Количество информации в текстовом сообщении. Вероятностный подход к определению количества информации "Формула Шеннона

Для того чтобы иметь возможность сравнивать различные источники сообщений и различные линии и каналы связи, необходимо ввести некоторую количественную меру, позволяющую оценивать содержащуюся в сообщении и переносимую сигналом информацию. Такая мера в виде количества информации была введена К. Шенноном на основе концепции выбора, что позволило ему построить достаточно общую математическую теорию связи.

Рассмотрим основные идеи этой теории применительно к дискретному источнику, выдающему последовательность элементарных сообщений. Попытаемся найти удобную меру количества информации, заключенной в некотором сообщении. Основная идея теории информации заключается в том, что эта мера определяется не конкретным содержанием данного сообщения, а тем фактом, что источник выбирает данное элементарной т общение из конечного множества . Эта идея оправдана тем, что на ее основании удалось получить ряд далеко идущих и в то же время нетривиальных результатов, хорошо согласующихся с интуитивными представлениями о передаче информации. Основные из этих результатов будут изложены далее.

Итак, если источник производит выбор одного элементарного сообщения () из множества алфавита , то выдаваемое им количество информации зависит не от конкретного содержания этого элемента, а от того, каким образом этот выбор осуществляется. Если выбираемый элемент сообщения заранее определен, то естественно полагать, что заключающаяся в нем информация равна нулю. Поэтому будем считать, что выбор буквы происходит с некоторой вероятностью . Эта вероятность может, вообще говоря, зависеть от того, какая последовательность предшествовала данной букве. Примем, что количество информации, заключенное в элементарном сообщении является непрерывной функцией этой вероятности , и попытаемся определить вид этой функции так, чтобы он удовлетворял некоторым простейшим интуитивным представлениям об информации.

С этой целью произведем простое преобразование сообщения, заключающееся в том, что каждую пару «букв» ,создаваемых последовательно источником, мы будем рассматривать как одну укрупненную «букву». Такое преобразование назовем укрупнением алфавита. Множество укрупненных «букв» образует алфавит объемом , так как вслед за каждым из элементов алфавита может, вообще говоря, выбираться любой из элементов. Пусть есть вероятность того, что источник произведет последовательный выбор элементов и . Тогда, рассматривая пару , как букву нового алфавита можно утверждать, что в этой паре заключено количество информации .

Естественно потребовать, чтобы количество информации, заключенное в паре букв, удовлетворяло условию аддитивности, т. е. равнялось сумме количеств информации, содержащихся в каждой из букв и первоначального алфавита . Информация, содержащаяся в букве , равна , где - вероятность выбора буквы после всех букв, предшествовавших ей. Для определения информации, содержащейся в букве , нужно учесть вероятность выбора буквы после буквы с учетом также всех букв, предшествовавших букве . Эту условную вероятность обозначим . Тогда количество информации в букве выразится функцией .

С другой стороны, вероятность выбора пары букв по правилу умножения вероятностей равна

Требование аддитивности количества информации при операции укрупнения алфавита приводит к равенству

Пусть и . Тогда для любых и должно соблюдаться уравнение

Случаи или мы исключаем из рассмотрения, так как вследствие конечного числа букв алфавита эти равенства означают, что выбор источником пары букв , является невозможным событием.

Равенство (1.3) является функциональным уравнением, из которого может быть определен вид функции . Продифференцируем обе части уравнения (1.3) по р:

.

Умножим обе части полученного уравнения на р и введем обозначение , тогда

(1.4)

Это уравнение должно быть справедливо при любом и любом . Последнее ограничение не существенно, так как уравнение (1.4) симметрично относительно и и, следовательно, должно выполняться для любой пары положительных значений аргументов, не превышающих единицы. Но это возможно лишь в том случае, если обе части (1.4) представляют некоторую постоянную величину , откуда

Интегрируя полученное уравнение, найдем

, (1.5)

где - произвольная постоянная интегрирования.

Формула (1.5) определяет класс функций , выражающих количество информации при выборе буквы , имеющей вероятность , и удовлетворяющих условию аддитивности. Для определения постоянной интегрирования воспользуемся высказанным выше условием, по которому заранее предопределенный элемент сообщения, т. е. имеющий вероятность , не содержит информации. Следовательно, , откуда сразу следует, что . - основание натуральных логарифмов), или, другими словами, равна информации, содержащейся в сообщении о том, что наступило событие, вероятность которого равнялась

считая, что логарифм берется по любому основанию, лишь бы это основание сохранялось на протяжении решаемой задачи.

Благодаря свойству аддитивности информации выражения (1.6) позволяют определить количество информации не только в букве сообщения, но и в любом сколь угодно длинном сообщении. Нужно лишь принять за вероятность выбора этого сообщения из всех возможных с учетом ранее выбранных сообщений.

Лабораторная работа № 1

ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА ИНФОРМАЦИИ В СООБЩЕНИИ

1 Цель и содержание

Ввести понятие «количество информации»; сформировать у студентов понимание вероятности, равновероятных и неравновероятных событий; научить студентов определять количество информации.

Данное практическое занятие содержит сведения о подходах к определению количества информации в сообщении.

2 Теоретическое обоснование

2.1 Введение понятия «количество информации»

В основе нашего мира лежат три составляющие – вещество, энергия и информация. А как много в мире вещества, энергии и информации? Можно измерить количество вещества, например взвесив его. Можно определить количество тепловой энергии в Джоулях, электроэнергии в киловатт/часах и т. д.

А можно ли измерить количество информации и как это сделать? Оказывается, информацию также можно измерять и находить ее количество. Количество информации в сообщении зависит от его информативности. Если в сообщении содержатся новые и понятные сведения , то такое сообщение называется информативным .

Например, содержит ли информацию учебник информатики для студентов, обучающихся в университете? (Ответ – да). Для кого он будет информативным – для студентов, обучающихся в университете или учеников 1 класса? (Ответ – для студентов, обучающихся в университете он будет информативным, так как в нем содержится новая и понятная ему информация, а для учеников 1 класса он информативным не будет, так как информация для него непонятна).

Количество информации в некотором сообщении равно нулю, если оно с точки зрения конкретного человека неинформативно. Количество информации в информативном сообщении больше нуля.

Но информативность сообщения сама по себе не дает точного определения количества информации. По информативности можно судить только о том, много информации или мало.

2.2 Вероятностный подход к определению количества информации

Если некоторое сообщение является информативным, следовательно, оно пополняет нас знаниями или уменьшает неопределенность наших знаний. Другими словами сообщение содержит информацию, если оно приводит к уменьшению неопределенности наших знаний.

Например, мы бросаем монету и пытаемся угадать, какой стороной она упадет на поверхность. Возможен один результат из двух: монета окажется в положение «орел» или «решка». Каждое из этих двух событий окажется равновероятным, т. е. ни одно из них не имеет преимущества перед другим.

