь.

Результатом развития предыдущих реализаций Ethernet на витой паре стало увеличение пропускной способности в сто раз (с 10 Мбит/с до 1 Гбит/с), и произошло это в течение десяти лет. Таким образом, наращивание скорости передачи в разных реализациях технологии Ethernet согласуется с одной из формулировок закона Мура. В соответствии с этой формулировкой производительность систем удваивается каждые восемнадцать месяцев.

Если же принять во внимание работу кабельных систем, то оказалось, что для реализации такого роста производительности приложений вполне достаточно семикратного расширения частотного диапазона, используемого реализациями на витой паре (с 16 МГц до 125 МГц). Достичь этого удалось благодаря применению специальной обработки сигнала, а также одновременной передаче по всем парам и сложным системам кодирования.

Техника передачи по меди

Итак, подходы к организации передачи меняются с течением времени. В ранних реализациях Ethernet на витой паре достаточно было контролировать величину вносимого затухания на кабельном тракте, а также уровень переходного затухания на ближнем конце (Near End Crosstalk, NEXT).

Соотношение этих величин фактически являлось соотношением "сигнал-шум". Данный параметр получил название "соотношение затухания и перекрестных помех на ближнем конце" (Attenuation To Crosstalk Ratio, ACR). Оно определяется как разность величин затухания и перекрестных помех на ближнем конце, выраженных в дБ, то есть измеренных по логарифмической шкале.

В ходе разработки стандарта для гигабитного Ethernet на меди эти характеристики кабельного оборудования дополнились показателями переходного затухания на дальнем конце, а также оценкой суммарного влияния на каждую из пар, оказываемого остальными тремя парами. Ведь необходимо было организовать одновременную передачу по каждой из пар, которая к тому же ведется в обоих направлениях. Также рассматривались механизмы эхокомпенсации, благодаря которым обеспечивается качественная передача гигабитного трафика по кабельному оборудованию класса D. Как уже отмечалось, сигнал от передатчика и сигнал, движущийся к приемнику, присутствуют в тракте одновременно. Естественно, что часть передаваемого сигнала поступает на приемники на ближнем конце в виде отражений. Поскольку приемник постоянно отслеживает последовательности, передаваемые передатчиком на ближнем конце, он попросту вычитает их из принятого сигнала. Этот подход получил название "фильтрации на основе выбора из конечной совокупности принимаемого сигнала" (Finite Impulse Response, FIR).

Еще один неприятный момент заключается в перекрытии импульсов друг другом из за неравномерности распространения сигнала в разных парах. Как следствие, искажается форма последовательности, в результате чего приемник будет фиксировать импульс в той части последовательности, где его не должно быть. Для решения этой проблемы используются высокопроизводительные эквалайзеры, способные довольно точно восстанавливать изначальную форму сигнала.

На десяти гигабитах

Новый стандарт предполагает применение тех же механизмов кодирования, что и Gigabit Ethernet. При этом должна обеспечиваться величина ошибки передачи бита около 10–12, что декларировалось в начале работы исследовательской группы. В частности, разработчики стандарта 10GBaseT предложили использовать десятиуровневое кодирование PAM, в котором восемь уровней используются для передачи сигнала, а два – обеспечивают коррекцию ошибок.

Основу функционирования оборудования в 10GBASE T составляет та же полнодуплексная передача по всем четырем парам. Соответственно, десятигигабитный поток расщепляется на четыре потока по 2, 5 Гбит/с. Для передачи одного символа используются три бита. В итоге получается скорость передачи 833, 33 Мбод/с.

Негативные воздействия на сигнал – в основном те же, что и для Gigabit Ethernet:затухание в тракте, межпарные наводки на ближнем и дальнем конце, отражения и вариации задержек в силу разной скорости распространения в парах. Помимо упомянутых приемов, выдвигается обязательное требование компенсации межпарных наводок на дальнем конце на уровне 20 дБ. Такая компенсация реализуется и в некоторых гигабитных трансиверах, но для 1000BaseT она не является обязательной.

Кабельные решения

Приложение передачи данных 10GBASE T представляет собой сетевую технологию, физический уровень которой строится на основе кабельных трактов на витой паре. Эти тракты могут быть следующими:

  • 55 метровый канал класса E в соответствии с ISO/IEC 11801 2002 или канал шестой категории по стандарту ТIA на неэкранированной витой паре;
  • 55–100 метровый канал класса E на экранированной витой паре;
  • 100 метровый канал улучшенного класса E или канал расширенной шестой категории на неэкранированной витой паре;
  • 100 метровый канал класса F (экранированный кабель с индивидуальным экраном для каждой пары).

