Есть ли разница между аудио форматами MP3, AAC, FLAC и какой нужно использовать? Рисуем волну.wav-файла.

    Ну вообще-то можно конечно использовать IrDA для приема команд с обычных ИК пультов, но с очень большими ограничениями. Работает далеко не со всеми пультами. Стабильность распознавания команд очень низкая. Если использовать IrDA встроенный в материнскую плату, то нужно колдовать с драйверами, если внешний, то нужно удалять драйвера или периодически перетыкать приемник в другой СОМ порт. USB IrDA вообще использовать невозможно, так как к нему нельзя обратиться напрямую как к СОМ порту (не путайте с виртуальным СОМ портом).

    По многочисленным просьбам был написан плагин для СОМ IrDA, подробнее о всех ограничениях и сложностях использования см. на ...

    17.06.2017, 23:04

    Журнал «Электронные компоненты» №2 2002 г.
    Александр Зайцев

    Многие бытовые приборы, системы ограничения доступа, промышленное оборудование и другие устройства имеют в своем составе пульт дистанционного управления, что существенно дополняет сервисные функции выпускаемого изделия. Фирма Holtek разработала семейства микросхем дистанционного управления (ДУ), отличающиеся друг от друга по формату передаваемых данных, количеству бит адреса и данных в посылке, по условию начала генерации посылки; набору сервисных функций. Все выпускаемые микросхемы ДУ выполнены по КМОП технологии с минимальным потребляемым током. Они ориентированы для передачи кодовой посылки по инфракрасному или радиоканалу связи, с минимальным числом внешних компонентов схемы. Широкий диапазон напряжений питания и рабочей температуры позволяют применять микросхемы ДУ Holtek в большинстве приложений.
    Микросхемы ДУ фирмы Holtek можно разделить на три основные группы:

    1. Семейства микросхем кодеров/декодеров.
    2. Микросхемы для пультов ДУ телеаппаратуры.
    3. Микросхемы бесконтактной идентификации.
    В первую группу входят семейства микросхем кодеров/декодеров, основным свойством которых является устанавливаемое с помощью переключателей, внешней схемой или программно значение адреса и данных. Кодер формирует кодовую последовательность после появления активного уровня сигнала на выводе TE или сигнала низкого логического уровня на входах данных (DATA). Генерация кодовой посылки продолжается до тех пор, пока присутствует активный уровень сигнала. Посылка всегда генерируется полностью, даже если активный уровень сигнала был снят. В некоторых микросхемах кодеров предусмотрено управление количеством повторений кодовой последовательности после снятия активного уровня сигнала, что может быть необходимо для достоверного детектирования посылки. Кодовая последовательность может состоять из комбинации следующих полей: преамбула; синхронизирующие биты; адрес; данные; биты антикода.
    Декодер обрабатывает кодовую последовательность, полученную из канала связи, последовательно обрабатывая несколько посылок. Если все посылки имели одинаковое значения полей, и адрес кодера совпал с адресом декодера, будет сформирован сигнал о принятой команде (вывод VT). В декодерах, имеющих выводы данных, информация из поля данных декодированной посылки, передается в соответствующие выходные защелки.
    К наиболее простым семействам микросхем ДУ этой группы можно отнести кодеры/декодеры 2 12 (см. таблицу 1). В состав кодовой последовательности, генерируемой кодерами этого семейства, входит преамбула, синхронизирующий бит и 12-разрядное после адреса/данных (рис. 1). Каждый вывод адреса/данных кодера может быть подсоединен к V ss (логический нуль) или оставлен не подсоединенным (логическая единица). Для микросхемы HT12E кодовая последовательность формируется в виде логических уровней, а для HT12A в виде пачки импульсов с частотой 32 кГц (рис. 2).
    >

    Рис. 1. Кодовая последовательность семейства кодеров/декодеров 2 12

    >

    Рис. 2. Представление битов в кодовой последовательности микросхем HT12E и HT12A

    ...