Перед броском монеты мы точно не знаем, как она упадет. Это событие предсказать невозможно, т. е. перед броском существует неопределенность нашего знания (возможно одно событие из двух). После броска наступает полная определенность знания, т. к. мы получает зрительное сообщение о положении монеты. Это зрительное сообщение уменьшает неопределенность нашего знания в два раза, т. к. из двух равновероятных событий произошло одно.

Если мы кидаем шестигранный кубик, то мы также не знаем перед броском, какой стороной он упадет на поверхность. В этом случае, возможно получить один результат из шести равновероятных . Неопределенность знаний равна шести , т. к. именно шесть равновероятных событий может произойти. Когда после броска кубика мы получаем зрительное сообщение о результате, то неопределенность наших знаний уменьшается в шесть раз .

Контрольный пример . На экзамене приготовлено 30 билетов.

  1. Чему равно количество событий, которые могут произойти при вытягивании билета? (Ответ – 30).
  2. Равновероятны эти события или нет? (Ответ – равновероятны).
  3. Чему равна неопределенность знаний студента перед тем как он вытянет билет? (Ответ – 30).
  4. Во сколько раз уменьшится неопределенность знаний после того как студент билет вытянул? (Ответ – в 30 раз).
  5. Зависит ли этот показатель от номера вытянутого билета? (Ответ – нет, т. к. события равновероятны).

Можно сделать следующий вывод.

Чем больше начальное число возможных равновероятных событий, тем в большее количество раз уменьшается неопределенность наших знаний, и тем большее количество информации будет содержать сообщение о результатах опыта.

Для того, чтобы количество информации имело положительное значение, необходимо получить сообщение о том, что произошло событие как минимум из двух равновероятных. Такое количество информации, которое находится в сообщении о том, что произошло одно событие из двух равновероятных, принято за единицу измерения информации и равно 1 биту .

Таким образом 1 бит – это количество информации, уменьшающее неопределенность знаний в два раза .

Группа из 8 битов информации называется байтом . Если бит – минимальная единица информации, то байт ее основная единица. Существуют производные единицы информации: килобайт (Кбайт, Кбт), мегабайт (Мбайт, Мбт) и гигабайт (Гбайт, Гбт).

1 Кбт = 1024 байта = 2 10 (1024) байтов.

1 Мбт = 1024 Кбайта = 2 20 (1024 1024) байтов.

1 Гбт = 1024 Мбайта = 2 30 (1024 1024 1024) байтов.

Существует формула, которая связывает между собой количество возможных событий и количество информации:

N = 2 i ,

где N – количество возможных вариантов;

I – количество информации.

Отсюда можно выразить количество информации в сообщении об одном из N равновероятных событий: I = log 2 N .

Контрольный пример . Пусть имеется колода карт, содержащая 32 различные кары. Мы вытаскиваем одну карту из колоды. Какое количество информации мы получим?

Количество возможных вариантов выбора карты из колоды – 32 (N = 32) и все события равновероятны. Воспользуемся формулой определения количества информации для равновероятных событий I = log 2 N = log 2 32 = 5 (32 = 2 i ; 2 5 = 2 i ; отсюда I = 5 бит).

Если количество возможных вариантов N является целой степенью числа 2, то производить вычисления по формуле N = 2 i достаточно легко. Если же количество возможных вариантов не является целой степенью числа 2, то необходимо воспользоваться инженерным калькулятором; формулу I = log 2 N представить как и произвести необходимые вычисления.

Контрольный пример . Какое количество информации можно получить при угадывании числа из интервала от 1 до 11?

В этом примере N = 11. Число 11 не является степенью числа 2, поэтому воспользуемся инженерным калькулятором и произведем вычисления для определения I (количества информации). I = 3,45943 бит.

2.3 Неравновероятные события

Очень часто в жизни мы сталкиваемся с событиями, которые имеют разную вероятность реализации. Например:

1. Когда сообщают прогноз погоды, то сведения о том, что будет дождь, более вероятны летом, а сообщение о снеге – зимой.

2. Если вы – лучший студент в группе, то вероятность сообщения о том, что за контрольную работу вы получите 5, больше, чем вероятность получения двойки.

3. Если в мешке лежит 10 белых шаров и 3 черных, то вероятность достать черный шар меньше, чем вероятность вытаскивания белого.

Как вычислить количество информации в сообщении о таком событии? Для этого необходимо использовать следующую формулу:

где I – это количество информации;

p – вероятность события.

Вероятность события выражается в долях единицы и вычисляется по формуле: где K – величина, показывающая, сколько раз произошло интересующее нас событие; N – общее число возможных исходов какого-то процесса.

Контрольный пример . В мешке находятся 20 шаров. Из них 15 белых и 5 красных. Какое количество информации несет сообщение о том, что достали: а) белый шар; б) красный шар. Сравните ответы.

1. Найдем вероятность того, что достали белый шар:

2. Найдем вероятность того, что достали красный шар:

3. Найдем количество информации в сообщении о вытаскивании белого шара: бит.

4. Найдем количество информации в сообщении о вытаскивании красного шара: бит.

Количество информации в сообщении о том, что достали белый шар, равно 1, 1547 бит. Количество информации в сообщении о том, что достали красный шар, равно 2 бит.

При сравнении ответов получается следующая ситуация: вероятность вытаскивания белого шара была больше, чем вероятность красного шара, а информации при этом получилось меньше. Это не случайность, а закономерная, качественная связь между вероятностью события и количеством информации в сообщении об этом событии.

2.4 Алфавитный подход к измерению количества информации

При определения количества информации с помощью вероятностного подхода количество информации зависит от ее содержания, понятности и новизны. Однако любое техническое устройство не воспринимает содержание информации. Поэтому с этой точки зрения используется другой подход к измерению информации – алфавитный.

Предположим, что у нас есть текст, написанный на русском языке. Он состоит из букв русского алфавита, цифр, знаков препинания. Для простоты будем считать, что символы в тексте присутствуют с одинаковой вероятностью.

Множество используемых в тексте символов называется алфавитом. В информатике под алфавитом понимают не только буквы, но и цифры, и знаки препинания, и другие специальные знаки. У алфавита есть размер (полное количество его символов), который называется мощностью алфавита. Обозначим мощность алфавита через N . Тогда воспользуемся формулой для нахождения количества информации из вероятностного подхода: I = log 2 N . Для расчета количества информации по этой формуле нам необходимо найти мощность алфавита N .

Контрольный пример . Найти объем информации, содержащейся в тексте из 3000 символов, и написанном русскими буквами.

1. Найдем мощность алфавита:

N = 33 русских прописных буквы + 33 русских строчных буквы + 21 специальный знак = 87 символов.

2. Подставим в формулу и рассчитаем количество информации:

I = log 2 87 = 6,4 бита.

Такое количество информации – информационный объем – несет один символ в русском тексте. Теперь, чтобы найти количество информации во всем тексте, нужно найти общее количество символов в нем и умножить на информационный объем одного символа. Пусть в тексте 3000 символов.