Вопрос о стандартизации укороченных трактов и другие моменты, связанные с реализацией 10GBaseT по уже установленной в соответствии с текущими требованиями проводке, пока еще подлежат обсуждению. В качестве одного из вариантов предлагается снижение рабочей частоты потока до такого уровня, чтобы она оказалась в пределах граничной частоты для кабельных решений класса E.

Существует множество вариантов предложений по реализации кабеля и соединительного оборудования расширенной шестой категории.

Производители поднимают граничную частоту кабельных решений и реализуют разные технические уловки, чтобы их продукция поддерживала 10GBaseT. Причем нельзя сказать, что в этом направлении необходим какой-то прорыв. Достаточно вспомнить категорию 5+середины девяностых: это вовсе не категория 5Е, а скорее, прототип шестой категории (к тому же окончательные спецификации последних разрабатывались для меньших граничных частот).

Остается только стандартизировать наиболее эффективные предложения производителей. Причем снова актуализируется вопрос о модульном интерфейсе, который смог бы нормально функционировать в более жестких условиях.

Зеленый свет "семерке"

Седьмая категория является единственной на данный момент стандартизированной средой передачи, которая без каких либо оговорок способна обеспечивать поддержку 10GBaseT в трактах длиной до 100 м. Кроме того, в случае использования седьмой категории существенно меняется картина влияния шумов, поскольку основным для данного типа оборудования является тепловой шум.

Достигается это благодаря особенностям конструкции кабеля и модульных разъемов. Пары составляются из жил диметром не менее 0,58 мм. Каждая пара заключается в индивидуальный экран из фольги. Экранирование каждой пары на 360° обеспечивается и в модульном разъеме. Соответственно, для такого кабельного оборудования являются менее ощутимыми наводки, в том числе и межкабельные.

Вполне возможно, что интенсивное обсуждение проблематики десятигигабитного Ethernet на меди в значительной мере инициируется производителями кабеля и коммутационного оборудования седьмой категории. И это понятно: появляется приложение, которое открывает вполне определенные перспективы именно для этой продукции, ведь до сих пор в сознании пользователей и инсталляторов она находилась где-то на периферии. Все знают о наличии подобных систем, но мало кто решается на их установку (доля класса F среди инсталлированных решений оценивается на уровне 0,4%), поскольку кабельное оборудование седьмой категории отличалось только по стоимости, не давая при этом ощутимых преимуществ в реализации приложений.

Наконец, через почти десять лет после появления этой категории у маркетологов и технических специалистов появится возможность оправдать средства, потраченные на ее продвижение и стандартизацию.

Говоря о перспективе 10GBaseT, необходимо отметить, что в техническом плане любая задача является интересной, и наработки, полученные в ходе ее решения, в случае неблагоприятной рыночной "судьбы" могут использоваться в других направлениях, например, в системах доступа. Если
же данная технология будет пользоваться ощутимым спросом, то это может повлечь за собой постановку новых технических задач, таких как уточнение стандартов на кабельные системы.

Межплатформенные наводки и способы их ограничения

Кабели, как правило, собираются в пучки, которые расходятся от коммутационных пунктов. При отсутствии экрана происходит взаимное влияние пар из разных кабелей, расположенных вблизи друг от друга. Эти межкабельные наводки получили название Alien Crosstalk, что означает "переходные помехи от других кабелей" (буквально "перекрестные наводкиот других кабелей").

Проблема усугубляется тем, что в основном производители выдерживают шаг свивки пар неизменным.

В случае межпарных наводок добиться максимального уровня переходного затухания удается за счет различия шага свивки в каждой паре. Подобный прием можно использовать для того, чтобы существенно снизить межкабельные наводки. Он состоит в варьировании шага свивки отдельной пары. Кроме того, могут варьироваться толщина оболочки кабеля и взаимное размещение пар в кабеле.

Таким образом предполагается решать данную проблему для вновь произведенных кабелей. Пока остается открытым вопрос о том, что можно сделать для уже установленной кабельной проводки.

История появления и стандартизации кабельного оборудования седьмой категории заслуживает особого внимания.