    17.06.2017, 23:03

    Традиционная схемотехника линейных усилителей на полевых транзисторах с затвором в виде р-п-перехода (в дальнейшем для краткости называемом р-п-затвором) предусматривает в основном режим, когда рабочая точка находится в области обратного (закрывающего) смещения, т. е. при Uотс Проведенные автором исследования показали, что использование режима, в котором рабочая точка может находиться в зоне открывающего смещения, позволяет существенно упростить схемы узлов на полевых транзисторах. Применение таких схем рационально в тех случаях, когда требование минимальности числа элементов оправдывает необходимость подборки некоторых из них, т. е. в радиолюбительской практике и при разработке особо миниатюрных конструкций.
    На рис. 1 представлены обобщенные сток-затворная и входная характеристики полевого транзистора с р-п-затвором. На этих вольт-амперных характеристиках - Iс=f(Uвх) и Iз=f(Uвх) - можно выделить три характерных зоны: 1 - закрывающего смещения Uзи, 2 - открывающего смещения, при котором ток затвора практически отсутствует, и 3 - открывающего смещения, обусловливающего существенный ток затвора.
    Четкой границы между зонами 2 и 3 нет, поэтому для определенности примем в качестве условной границы между ними ординату, соответствующую току затвора 1 мкА - при таком токе сопротивление затвора еще весьма велико, и это значение может быть сравнительно просто измерено. Обозначим также символом Im ток стока на этой границе и прямое напряжение на затворе Um. При напряжении Uзи, большем граничного, ток затвора начинает резко увеличиваться и полевой транзистор теряет свое основное достоинство - высокое входное сопротивление. Поэтому работу в зоне 3 не рассматриваем.
    Из изложенного ясно, что нет необходимости полностью исключать работу полевого транзистора в зоне прямого смещения, вполне достаточно, чтобы рабочая точка не переходила в зону 3, т. е. было выполнено условие Uзи КП302ГМ до 0,55 В для КП303А .
    Несмотря на то, что расширение рабочего интервала напряжения Uзи из-за добавления зоны прямого смещения по абсолютной величине невелико, оно имеет очень важное значение, поскольку позволяет несколько иначе подойти к схемо-технике полевых транзисторов.
    Как видно из рис. 1, сток-затворная характеристика переходит в зону 2 плавно, без излома. Суть физических процессов в транзисторе заключается в том, что при подаче на затвор прямого напряжения смещения происходит расширение канала и проводимость его увеличивается, транзистор начинает работать в режиме обогащения. Легко заметить, что с учетом зоны прямого смещения транзистор с р-п-затвором становится аналогичным по характеристикам транзистору с изолированным затвором и встроенным каналом, который способен работать при прямом и обратном смещении на затворе.
    Отличие носит лишь количественный характер - у первого из них рабочая область зоны прямого смещения короче, так как ограничивается значением Um. Поэтому полевой транзистор с р-п-затвором можно применять в режимах, которые считались возможными только для транзисторов с изолированным затвором и встроенным каналом.
    Наличие у транзисторов с изолированным затвором серьезных недостатков - значительного разброса характеристик, малой стойкости к действию статического электричества и ряда других - резко ограничивает область практического применения этих приборов даже при допустимости их индивидуальной подборки. Номенклатура выпускаемых в настоящее время транзисторов с р-п-затвором значительно шире, чем с изолированным, они более доступны и имеют меньший разброс характеристик. По указанным причинам транзисторы с р-п-затвором следует считать более предпочтительными.
    Рассмотрим некоторые варианты применения этих транзисторов с использованием режима прямого смещения на затворе. На рис. 2, а изображена схема линейного усилителя. Применение режима работы без начального смещения позволило исключить резистор автоматического смещения и блокировочный конденсатор в цепи истока транзистора VT1. Расчет ступени по постоянному току упрощается и сводится к определению сопротивления нагрузочного резистора R2 по формуле:
    R2=(Uпит-Uвых о)/Io
    где Uвых о - напряжение на выходе при отсутствии входного сигнала, a Iо - начальный ток транзистора.
    При выборе Uвых o= 0,5 Uпит формула (1) упрощается и принимает вид: R2=Uпит/2Iо.
    При разработке усилителей по этой схеме следует учитывать, что для транзисторов с начальным током стока в несколько десятков миллиампер возможно превышение их допустимой мощности.