6,4 3000 = 19140 бит.

Теперь дадим задание переводчику перевести этот текст на немецкий язык. Причем так, чтобы в тексте осталось 3000 символов. Содержание текста при этом осталось точно такое же. Поэтому с точки зрения вероятностного подхода количество информации также не изменится, т. е. новых и понятных знаний не прибавилось и не убавилось.

Контрольный пример . Найти количество информации, содержащейся в немецком тексте с таким же количеством символов.

1. Найдем мощность немецкого алфавита:

N = 26 немецких прописных буквы + 26 немецких строчных букв + 21 специальный знак = 73 символа.

2. Найдем информационный объем одного символа:

I = log 2 73 = 6,1 бит.

3. Найдем объем всего текста:

6,1 3000 = 18300 бит.

Сравнивая объемы информации русского текста и немецкого, мы видим, что на немецком языке информации меньше, чем на русском. Но ведь содержание не изменилось! Следовательно, при алфавитном подходе к измерению информации ее количество не зависит от содержания, а зависит от мощности алфавита и количества символов в тексте. С точки зрения алфавитного подхода, в толстой книге информации больше, чем в тонкой. При этом содержание книги не учитывается.

Правило для измерения информации с точки зрения алфавитного подхода:

  1. Найти мощность алфавита – N.
  2. Найти информационный объем одного символа – I = log 2 N .
  3. Найти количество символов в сообщении – K .
  4. Найти информационный объем всего сообщения – K I ..

Контрольный пример . Найти информационный объем страницы компьютерного текста.

Примечание . В компьютере используется свой алфавит, который содержит 256 символов.

1. Найдем информационный объем одного символа:

I = log 2 N, где N = 256.

I = log 2 256 = 8 бит = 1 байт .

2. Найдем количество символов на странице (примерно, перемножив количество символов в одной строке на количество строк на странице).

40 символов на одной строке 50 строк на странице = 2000 символов.

3. Найдем информационный объем всей страницы:

1 байт 2000 символов = 2000 байт.

Информационный объем одного символа несет как раз 1 байт информации. Поэтому достаточно подсчитать количество символов в тексте, которое и даст объем текста в байтах.

Например, если в тексте 3000 символов, то его информационный объем равен 3000 байтам.

3 Задания

1. Какое количество информации будет получено при отгадывании числа из интервала от 1 до 64; от 1 до 20?

2. Какое количество информации будет получено после первого хода в игре «крестики-нолики» на поле 3 x 3; 4 x 4?

3. Сколько могло произойти событий, если при реализации одного из них получилось 6 бит информации?

4. В коробке лежат кубики: 10 красных, 8 зеленых, 5 желтых, 12 синих. Вычислите вероятность доставания кубика каждого цвета и количество информации, которое при этом будет получено.

5. В коробке лежат 36 кубиков: красные, зеленые, желтые, синие. Сообщение о том, что достали зеленый кубик, несет 3 бита информации. Сколько зеленых кубиков было в коробке.

6. В группе учатся 12 девочек и 8 мальчиков. Какое количество информации несет сообщение, что к доске вызовут девочку; мальчика?

7. Найти объем текста, записанного на языке, алфавит которого содержит 128 символов и 2000 символов в сообщении.

8. Найти информационный объем книги в 130 страниц.

9. Расположите в порядке возрастания:

1 Мбт, 1010 Кбт, 10 000 бит, 1 Гбт, 512 байт.

10. В пропущенные места поставьте знаки сравнения <, >, =:

1 Гбт … 1024 Кбт … 10 000 бит … 1 Мбт … 1024 байт.

4 Контрольные вопросы

1. Какое сообщение называется информативным?

2. Что значит событие равновероятно; неравновероятно?

3. Что такое 1 бит информации?

4. Как определить количество информации для равновероятных событий?

5. Как определить количество информации для неравновероятных событий?

6. В чем заключается алфавитный подход к измерению количества информации

5 Домашняя работа

1.Установите знаки сравнения (<, > , =):

1байт 32бита 4байта 1Мбайт 1024Кбайт

2.Упорядочите по убыванию:

5байт 25бит 1Кбайт 1010байт

3.Упорядочите по возрастанию:

2Мбайта 13байт 48бит 2083Кбайт

4.Книга содержит 100 страниц; на каждой странице по 35 строк, в каждой строке - 50 символов. Рассчитать объем информации, содержащийся в книге.

5.Имеется следующая черно-белая картинка. Определите информационный объем этой картинки.

6.В языке племени Мумбо-Юмбо всего 129 разных слов. Сколько бит нужно чтобы закодировать любое из этих слов?

8.Дана черно-белая картинка. Определите количество информации, содержащейся в картинке.

9.Информационный объем черно-белой картинки равен 6000бит. Какое количество точек содержит картинка

Свойства информации

Понятие «информация» используется многими научными дисциплинами, имеет большое количество разнообразных свойств, но каждая дисциплина обращает внимание на те свойства информации, которые ей наиболее важны. В рамках нашего рассмотрения наиболее важными являются такие свойства, как дуализм, полнота, достоверность, адекватность, доступность, актуальность . Рассмотрим их подробнее.

Дуализм информации характеризует ее двойственность. С одной стороны, информация объективна в силу объективности данных, с другой – субъективна, в силу субъективности применяемых методов. Например, два человека читают одну и ту же книгу и получают подчас весьма разную информацию. Более объективная информация применяет методы с меньшим субъективным элементом.

Полнота информации характеризует степень достаточности данных для принятия решения или создания новых данных на основе имеющихся. И неполный и избыточный наборы данных затрудняют получение информации и принятие адекватного решения.

Достоверность информации – это свойство, характеризующее степень соответствия информации реальному объекту с необходимой точностью. При работе с неполным набором данных достоверность информации может характеризоваться вероятностью, например, при бросании монеты выпадет герб с вероятностью 50 %.

Адекватность информации выражает степень соответствия создаваемого с помощью информации образа реальному объекту, процессу, явлению. Получение адекватной информации затрудняется при недоступности адекватных методов.

Доступность информации – это возможность получения информации при необходимости. Доступность складывается из двух составляющих: доступности данных и доступности методов. Отсутствие хотя бы одного дает неадекватную информацию.

Актуальность информации. Информация существует во времени, т. к. существуют во времени все информационные процессы. Информация, актуальная сегодня, может стать совершенно ненужной по истечении некоторого времени. Например, программа телепередач на нынешнюю неделю будет неактуальна для многих телезрителей на следующей неделе.

Атрибутивные свойства (атрибут – неотъемлемая часть чего-либо). Важнейшими среди них являются - дискретность (информация состоит из отдельных частей, знаков) и непрерывность (возможность накапливать информацию).

Во всякой информации присутствует субъективная компонента. А возможно ли вообще объективно измерить количество информации? Важнейшим результатом теории информации является вывод о том, что в определенных условиях, можно, пренебрегая качественными особенностями информации, выразить ее количество числом , а следовательно, сравнивать количество информации, содержащейся в различных группах данных.