Уже с момента стандартизации пятой категории в 1995 году встал вопрос о разработке спецификаций для более производительных кабелей и соединительного оборудования. Официальное признание подобных кабельных систем произошло на 26 м совещании рабочей группы ISO/IEC JTC1 SC25 WG3, проходившем с 15 по 17 сентября 1997 года. Там были определены два новых на тот момент класса кабельных решений и соответствующие категории для компонентов: шестая категория и, следовательно, класс E с граничной частотой 200 МГц, а также седьмая категория и класс F с граничной частотой 600 МГц. Спецификации последней разрабатывались на основе немецкого национального стандарта DIN 44312 X.

Проблема модульного разъема седьмой категории оказалась весьма серьезной. Рассматривались восемь разработок разных компаний, представляющие принципиально новые конструктивные решения.

Ответственный за модульные интерфейсы комитет IEC SC 48B принял стандарты разъемов седьмой категории IEC 60603 7 7 и IEC 61076 3 104 только для двух предложений, выдвинутых соответственно компаниями Alcatel (сейчас продвижением этих разъемов занимается компания Nexans, а до середины 2000 года – подразделение Alcatel Cable and Components) и Siemon.

Особенностью разъема Nexans является обратная совместимость с RJ 45. Вилки этого разъема (GP 45) оснащены механизмом переключения типов коммутации под гнездо Nexans GG 45 (седьмая категория, задействуются 4 пары контактов по углам, разделенные экранами)или же под RJ 45.

Разъемы IEC 61076 3 104, то есть Siemon Tera, создавались как уникальное конструктивное решение, не предполагающее поддержку RJ 45. Контактные группы в этих разъемах размещаются по двухрядной схеме с разделением пар экраном. Вилки разъема Tera выпускаются в четырех, двух и однопарном исполнении, что позволяет организовывать в кабеленезависимую работу до четырех приложений.

Ethernet это технология организации локальных компьютерных сетей. Стандарт Ethernet определяет проводные соединения и электрические сигналы на физическом уровне сети. Ethernet появился в середине девяностых годов и стал самой распространённой технологией ЛВС, заменив такие технологии передачи данных, как Arcnet, FDDI и Token ring. Сети на базе технологии Ethernet бывают трех видов:


































Технология Стандарт Описание Тип кабеля Используемые пары Скорость передачи данных
Ethernet IEEE 802.3i 10Base-T UTP Cat.3-5 2 10 Мбит/с
Fast Ethernet IEEE 802.3u



UTP Cat.5/STP Type1A






100 Мбит/с
Gigabit Ethernet IEEE 802.3ab 1000Base-T UTP Cat.5 4 1000 Мбит/с

Для обжима сетевого кабеля используются стандартные разъемы RJ-45, которые в зависимости от вида "-витой пары"- бывают экранированными и неэкранированными, так же различают разъёмы для одножильных или многожильных "-витых пар"-. Конструктивно можно выделить составные разъёмные, выполненные со вставками и монолитные. Вставки являются направляющими, для проводников и упрощают заправку кабеля, но с точки зрения надёжности они уступают монолитным вариантам. Нумерация контактов разъёма RJ-45 представлена на рисунке ниже.




Обжим кабеля производится по следующей технологии:


Вначале осуществляется зачистка наружной изоляции кабеля, можно использовать или специальные клещи или аккуратно снять изоляцию обычными ножницами. Необходимый уровень зачистки кабеля &ndash- 1,2-1,5 см. Если витая пара экранирована, то заземление не срезается, а укладывается с разворотом в 180 градусов по направлению кабеля. После зачистки необходимо развести жилы "-витой пары"- в одной плоскости и выравнить их по длине. После данной подготовки производят заправку жил в разъем и их прессовку. После изготовления сетевого шнурка, его нужно прозвонить тестером или опробовать на оборудовании.
При организации сети по каналу 100 Мбит/сек используются 2 пары витой пары и используются жилы 1, 2 , 3 и 6. При организации гигабитной сети используются 4 пары, т.е. все 8 жил витой пары.
В сети Ethernet существует два типа кабелей. Первый тип используется для прямых соединений (хаб-свитч, компьютер-хаб) и кроссовер, который используется в локальных компьютерных сетях для прямого соединения двух компьютеров, без хаба. Тип кабеля для соединения разных портов можно выбрать по нижеприведённой таблице:















