    Если необходимо уменьшить коэффициент усиления, в цепь истока включают резистор R3. Следует подчеркнуть, что в этом случае блокировочный конденсатор включать нельзя. Режим по переменному току рассчитывают по известным формулам; коэффициент усиления находят из выражения Кu= S R2, где S - крутизна характеристики транзистора. Очевидно, что при Кu>10 в большинстве случаев усиление выходного сигнала по амплитуде до Uпит происходит при Uвх КП303А при Io=1,1мА, Uпит=12B, Uвых=6 В и R2=5,1 кОм показали, что Кu=10.
    При необходимости увеличить допустимую амплитуду положительных значении напряжения на входе свыше Um в цепь истока требуется вместо резистора R3 включить диод (катодом к общему проводу). Напряжение прямого смещения для кремниевых диодов может находиться в пределах 0,4...0,8 В (в большинстве случаев 0,5...0,7 В) в зависимости от типа диода и тока истока транзистора. Для германиевых диодов аналогичные значения равны 0,2...0,6 В (0,3...0,5 В). При включении диода ток стока из-за закрывающего смещения уменьшается, поэтому для обеспечения прежнего режима по постоянному току необходимо увеличить сопротивление резистора R2. Это, в свою очередь, приводит к увеличению К„, так как крутизна уменьшается незначительно. Поскольку динамическое сопротивление диода мало, шунтиро-вание его конденсатором малоэффективно. Введение диода вызывает небольшое - не более чем на 10 % - уменьшение усиления.
    Режим такой ступени по постоянному току рассчитывают по формуле (1), в которую вместо Io подставляют Ioд - ток стока при включенном в цепь истока диоде. Уменьшить при необходимости Кu можно включением последовательно с диодом резистора обратной связи.
    Несмотря на наличие дополнительного диода, реализация такой схемы в ряде случаев является оправданной и по той причине, что приводит к уменьшению потребления тока и увеличению коэффициента усиления. Эти свойства особенно ценны для устройств с автономным питанием.
    Как видно из изложенного, по работе ступень с диодом близка к классической с резистором смещения. Основное преимущество - отсутствие блокировочного конденсатора, что приводит также к расширению снизу рабочей частотной полосы вплоть до постоянного тока. Кроме того, упрощается расчет и налаживание устройств.
    При работе этой ступени с трансформатором, катушкой связи, воспроизводящей головкой магнитофона и другими подобными источниками сигнала резистор R1 утечки не требуется и схема принимает предельно простой вид, показанный на рис. 2, б.
    Рассмотренная выше возможность работы полевого транзистора с р-п-затвором при прямом смещении может быть эффективно применена и для построения другого важного класса устройств - истоковых повторителей. На рис. 3, а представлена традиционная схема истокового повторителя на транзисторе VT2. Основной недостаток этого узла - сравнительно узкие пределы выходного напряжения. От этого недостатка свободен традиционный эмит-терный повторитель (VT2, рис.3, б); кроме того, в нем меньше деталей. Но у эмиттерного повторителя сравнительно низкое входное сопротивление: Rвх=h21эRэ (h21э - статический коэффициент передачи тока транзистора; Rэ - сопротивление резистора в цепи эмиттера).
    Все отмеченные противоречия полностью устраняются при прямом включении истокового повторителя, как показано на рис. 3, в. Здесь удачно сочетаются достоинства истокового и эмиттерного повторителей. Практического применения эта схема не находила, видимо, потому, что невозможно избежать прямого напряжения смещения на затворе. Но этого и не требуется, достаточно исключить работу транзистора в области прямого тока затвора (в зоне 3 на рис. 1). Эта задача решается довольно просто, что и позволяет применять такую схему на практике.
    Передаточная характеристика истокового повторителя определяется общим выражением: Uвых=Uo+UвxKп, (2) где Uo - начальное выходное напряжение при Uвх=0; Kп - коэффициент передачи истокового повторителя.
    Для работы повторителя в области закрывающего смещения на затворе необходимо, чтобы условие Uз Фактически же реальные требования менее жестки, так как достаточно выполнения более простого условия: Uси Uпит (Rи -сопротивление резистора в цепи истока). Учитывая ориентировочный характер расчета по этой формуле, отсутствие тока затвора при Uз=Uпит, следует проверить при макетировании узла микроамперметром с током полного отклонения стрелки не более 100 мкА. Выходное напряжение такого истокового повторителя находится в пределах Uo...(Uпит-Uси).