Количеством информации называют числовую характеристику информации, отражающую ту степень неопределенности, которая исчезает после получения информации.

Понятия «информация», «неопределенность», «возможность выбора» тесно связаны. Получаемая информация уменьшает число возможных вариантов выбора (т.е. неопределенность), а полная информация не оставляет вариантов вообще.

Какое количество информации содержится, к примеру, в тексте романа «Война и мир», во фресках Рафаэля или в генетическом коде человека? Возможно ли объективно измерить количество информации?

В научном плане понятие «информация» связывается с вероят­ностью осуществления того или иного события.

Вероятность – числовая характеристика степени возможности наступления события. Вероятность достоверного события (обяза­тельно должно произойти) равна 1, невозможного события (не про­изойдет никогда) – 0. Вероятность случайного события лежит в ин­тервале (0, 1). Например, вероятность выпадения «орла» при под­брасывании монеты равна 1/2, а вероятность выпадения каждой из граней при игре в кости – 1/6.

Случайным называется событие , которое может произойти, а может и не произойти. Примерами случайных событий могут слу­жить выпадение «орла» при подбрасывании монеты или число оч­ков (т.е. выпадение определенной грани) при игре в кости.

Американский инженер Р. Хартли (1928) процесс получения ин­формации рассматривал как выбор одного сообщения из конечного заранее заданного множества из N равновероятных сообщений, а количество информации I , содержащееся в выбранном сообщении, определяет как двоичный логарифм N .

Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли I = log 2 N можно вычислить, какое количество информации для этого требуется: I = Iog 2 l00 = 6,644 бит, т.е. сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6,644 бит.

Американский ученый Клод Шеннон предложил в 1948 г. другую формулу определения количества ин­формации, учитывающую возможную неодинаковую вероятность сообщений в наборе:

I = - (P 1 log 2 P 1 + Р 2 log 2 Р 2 + . . . + P N log 2 P N ),

где P i – вероятность того, что именно i -e сообщение выделено в наборе из N сообщений.

Если вероятности P 1 , Р 2 , …, P N равны, то каждая из них равна 1/N , и формула Шеннона превращается в формулу Хартли.

Анализ формулы показывает, что чем выше вероятность собы­тия, тем меньшее количество информации возникает после его осу­ществления, и наоборот. Если вероятность равна 1 (событие досто­верно), количество информации равно 0.

Если вероятность свершения или несвершения какого-либо со­бытия одинакова, т.е. равна 1/2, то количество информации, кото­рое несет с собой это событие, равно 1. Это и есть единица измере­ния информации, которая получила наименование бит .

Бит можно также определить как количество информа­ции, которое содержит один разряд двоичного числа (отсюда назва­ние «бит»: binary digit – двоичный разряд). Бит в теории информа­ции – количество информации , необходимое для различения двух равновероятных сообщений .

Количество информации, равное 8 битам, называется байтом . В восьми разрядах можно записать 256 различных целых двоичных чисел от 00000000 до 11111111. Широко используются более крупные производные единицы информации:

1 Килобайт (Кбайт) = 1024 байт;

1 Мегабайт (Мбайт) = 1024 Кбайт;

1 Гигабайт (Гбайт) = 1024 Мбайт.

1 Терабайт (Тбайт) = 1024 Гбайт;

1 Петабайт (Пбайт) = 1024 Тбайт.

























































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: закрепление навыков решения задач с помощью алфавитного и содержательного подходов.

Задачи урока:

  • Воспитательная – формировать информационную культуру учащихся, внимательность, аккуратность, дисциплинированность, усидчивость, терпимость, умение работать в группе.
  • Образовательная – повторить алфавитный и содержательный подходы на нахождение количества информации, сформировать навыки решения задач с помощью формулы Хартли, решить несколько задач.
  • Развивающая – развивать логическое мышление, внимательность, самоконтроль.

Тип урока: Комбинированный урок. Работа в группах.

Формы учебной деятельности учащихся: индивидуальная, групповая.

Средства обучения: компьютерный класс, интерактивная доска.

План урока:

  • Мотивация (2 минуты).
  • Актуализация опорных знаний (5 минут).
  • Совместное решение задач по теме (10 минут).
  • Физминутка (3 минуты).
  • Организация групповой работы, определение групп (1 минута).
  • Решение задач в группах на оценку, самоконтроль (15 минут).
  • (5 минут).
  • (1 минута).
  • Домашнее задание (1 минута).
  • Рефлексия (2 минуты).

Ход урока

Мотивация. Определение цели и задач урока.

Здравствуйте!

В настоящее время на экзаменах по информатике, в том числе ЕГЭ (часть А, B) есть много заданий по теме “Определение количества информации”. Цель данного урока – закрепление навыков решения задач с помощью алфавитного и содержательного подходов .

Для того чтобы хорошо понять решение задач на нахождение количества информации, необходимо прорешать задачи разного типа. Для этого давайте вспомним…

Актуализация опорных знаний (повторение).

С помощью какой формулы мы определяем количество информации в различных сообщениях, событиях? (Используется одна и та же формула Хартли, выведенная из вероятностно-статистического подхода К.-Э. Шеннона N=2 i , i=log 2 N, где i – количество информации (в битах), N – количество информационных сообщений (событий). В одном случае рассматриваются равновероятностные события, в другом – мощность алфавита).

Чем отличается алфавитный и содержательный подходы для определения количества информации? (При алфавитном подходе рассматривается текст как совокупность символов, а при содержательном – содержание происходящих событий. Первый подход более объективен, так как позволяет избежать двусмысленности происходящих событий.). При содержательном подходе рассматриваются равновероятностные события, поэтому для решения задач необходимо знать количество всех возможных событий. Для нахождения количества информации с использованием алфавитного подхода необходимо знать мощность используемого алфавита. Так как определяем информационную емкость не одного символа, а нескольких взаимосвязанных символов в слове, предложении, тексте, то необходимо знать и количество символов в слове.

Совместное решение задач.

Давайте решим несколько задач по данной теме.

1. Сообщение, записанное буквами 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?

Решение:

Один символ алфавита несет в себе 6 бит информации (2^6=64),
Соответственно сообщение из 20 символов несет 6 х 20 = 120 бит.
Ответ: 120 бит.

2. Жители планеты Принтер используют алфавит из 256 знаков, а жители планеты Плоттер - из 128 знаков. Для жителей какой планеты сообщение из 10 знаков несет больше информации и на сколько?

Решение:

Один символ алфавита жителей планеты Принтер несет в себе 8 бит информации (2^8=256), а жителей планеты Плоттер - 7 бит информации (2^7=128). Соответственно сообщение из 10 знаков для жителей Принтер несет 10 х 8 = 80 бит, а для жителей Плоттер - 10 х 7 = 70 бит
80 - 70 = 10 бит.
Ответ: Больше для жителей Принтер на 10 бит.