Порт на концентраторе Что подсоединяется В какой порт Кабель
Обычный порт Концентратор/Коммутатор Обычный Перекрестный
Обычный порт Концентратор/Коммутатор Uplink Прямой
Обычный порт Сетевая карта Прямой
Порт Uplink Концентратор/Коммутатор Обычный Прямой
Порт Uplink Концентратор/Коммутатор Uplink Перекрестный
Порт Uplink Сетевая карта Перекрестный

И на последок несколько советов: при зачистке витой пары и её расплетении не нужно углубляться. Рабочая область не должна превышать 15 мм. При прокладке витой пары соблюдайте правила организации слаботочных кабельных систем и помните, что существуют такие понятия как наводки, изгибы и рабочая длина сети. Не соблюдение норм может привести к уменьшению качества сигнала, наводкам и разрушению кабеля.



Обжим прямого сетевого кабеля 10/100/1000Mbit.



Обжим кабеля компьютер-компьютер (crossover) 10/100Mbit.



Обжим кабеля компьютер-компьютер (crossover) 1000Mbit.

Не успело еще, как говорится, обсохнуть молоко на губах только что родившего­ся стандарта быстрого Ethernet, как комитет 802 приступил к работе над новой версией (1995). Ее почти сразу окрестили гигабитной сетью Ethernet, а в 1998 году новый стандарт был уже ратифицирован IEEE под официальным названием 802.3z. Тем самым разработчики подчеркнули, что это последняя разработка в линейке 802.3 (если только кто-нибудь в срочном порядке не придумает называть стандарты, скажем, 802.3ы. В свое время, Бернард Шоу предлагал расширить английский алфавит и включить в него, в частности, букву «ы», но был не убедителен.).

Главные предпосылки создания 802.3z были те же самые, что и при создании 802.3u, - повысить в 10 раз скорость, сохранив обратную совместимость со старыми сетями Ethernet. В частности, гигабитный Ethernet должен был обеспечить дейтаграммный сервис без подтверждений как при односторонней, так и при групповой передаче. При этом необходимо было сохранить неизменными 48-битную схему адресации и формат кадра, включая нижние и верхние ограничения его размера. Новый стандарт удовлетворил всем этим требованиям.

Гигабитные сети Ethernet строятся по принципу «точка - точка», в них не применяется моноканал, как в исходном 10-мегабитном Ethernet, который теперь, кстати, величают классическим Ethernet. Простейшая гигабитная сеть, показанная на схеме "а", состоит из двух компьютеров, напрямую соединенных друг с другом. В более общем случае, однако, имеется коммутатор или концентратор, к которому подсоединяется множество компьютеров, возможна также установка дополнительных коммутаторов или концентраторов (схема "б"). Но в любом случае к одному кабелю гигабитного Ethernet всегда присоединяются два устройства, ни больше, ни меньше.

Гигабитный Ethernet может работать в двух режимах: полнодуплексном и полудуплексном. «Нормальным» считается полнодуплексный, при этом трафик может идти одновременно в обоих направлениях. Этот режим используется, когда имеется центральный коммутатор, соединенный с периферийными компьютерами или коммутаторами. В такой конфигурации сигналы всех линий буферизируются, поэтому абоненты могут отправлять данные, когда им вздумается. Отправитель не прослушивает канал, потому что ему не с кем конкурировать. На линии между компьютером и коммутатором компьютер - это единственный потенциальный отправитель; передача произойдет успешно даже в том случае, если одновременно с ней ведется передача со стороны коммутатора (линия полнодуплексная). Так как конкуренции в данном случае нет, протокол CSMA/CD не применяется, поэтому максимальная длина кабеля определяется исключительно мощностью сигнала, а вопросы времени распространения шумового всплеска здесь не встают. Коммутаторы могут работать на смешанных скоростях; более того, они автоматически выбирают оптимальную скорость. Самонастройка поддерживается так же, как и в быстром Ethernet .