    Экспериментально снятые при Uпит=12B зависимости Uвых=f(Uвх) для транзисторов КП303А и КП303Е при разных значениях сопротивления Rи показаны на рис. 4. Как видно из графиков, возможно обеспечить линейность передаточной характеристики в пределах от Uвыхо (при Uвх=0) до (Uпит- -1) В. Для расширения этого участка следует, в первую очередь, уменьшить Uo, для чего нужно применять транзисторы с минимальным значением Uотc, а затем подобрать оптимальное сопротивление резистора Rи (R2-на схеме рис. 3, в). Звездочкой на графиках отмечены точки, где ток Iз достигает значения 1 мкА.
    В качестве примера практического применения описанного режима линейного усиления на рис. 5 изображена схема двуканального смесителя сигналов 3Ч; вообще же число каналов ничем не лимитировано и может быть любым. Сопротивление резистора R3 определяют по формуле (1), в которую вместо Io подставляют Iод n, где n - число каналов.

    В устройстве желательно применять транзисторы с близкими значениями Uотс и Io (или Iод), однако вполне допустим разброс этих параметров до 50...100 %, так как разницу усиления по каналам легко компенсировать входными регуляторами R1, R5. Следует обязательно проверить, чтобы ни один из каналов не входил в режим амплитудного ограничения в рабочем интервале входного напряжения. При использовании кремниевого диода допустимая амплитуда положительной полуволны на затворе каждого полевого транзистора - не менее 1 В.
    При работе одного канала при напряжении питания Uпит=9 В, выходном напряжении Uвых=0,1 В (действующее значение), частоте сигнала fс=0,1 кГц коэффициент усиления смесителя примерно равен 3, а по уровню нелинейных искажений он не уступает построенному по классической схемотехнике....

Несжатые звуковые файлы в формате RAW (PCM) и в форматах WAV и Apple AIFF. Контейнер RIFF и структура файла WAV.

Читайте также:
  1. II. Структура Системы сертификации ГОСТ Р и функции ее участников
  2. PR в государственных структурах и ведомствах. PR в финансовой сфере. PR в коммерческих организациях социальной сферы (культуры, спорта, образования, здравоохранения)
  3. Активы таможенных органов: понятие, структура и особенности
  4. Анализ финансового положения предприятия. Структура и порядок формирования финансового результата.
  5. Анимационный сервис, его структура и роль в социально-культурном сервисе и туризме.
  6. Апарат вищого спеціалізованого суду: структура і повноваження.

RAW - формат данных, содержащий необработанные данные. В таких файлах содержится полная информация о хранимом сигнале. В случае обработки звука под RAW понимаются звуковые данные без сжатия и заголовков.

PCM расшифровывается как импульсно-кодовая модуляция (pulse code modulation) и обеспечивает цифровое представление аналогового сигнала, который дискретизируется (оцифровывается) через равные промежутки времени (с заданной в герцах частотой) и представляется в двоичном виде (с заданной точностью - разрядностью в битах). Помимо использования PCM для цифрового звука в компьютере и на аудио компакт-дисках, данный формат применяется также в некоторых цифровых телефонных системах и в ряде форматов цифрового видео.

В формате PCM значения амплитуды звука представлены с помощью разного числа битов (разрядности); звуковая дорожка, как правило, оцифровывается с разрядностью от 12 до 24 бит, но чаще всего при студийном кодировании PCM-аудио для записи на диски Blu-ray используются 16 бит.

WAV (WAVE) - формат файла-контейнера для хранения записи оцифрованного аудио-потока. Под Windows этот формат чаще всего используется в качестве оболочки для несжатого звука (PCM). В контейнер WAV можно поместить звук, сжатый почти любым кодеком (но с воспроизведением таких файлов могут возникать проблемы).

Структура: состоит из трёх заголовков, за которыми следуют данные самого звукового файла, т.е. последовательность байт самого звукового сигнала.

Первый - RIFF заголовок. Он занимает 8 байт с самого начала файла и содержит информацию о длине файла

Второй заголовок - WAV заголовок, содержит информацию о кол-ве каналов (моно или стерео)

Третий заголовок – информацию о кол-ве байт, отводящихся под сами WAV данные

Apple AIFF. Это стандартный формат файлов для сохранения аудиоданных на платформе Macintosh. Его особенностью является то, что он позволяет размещать вместе со звуковой волной дополнительную информацию, в частности, самплы WaveTable (примеры звучания инструментов вместе с параметрами синтезатора), что улучшает качество итогового результата.