3. Для кодирования нотной записи используется 7 значков-нот. Каждая нота кодируется одним и тем же минимально возможным количеством бит. Чему равен информационный объем сообщения, состоящего из 180 нот?

Решение:

Каждая нота кодируется 3 битами (2^2=4<7<2^3=8).
Информационный объем сообщения равен 180 х 3 = 540 бит.
Ответ: 540 бит.

4. Цветное растровое графическое изображение, палитра которого включает в себя 65 536 цветов, имеет размер 100Х100 точек (пикселей). Какой объем видеопамяти компьютера (в Кбайтах) занимает это изображение в формате BMP?

Решение:

65536 =2^16, I = 16 бит на кодирование 1 цвета. Все изображение состоит из 10х10=10 000 точек. Следовательно, количество информации, необходимое для хранения изображения целиком 16*10 000=160 000 бит = 20 000 байт = 19,5 Кб.
Ответ: 19,5 килобайт.

5. В велокроссе участвуют 119 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Каков информационный объем сообщения, записанного устройством, после того как промежуточный финиш прошли 70 велосипедистов?

Решение:

N=119 (2^6=64<7<2^7=128), I ≈7 бит необходимо для кодирования одного спортсмена, поскольку была записана информация о 70 спортсменах, объем сообщения составил: 7 х 70 = 490 бит.
Ответ: 490 бит.

Сложная задача

6. Словарный запас некоторого языка составляет 256 слов, каждое из которых состоит точно из 4 букв. Сколько букв в алфавите языка?

Решение:

При алфавитном подходе к измерению количества информации известно, что если мощность алфавита N (количество букв в алфавите), а максимальное количество букв в слове, записанном с помощью этого алфавита – m, то максимально возможное количество слов определяется по формуле L=N m . Из условия задачи известно количество слов (L=256) и количество букв в каждом слове (m=4). Надо найти N из получившегося уравнения 256=N 4 . Следовательно, N=4.
Ответ: 4 буквы.

Физминутка

(дети сели ровно, расслабились, закрыли глаза, звучит спокойная музыка , учитель комментирует):

Более тысячи биологически активных точек на ухе известно в настоящее время, поэтому, массируя их, можно опосредованно воздействовать на весь организм. Нужно стараться так помассировать ушные раковины, чтобы уши «горели». Давайте выполним несколько массажных движений:

  1. потяните за мочки сверху вниз;
  2. потяните ушные раковины вверх;
  3. потяните ушные раковины к наружи;
  4. выполните круговые движения ушной раковины по часовой стрелке и против.

Далее массажируем определенные места на голове, что активизирует кровообращение в кончиках пальчиков, предотвращает застой крови не только в руках, но и во всем теле, так как кончики пальцев непосредственно связаны с мозгом. Массаж проводится в следующей последовательности:

  1. найдите точку на лбу между бровями («третий глаз») и помассируйте ее;
  2. далее парные точки по краям крыльев носа (помогает восстановить обоняние);
  3. точку посередине верхнего края подбородка;
  4. парные точки в височных ямках;
  5. три точки на затылке в углублениях;
  6. парные точки в области козелка уха.

Нужно помнить, что любое упражнение может принести пользу, не оказать никакого воздействия, принести вред. Поэтому нужно выполнять его очень старательно, обязательно в хорошем настроении.

Организация групповой работы, определение групп.

Размещение обучающихся за компьютеры, где у всех открыто задание (Презентация задач) не более 3 человек за каждый ПК. С собой дети берут только тетрадь и ручку для решения. Здесь необходимо объяснить, что в презентации нужно будет ориентироваться по ссылкам, в том числе и выбрав правильный вариант ответа, всего задач – 5 (по 3 минуты на задачу). В конце автоматически выйдет результат на экран монитора в виде отметки за урок. Детей можно ознакомить с критериями выставления отметок за решение данного типа задач:

1 верная задача – отметка «2»
2 верные задачи – отметка «3»
3 верные задачи – отметка «4»
4 верные задачи – отметка «4»
5 верных задач – отметка «5».

Совместное обсуждение типичных ошибок .

– проверка, разрешение вопросов по решению задач:

1. Сколько информации несет сообщение о том, что было угадано число в диапазоне целых чисел от 684 до 811?

Решение:

811-684=128 (включая число 684), N=128, i=7 бит (2^7=128).
Ответ: 7 бит информации.

2. В некоторой стране автомобильный номер длиной 7 символов составляется из заглавных букв (всего используется 26 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер – одинаковым и минимально возможным количеством байт. Определите объем памяти, необходимый для хранения 20 автомобильных номеров.

Решение:

всего используется 26 букв + 10 цифр = 36 символов для кодирования 36 вариантов необходимо использовать 6 бит, так как 2^5=32<36<2^6=64, т.е. пяти бит не хватит (они позволяют кодировать только 32 варианта), а шести уже достаточно таким образом, на каждый символ нужно 6 бит (минимально возможное количество бит).
полный номер содержит 7 символов, каждый по 6 бит, поэтому на номер требуется 6 x 7 = 42 бита.
По условию каждый номер кодируется целым числом байт (в каждом байте – 8 бит), поэтому требуется 6 байт на номер (5x8=40<42<6x8=48), пяти байтов не хватает, а шесть – минимально возможное количество на 20 номеров нужно выделить 20x6=120 байт.
Ответ: 120 байт.

3. Каждая клетка поля 8×8 кодируется минимально возможным и одинаковым количеством бит. Решение задачи о прохождении "конем" поля записывается последовательностью кодов посещенных клеток. Каков объем информации после 11 сделанных ходов? (Запись решения начинается с начальной позиции коня).

Решение:

Всего клеток 8х8 = 64. Для кодирования 1 клетки необходимо 6 бит (2^6=64). В записи решения будет описано 12 клеток (11 ходов+начальная позиция). Объем информации записи 12х6 = 72 бита = 72:8 = 9 байт.
Ответ: 9 байт.

4. Информационное сообщение объемом 1,5 килобайта содержит 3072 символа. Сколько символов содержит алфавит, с помощью которого было записано это сообщение?

Решение:

1,5 Кбайта = 1,5*1024*8 = 12288 бит. 12288/3072 = 4 бита - информационный вес одного символа. Мощность алфавита равна 2^4=16 символов. Ответ: 16 символов.

5. Мощность алфавита равна 64. Сколько Кбайт памяти потребуется, чтобы сохранить 128 страниц текста, содержащего в среднем 256 символов на каждой странице?

Решение:

Всего требуется сохранить 128 х 256 = 32768 символов.
Информационный вес 1 символа 6 бит (2^6=64). Чтобы сохранить весь текст, потребуется 32768 х 6 = 196608 бит = 196608: 8 =24576 байт = 24576: 1024 = 24 Кб.
Ответ: 24 Кб.

Подведение итогов, выставление отметок .