Полудуплексный режим работы используется тогда, когда компьютеры соединены не с коммутатором, а с концентратором. Хаб не буферизирует входящие кадры. Вместо этого он электрически соединяет все линии, симулируя моноканал обычного Ethernet. В этом режиме возможны коллизии, поэтому применяется CSMA/CD . Поскольку кадр минимального размера (то есть 64-байтный) может передаваться в 100 раз быстрее, чем в классической сети Ethernet, максимальная длина сегмента должна быть соответственно уменьшена в 100 раз. Она составляет 25 м - именно при таком расстоянии между станциями шумовой всплеск гарантированно достигнет отправителя до окончания его передачи. Если бы кабель имел длину 2500 м, то отправитель 64-байтного кадра при 1 Гбит/с успел бы много чего наделать даже за то время, пока его кадр прошел только десятую часть пути в одну сторону, не говоря уже о том, что сигнал должен еще и вернуться обратно.

Комитет разработчиков стандарта 802.3z совершенно справедливо заметил, что 25 м - это неприемлемо малая длина, и ввел два новых свойства, позволивших расширить радиус сегментов. Первое называется расширением носителя. Заключается это расширение всего-навсего в том, что аппаратура вставляет собственное поле заполнения, растягивающее нормальный кадр до 512 байт. Поскольку это поле добавляется отправителем и изымается получателем, то программному обеспечению нет до него никакого дела. Конечно, тратить 512 байт на передачу 46 байт - это несколько расточительно с точки зрения эффективности использования пропускной способности. Эффективность такой передачи составляет всего 9 %.

Второе свойство, позволяющее увеличить допустимую длину сегмента, - это пакетная передача кадров. Это означает, что отправитель может посылать не единичный кадр, а пакет, объединяющий в себе сразу много кадров. Если полная длина пакета оказывается менее 512 байт, то, как в предыдущем случае, производится аппаратное заполнение фиктивными данными. Если же кадров, ждущих передачу, хватает на то, чтобы заполнить такой большой пакет, то работа системы оказывается очень эффективной. Такая схема, разумеется, предпочтительнее расширения носителя. Эти методы позволили увеличить максимальную длину сегмента до 200 м, что, наверное, для организаций уже вполне приемлемо.

Трудно представить себе организацию, которая потратила бы немало усилий и средств на установку плат для высокопроизводительной гигабитной сети Ethernet, а потом соединила бы компьютеры концентраторами, симулирующими работу классического Ethernet со всеми его коллизиями и прочими проблемами. Концентраторы, конечно, дешевле коммутаторов, но интерфейсные платы гигабитного Ethernet все равно относительно дороги, поэтому экономия на покупке концентратора вместо коммутатора себя не оправдывает. Кроме того, это резко снижает производительность, и становится вообще непонятно, зачем было тратить деньги на гигабитные платы. Однако обратная совместимость - это нечто священное в компьютерной индустрии, поэтому, несмотря ни на что, в 802.3z подобная возможность предусматривается.

Гигабитный Ethernet поддерживает как медные, так и волоконно-оптические кабели. Работа на скорости 1 Гбит/с означает, что источник света должен включаться и выключаться примерно раз в наносекунду. Светодиоды просто не могут работать так быстро, поэтому здесь необходимо применять лазеры. Стандартом предусматриваются две операционных длины волны: 0,85 мкм (короткие волны) и 1,3 мкм (длинные). Лазеры, рассчитанные на 0,85 мкм, дешевле, но не работают с одномодовыми кабелями.

Кабели гигабитного Ethernet

Название

Тип

Длина сегмента

Преимущества

1000Base-SX

Оптоволокно

550м

Многомодовое волокно (50, 62,5 мкм)

1000Base-LX

Оптоволокно

5000м

Одномодовое (10 мкм) или многомодовое (50, 62,5 мкм) волокно

1000Base-CX

2 экранированные витые пары

25м

Экранированная витая пара

1000Base-T

4 неэкранированные витые пары

100м

Стандартная витая пара 5-й категории

Официально допускается использование трех диаметров волокна: 10, 50 и 62,5 мкм. Первое предназначено для одномодовой передачи, два других - для многомодовой. Не все из шести комбинаций являются разрешенными, а максимальная длина сегмента зависит как раз от выбранной комбинации. Числа, приведенные в таблице, - это наилучший случай. В частности, пятикилометровый кабель можно использовать только с лазером, рассчитанным на длину волны 1,3 мкм и работающим с 10-микрометровым одномодовым волокном. Такой вариант, видимо, является наилучшим для магистралей разного рода кампусов и производственных территорий. Ожидается, что он будет наиболее популярным несмотря на то, что он самый дорогой.

1000Base-CX использует короткий экранированный медный кабель. Проблема в том, что его поджимают конкуренты как сверху (1000Base-LX), так и снизу (1000Base-T). В результате сомнительно, что он завоюет широкое общественное признание.