объявление оценок за урок.

Домашнее задание:

к следующему уроку составить 1 задачу на нахождение количества информации, используя алфавитный или содержательный подход и решить ее в тетради.

Рефлексия

(раздать заготовленные листочки – Приложение 1 )

ПРАВИЛА НАПИСАНИЯ СИНКВЕЙНА

(Синквейн – это способ на любом этапе урока, изучения темы, проверить, что находится у обучающихся на уровне ассоциаций).

1 строчка – одно слово – название стихотворения, тема, обычно существительное.
2 строчка – два слова (прилагательные или причастия). Описание темы, слова можно соединять союзами и предлогами.
3 строчка – три слова (глаголы). Действия, относящиеся к теме.
4 строчка – четыре слова – предложение. Фраза, которая показывает отношение автора к теме в 1-ой строчке.
5 строчка – одно слово – ассоциация, синоним, который повторяет суть темы в 1-ой строчке, обычно существительное.

Данный вид рефлексии будет полезен учителю для проведения самоанализа.

ВСЕМ СПАСИБО!

Задачи были взяты из разных источников сети Интернет.

Рассмотрены основы информатики и описаны современные аппаратные средства персонального компьютера. Сформулированы подходы к определению основных понятий в области информатики и раскрыто их содержание. Дана классификация современных аппаратных средств персонального компьютера и приведены их основные характеристики. Все основные положения иллюстрированы примерами, в которых при решении конкретных задач используются соответствующие программные средства.

Книга:

Разделы на этой странице:

Как уже отмечалось, понятие информации можно рассматривать при различных ограничениях, накладываемых на ее свойства, т. е. при различных уровнях рассмотрения. В основном выделяют три уровня – синтаксический, семантический и прагматический. Соответственно на каждом из них для определения количества информации применяют различные оценки.

На синтаксическом уровне для оценки количества информации используют вероятностные методы, которые принимают во внимание только вероятностные свойства информации и не учитывают другие (смысловое содержание, полезность, актуальность и т. д.). Разработанные в середине XX в. математические и, в частности, вероятностные методы позволили сформировать подход к оценке количества информации как к мере уменьшения неопределенности знаний. Такой подход, называемый также вероятностным, постулирует принцип: если некоторое сообщение приводит к уменьшению неопределенности наших знаний, то можно утверждать, что такое сообщение содержит информацию. При этом сообщения содержат информацию о каких-либо событиях, которые могут реализоваться с различными вероятностями. Формулу для определения количества информации для событий с различными вероятностями и получаемых от дискретного источника информации предложил американский ученый К. Шеннон в 1948 г. Согласно этой формуле количество информации может быть определено следующим образом:


где I – количество информации; N – количество возможных событий (сообщений); p i – вероятность отдельных событий (сообщений); ? – математический знак суммы чисел.

Определяемое с помощью формулы (1.1) количество информации принимает только положительное значение. Поскольку вероятность отдельных событий меньше единицы, то соответственно выражение log^,– является отрицательной величиной и для получения положительного значения количества информации в формуле (1.1) перед знаком суммы стоит знак минус.

Если вероятность появления отдельных событий одинаковая и они образуют полную группу событий, т. е.


то формула (1.1) преобразуется в формулу Р. Хартли:


В формулах (1.1) и (1.2) отношение между количеством информации и соответственно вероятностью, или количеством, отдельных событий выражается с помощью логарифма. Применение логарифмов в формулах (1.1) и (1.2) можно объяснить следующим образом. Для простоты рассуждений воспользуемся соотношением (1.2). Будем последовательно присваивать аргументу N значения, выбираемые, например, из ряда чисел: 1, 2, 4, 8, 16, 32, 64 и т. д. Чтобы определить, какое событие из N равновероятных событий произошло, для каждого числа ряда необходимо последовательно производить операции выбора из двух возможных событий. Так, при N = 1 количество операций будет равно 0 (вероятность события равна 1), при N = 2, количество операций будет равно 1, при N = 4 количество операций будет равно 2, при N = 8, количество операций будет равно 3 и т. д. Таким образом получим следующий ряд чисел: 0, 1, 2, 3, 4, 5, 6 и т. д., который можно считать соответствующим значениям функции I в соотношении (1.2). Последовательность значений чисел, которые принимает аргумент N, представляет собой ряд, известный в математике как ряд чисел, образующих геометрическую прогрессию, а последовательность значений чисел, которые принимает функция I , будет являться рядом, образующим арифметическую прогрессию. Таким образом, логарифм в формулах (1.1) и (1.2) устанавливает соотношение между рядами, представляющими геометрическую и арифметическую прогрессии, что достаточно хорошо известно в математике.

Для количественного определения (оценки) любой физической величины необходимо определить единицу измерения, которая в теории измерений носит название меры. Как уже отмечалось, информацию перед обработкой, передачей и хранением необходимо подвергнуть кодированию. Кодирование производится с помощью специальных алфавитов (знаковых систем). В информатике, изучающей процессы получения, обработки, передачи и хранения информации с помощью вычислительных (компьютерных) систем, в основном используется двоичное кодирование, при котором используется знаковая система, состоящая из двух символов 0 и 1. По этой причине в формулах (1.1) и (1.2) в качестве основания логарифма используется цифра 2.

Исходя из вероятностного подхода к определению количества информации эти два символа двоичной знаковой системы можно рассматривать как два различных возможных события, поэтому за единицу количества информации принято такое количество информации, которое содержит сообщение, уменьшающее неопределенность знания в два раза (до получения событий их вероятность равна 0,5, после получения – 1, неопределенность уменьшается соответственно: 1/0,5 = 2, т. е. в 2 раза). Такая единица измерения информации называется битом (от англ. слова binary digit – двоичная цифра). Таким образом, в качестве меры для оценки количества информации на синтаксическом уровне, при условии двоичного кодирования, принят один бит.

Следующей по величине единицей измерения количества информации является байт, представляющий собой последовательность, составленную из восьми бит, т. е.

1 байт = 2 3 бит = 8 бит.

В информатике также широко используются кратные байту единицы измерения количества информации, однако в отличие от метрической системы мер, где в качестве множителей кратных единиц применяют коэффициент 10n, где п = 3, 6, 9 и т. д., в кратных единицах измерения количества информации используется коэффициент 2n. Выбор этот объясняется тем, что компьютер в основном оперирует числами не в десятичной, а в двоичной системе счисления.

Кратные байту единицы измерения количества информации вводятся следующим образом:

1 Килобайт (Кбайт) = 2 10 байт = 1024 байт,

1 Мегабайт (Мбайт) = 2 10 Кбайт = 1024 Кбайт,

1 Гигабайт (Гбайт) = 2 10 Мбайт = 1024 Мбайт,

1 Терабайт (Тбайт) = 2 10 Гбайт = 1024 Гбайт,

1 Петабайт (Пбайт) = 2 10 Тбайт = 1024 Тбайт,

1 Экзабайт (Эбайт) = 2 10 Пбайт = 1024 Пбайт.

Единицы измерения количества информации, в названии которых есть приставки «кило», «мега» и т. д., с точки зрения теории измерений не являются корректными, поскольку эти приставки используются в метрической системе мер, в которой в качестве множителей кратных единиц используется коэффициент 10n, где п = 3, 6, 9 и т. д. Для устранения этой некорректности международная организацией International Electrotechnical Commission, занимающаяся созданием стандартов для отрасли электронных технологий, утвердила ряд новых приставок для единиц измерения количества информации: киби (kibi), меби (mebi), гиби (gibi), теби (tebi), пети (peti), эксби (exbi). Однако пока используются старые обозначения единиц измерения количества информации, и требуется время, чтобы новые названия начали широко применяться.

Вероятностный подход используется и при определении количества информации, представленной с помощью знаковых систем. Если рассматривать символы алфавита как множество возможных сообщений N, то количество информации, которое несет один знак алфавита, можно определить по формуле (1.1). При равновероятном появлении каждого знака алфавита в тексте сообщения для определения количества информации можно воспользоваться формулой (1.2).

Количество информации, которое несет один знак алфавита, тем больше, чем больше знаков входит в этот алфавит. Количество знаков, входящих в алфавит, называется мощностью алфавита. Количество информации (информационный объем), содержащееся в сообщении, закодированном с помощью знаковой системы и содержащем определенное количество знаков (символов), определяется с помощью формулы:


где V – информационный объем сообщения; / = log 2 N, информационный объем одного символа (знака); К – количество символов (знаков) в сообщении; N – мощность алфавита (количество знаков в алфавите).

Поясним вышесказанное в п. 1.2 на примерах.

Пример 1.1

Определим, какое количество информации можно получить после реализации одного из шести событий. Вероятность первого события составляет 0,15; второго – 0,25; третьего – 0,2; четвертого – 0,12; пятого – 0,12; шестого – 0,1, т. е. Р 1 = 0,15; Р 2 = 0,25; Р 3 = 0,2; Р 4 = 0,18; Р 5 = 0,12; Р 6 = 0,1.

Решение.

Для определения количества информации применим формулу (1.1)


Для вычисления этого выражения, содержащего логарифмы, воспользуемся сначала компьютерным калькулятором, а затем табличным процессором Microsoft (MS) Excel, входящим в интегрированный пакет программ MS Office ХР.

Для вычисления с помощью компьютерного калькулятора выполним следующие действия.

С помощью команды: [Кнопка Пуск – Программы – Стандартные – Калькулятор] запустим программу Калькулятор. После запуска программы выполним команду: [Вид – Инженерный] (рис. 1.3).


Рис. 1.3. Инженерный калькулятор

Кнопка log калькулятора производит вычисление десятичного (по основанию 10) логарифма отображаемого числа. Поскольку в нашем случае необходимо производить вычисления логарифмов по основанию 2, а данный калькулятор не позволяет этого делать, то необходимо воспользоваться известной формулой:

logbN = М · log a N,


В нашем случае соотношение примет вид: log 2 N = M log 10 N,


т. е log 2 N = 3,322 · log 10 N, и выражение для вычисления количества информации примет вид:


При вычислении на калькуляторе используем кнопки: +/- (изменение знака отображаемого числа),()(открывающие и закрывающие скобки), log (логарифм числа по основанию 10) и т. д. Результат вычисления показан на рис. 1.3. Таким образом, количество информации I = 2,52 бит.

Воспользуемся теперь табличным процессором MS Excel. Для запуска программы Excel выполним команду: [Кнопка Пуск – Программы – MS Office ХР – Microsoft Excel]. В ячейки А1, В1, С1, D1, E1, F1 открывшегося окна Excel запишем буквенные обозначения вероятностей Р 1 , Р 2 , P 3 , Р 4 , P 5 , P 6 а в ячейку G1 – количество информации I , которое необходимо определить. Для написания нижних индексов у вероятностей Р 1 ? P 6 в ячейках А1, В1, С1, D1, E1, F1 выполним следующую команду: [Формат – Ячейки – Шрифт – Видоизменение (поставим флажок напротив нижнего индекса) ]. В ячейки А2, В2, С2, D2, Е2, F2 запишем соответствующие значения вероятностей.

После записи значений в ячейки необходимо установить в них формат числа. Для этого необходимо выполнить следующую команду: [Формат – Ячейки – Число – Числовой (устанавливаем число десятичных знаков, равное двум) ]. Устанавливаем в ячейке G2 тот же числовой формат. В ячейку G2 записываем выражение = – (A2*LOG(A2;2) + B2*LOG(B2;2) + C2*LOG(C2;2) + D2*LOG(D2;2) + E2*LOG(E2;2) + F2*LOG(F2;2)). После нажатия на клавиатуре компьютера клавиши , в ячейке G2 получим искомый результат – I = 2,52 бит (рис. 1.4).


Рис. 1.4. Результат вычисления количества информации

Пример 1.2

Определим, какое количество байт и бит информации содержится в сообщении, если его объем составляет 0,25 Кбайта.

Решение.

С помощью калькулятора определим количество байт и бит информации, которое содержится в данном сообщении:

I = 0,25 Кбайт · 1024 байт/1 Кбайт = 256 байт;

I = 256 байт · 8 бит/1 байт = 2048 бит.

Пример 1.3

Определим мощность алфавита, с помощью которого передано сообщение, содержащее 4096 символов, если информационный объем сообщения составляет 2 Кбайта.

Решение.

С помощью калькулятора переведем информационный объем сообщения из килобайт в биты:

V = 2 Кбайт 1024 байт/1 Кбайт = 2048 байт 8 бит/1 байт = 16384 бит.

Определим количество бит, приходящееся на один символ (информационный объем одного символа) в алфавите:

I = 16 384 бит/4096 = 4 бит.

Используя формулу (1.3), определим мощность алфавита (количество символов в алфавите) :

N = 2 I = 2 4 = 16.

Как уже отмечалось, если принять во внимание только свойство информации, связанное с ее смысловым содержанием, то при определении понятия информации можно ограничиться смысловым, или семантическим, уровнем рассмотрения этого понятия.

На семантическом уровне информация рассматривается по ее содержанию, отражающему состояние отдельного объекта или системы в целом. При этом не учитывается ее полезность для получателя информации. На данном уровне изучаются отношения между знаками, их предметными и смысловыми значениями (см. рис. 1.1), что позволяет осуществить выбор смысловых единиц измерения информации. Поскольку смысловое содержание информации передается с помощью сообщения, т. е. в виде совокупности знаков (символов), передаваемых с помощью сигналов от источника информации к приемнику, то широкое распространение для измерения смыслового содержания информации получил подход, основанный на использовании тезаурусной меры. При этом под тезаурусом понимается совокупность априорной информации (сведений), которой располагает приемник информации.