Наконец, еще один вариант кабеля - это пучок из четырех неэкранированных витых пар. Поскольку такая проводка существует почти повсеместно, то, похоже, это и будет самый популярный гигабитный Ethernet.

Новый стандарт использует новые правила кодирования сигналов, передающихся по оптоволокну. Манчестерский код при скорости передачи данных 1 Гбит/с потребовал бы скорости изменения сигнала в 2 Гбод. Это слишком сложно и занимает слишком большую долю пропускной способности. Вместо манчестерского кодирования применяется схема, называющаяся 8В/10В. Как нетрудно догадаться по названию, каждый байт, состоящий из 8 бит, кодируется для передачи по волокну десятью битами. Поскольку возможны 1024 результирующих кодовых слова для каждого входящего байта, данный метод дает некоторую свободу выбора кодовых слов. При этом принимаются в расчет следующие правила:

Ни одно кодовое слово не должно иметь более четырех одинаковых битов подряд;

Ни в одном кодовом слове не должно быть более шести нулей или шести единиц.

Почему именно такие правила?

Во-первых, они обеспечивают достаточное количество изменений состояния в потоке данных, необходимое для того, чтобы приемник оставался синхронизированным с передатчиком.

Во-вторых, количество нулей и единиц стараются примерно выровнять. К тому же многие входящие байты имеют два возможных кодовых слова, ассоциированных с ними. Когда кодирующее устройство имеет возможность выбора кодовых слов, оно, вероятно, выберет из них то, которое сравняет число нулей и единиц.

Ссбалансированному количеству нулей и единиц потому придается такое значение, что необходимо держать постоянную составляющую сигнала на как можно более низком уровне. Тогда она сможет пройти через преобразователи без изменений. Люди, занимающиеся computer science, не в восторге от того, что преобразовательные устройства диктуют те или иные правила кодирования сигналов, но жизнь есть жизнь.

Гигабитный Ethernet, построенный на 1000Base-T, использует иную схему кодирования, поскольку изменять состояние сигнала в течение 1 нс для медного кабеля затруднительно. Здесь применяются 4 витые пары категории 5, что дает возможность параллельно передавать 4 символа. Каждый символ кодируется одним из пяти уровней напряжения. Таким образом, один сигнал может означать 00, 01,10 или 11. Есть еще специальное, служебное значение напряжения. На одну витую пару приходится 2 бита данных, соответственно, за один временной интервал система передает 8 бит по 4 витым парам. Тактовая частота равна 125 МГц, что позволяет работать со скоростью 1 Гбит/с. Пятый уровень напряжения был добавлен для специальных целей - кадрирования и управления.

1 Гбит/с - это довольно много. Например, если приемник отвлечется на какое-то дело в течение 1 мс и при этом забудет или не успеет освободить буфер, это означает, что он «проспит» примерно 1953 кадра. Может быть и другая ситуация: один компьютер выдает данные по гигабитной сети, а другой принимает их по классическому Ethernet. Вероятно, первый быстро завалит данными второго. В первую очередь переполнится буфер обмена. Исходя из этого было принято решение о внедрении в систему контроля потока (так было и в быстром Ethernet , хотя эти системы довольно сильно различаются).

Для реализации контроля потока одна из сторон посылает служебный кадр, сообщающий о том, что второй стороне необходимо приостановиться на некоторое время. Служебные кадры - это, на самом деле, обычные кадры Ethernet, в поле Туре которых записано 0x8808. Первые два байта поля данных - командные, а последующие, по необходимости, содержат параметры команды. Для контроля потока используются кадры типа PAUSE, причем в качестве параметра указывается продолжительность паузы в единицах времени передачи минимального кадра. Для гигабитного Ethernet такая единица равна 512 нс, а паузы могут длиться до 33,6 мс.

Гигабитный Ethernet был стандартизован, и комитет 802 заскучал. Тогда IEEE предложил ему начать работу над 10-гигабитным Ethernet. Начались долгие попытки найти в английском алфавите какую-нибудь букву после z. Когда стало очевидно, что такой буквы нет в природе, от старого подхода решено было отказаться и перейти к двухбуквенным индексам. Так в 2002 году появился стандарт 802.3ае. Судя по всему, появление 100-гигабитного Ethernet уже тоже не за горами.