Данный подход предполагает, что для понимания (осмысливания) и использования полученной информации приемник (получатель) должен обладать априорной информацией (тезаурусом), т. е. определенным запасом знаков, наполненных смыслом, слов, понятий, названий явлений и объектов, между которыми установлены связи на смысловом уровне. Таким образом, если принять знания о данном объекте или явлении за тезаурус, то количество информации, содержащееся в новом сообщении о данном предмете, можно оценить по изменению индивидуального тезауруса под воздействием данного сообщения. В зависимости от соотношений между смысловым содержанием сообщения и тезаурусом пользователя изменяется количество семантической информации, при этом характер такой зависимости не поддается строгому математическому описанию и сводится к рассмотрению трех основных условий, при которых тезаурус пользователя:

Стремится к нулю, т. е. пользователь не воспринимает поступившее сообщение;

Стремится к бесконечности, т. е. пользователь досконально знает все об объекте или явлении и поступившее сообщение его не интересует;

Согласован со смысловым содержанием сообщения, т. е. поступившее сообщение понятно пользователю и несет новые сведения.

Два первых предельных случая соответствуют состоянию, при котором количество семантической информации, получаемое пользователем, минимально. Третий случай связан с получением максимального количества семантической информации. Таким образом, количество семантической информации, получаемой пользователем, является величиной относительной, поскольку одно и то же сообщение может иметь смысловое содержание для компетентного и быть бессмысленным для некомпетентного пользователя.

Поэтому возникает сложность получения объективной оценки количества информации на семантическом уровне ее рассмотрения и для получения такой оценки используют различные единицы измерения количества информации: абсолютные или относительные. В качестве абсолютных единиц измерения могут использоваться символы, реквизиты, записи и т. д., а в качестве относительной – коэффициент содержательности, который определяется как отношение семантической информации к ее объему. Например, для определения на семантическом уровне количества информации, полученной студентами на занятиях, в качестве единицы измерения может быть принят исходный балл (символ), характеризующий степень усвояемости ими нового учебного материала, на основе которого можно косвенно определить количество информации, полученное каждым студентом. Это количество информации будет выражено через соответствующий оценочный балл в принятом диапазоне оценок.

При семантическом подходе к оценке количества информации и выборе единицы измерения существенным является вид получаемой информации (сообщения). Так, данный подход к оценке количества экономической информации позволяет выявить составную единицу экономической информации, состоящую из совокупности других единиц информации, связанных между собой по смыслу. Элементарной составляющей единицей экономической информации является реквизит, т. е. информационная совокупность, которая не поддается дальнейшему делению на единицы информации на смысловом уровне. Деление реквизитов на символы приводит к потере их смыслового содержания. Каждый реквизит характеризуется именем, значением и типом. При этом под именем реквизита понимается его условное обозначение, под значением – величина, характеризующая свойства объекта или явления в определенных обстоятельствах, под типом – множество значений реквизита, объединенных определенными признаками и совокупностью допустимых преобразований.

Реквизиты принято делить на реквизиты-основания и реквизиты-признаки .

Реквизиты-основания характеризуют количественную сторону экономического объекта, процесса или явления, которые могут быть получены в результате совершения отдельных операций – вычислений, измерений, подсчета натуральных единиц и т. д. В экономических документах к ним можно отнести, например, цену товара, его количество, сумму и т. п. Реквизиты-основания чаще всего выражаются в цифрах, над которыми могут выполняться математические операции.

Реквизиты-признаки отражают качественные свойства экономического объекта, процесса или явления. С помощью реквизитов-признаков сообщения приобретают индивидуальный характер. В экономических документах к ним можно отнести, например, номер документа, имя отправителя, дату составления документа, вид операции и т. п. Реквизиты-признаки позволяют осуществлять логическую обработку единиц количества информации на семантическом уровне: поиск, выборку, группировку, сортировку и т. д.

Отдельный реквизит-основание вместе с относящимися к нему реквизитами-признаками образует следующую в иерархическом отношении составную единицу экономической информации – показатель. Показатель имеет наименование, в состав которого входят термины, обозначающие измеряемый объект: себестоимость, затраты, мощность, прибыль и т. д. Кроме того, показатель содержит формальную характеристику и дополнительные признаки. К формальной характеристике относится способ его получения (объем, сумма, прирост, процент, среднее значение и т. д.), а к дополнительным – пространственно-временные (где находится измеряемый объект, время, к которому относится данный показатель) и метрологические (единицы измерения).

Таким образом, с помощью совокупности реквизитов и соответствующих им показателей можно оценить количество экономической информации, получаемой от исследуемого объекта (источника информации).

Кроме подхода, основанного на использовании тезаурусной меры, при определении количества информации на семантическом уровне находят применение и другие подходы . Например, один из подходов, связанных с семантической оценкой количества информации, заключается в том, что в качестве основного критерия семантической ценности информации, содержащейся в сообщении, принимается количество ссылок на него в других сообщениях. Количество получаемой информации определяется на основе статистической обработки ссылок в различных выборках.

Подводя итог сказанному, можно утверждать, что существовала и существует проблема формирования единого системного подхода к определению информации на семантическом уровне. Это подтверждается и тем, что в свое время для создания строгой научной теории информации К. Шеннон вынужден был отбросить важное свойство информации, связанное со смысловым ее содержанием.

Кроме перечисленных уровней рассмотрения понятия информации достаточно широко используется прагматический уровень. На данном уровне информация рассматривается с точки зрения ее полезности (ценности) для достижения потребителем информации (человеком) поставленной практической цели. Данный подход при определении полезности информации основан на расчете приращения вероятности достижения цели до и после получения получения информации . Количество информации, определяющее ее ценность (полезность), находится по формуле:


где Р 0 , P 1 – вероятность достижения цели соответственно до и после получения информации.

В качестве единицы измерения (меры) количества информации, определяющей ее ценность, может быть принят 1 бит (при основании логарифма, равном 2), т. е. это такое количество полученной информации, при котором отношение вероятностей достижения цели равно 2.

Рассмотрим три случая, когда количество информации, определяющее ее ценность, равно нулю и когда она принимает положительное и отрицательное значение.

Количество информации равно нулю при Р 0 = Р 1 , т.е. полученная информация не увеличивает и не уменьшает вероятность достижения цели.

Значение информации является положительной величиной при P 1 > P 0 , т. е. полученная информация уменьшает исходную неопределенность и увеличивает вероятность достижения цели.

Значение информации является отрицательной величиной при P 1 < P 0 , т. е. полученная информация увеличивает исходную неопределенность и уменьшает вероятность достижения цели. Такую информацию называют дезинформацией.

Дальнейшее развитие данного подхода базируется на статистической теории информации и теории решений. При этом кроме вероятностныхарактеристик достижения цели после получения информации вводятся функции потерь и оценка полезности информации производится в результате минимизации функции потерь. Максимальной ценностью обладает то количество информации, которое уменьшает потери до нуля при достижении поставленной цели .