Звуковые данные в стандартном файле формата AIFF представляют собой несжатую импульсно-кодовую модуляцию. Также существует и сжатая версия формата AIFF, которую называют AIFC (изредка AIFF-C), в которой для сжатия могут быть использованы различные кодеки.



AIFF, наряду с SDII и WAV, является одним из форматов используемых в профессиональных аудио и видео приложениях, так как в отличие от более популярного формата mp3 в нём звук не имеет потерь в качестве.

RIFF - один из форматов файлов-контейнеров для хранения потоковых мультимедиа-данных (видео, аудио, возможно текст). Наиболее известными форматами, использующими RIFF в качестве контейнера, являются: AVI (видео), WAV (аудио), RMI (MIDI-треки).

RIFF имеет ограничение размера данных в 2 ГБ.

Файл формата RIFF содержит вложенные фрагменты (chunk’и) с данными одного типа; внешний фрагмент состоит из заголовка и области данных.

Структура: Первое двойное слово заголовка идентифицирует хранящиеся во фрагменте данные. Второе двойное слово заголовка представляет собой размер области данных в байтах (без учета размера самого заголовка).

Область данных имеет переменную длину, однако она должна быть выравнена на границу слова (при необходимости дополняется в конце нулевым байтом до целого числа слов).

В первую очередь, говоря об этом формате, нужно отметить, что он является подразделением другого формата - RIFF (Resource Interchange File Format - Формат Файлов Обмена Ресурсами). По сути RIFF - это общая спецификация, под которой может быть объединено много разныx форматов файлов. Главное преимущество RIFF - расширяемость. Форматы файлов, базирующиеся на RIFF, могут быть впоследствии усовершенствованы, в то время, как "старое" программное обеспечение будет благополучно игнорировать все изменения формата.

Все RIFF-базированные файлы делятся на секции, каждая из которыx идентифицируется определенным "словом". На настоящий момент в WAV-файле такиx секций может быть до шести. Разрабатываемые программы должны ожидать (и игнорировать) все неизвестные (разработчику) секции данныx, используя только то, что необxодимо. Однако есть две обязательные для любого WAV-файла секции: "Формат" и "Данные", причем "Формат" должен быть объявлен до появления "Данныx".

Теперь покончим с лирическими отступлениями и займемся непосредственно битами и байтами.

Немного объясню семантику последующиx идентификаторов: здесь используется так называемая Венгерская нотация, которая состоит в том, что в начале имени каждой переменной ставятся буквы, поясняющие ее тип:

b - byte (1 байт);

w - word (2 байта);

dw - double word (4 байта), и т.п.

Итак, заголовок файла выглядит следующим образом:

"RIFF" - сигнатура RIFF.

dwFileLength - длина всего файла, без учета восьми уже прочитанныx байт.

Секция формата данныx:

"fmt " - 4 байта сигнатуры "format" (после "fmt" следует пробел).

dwFormatLength - длина секции формата данныx без учета этиx 4 байт.

wFormatTag - определяет категорию формата звуковыx данныx.

0101h - IBM mu-law;

0102h - IBM a-law;

0103h - IBM AVC ADPCM.

wChannels - число каналов: 1 (моно) или 2 (стерео).

dwSamplesPerSec - частота дискретизации (количество сэмплов, воспроизводимыx в секунду).

dwAvgBytesPerSec - число байт данныx,передаваемыx в секунду.

(Используя это значение, воспроизводящее ПО может рассчитывать размер буфера данныx)

wBlockAlign - длина блока данныx, выравненная на границу байта

(Может быть использовано для выравнивания буфера данныx.)

В случае wFormatTag=1 (данные в формате PCM), добавляется одно поле:

wBitsPerSample - число бит для представления одного сэмпла.

При нестандартныx значенияx длины сэмпла следует иметь в виду правило: каждый сэмпл содержится в некотором целом числе байт, наименее значащий из которыx пишется первым. Если представить все байты сэмпла как единое число, то сама амплитуда содержится в старшиx битаx числа и длина ее определяется wBitsPerSample. Для пущей ясности приведу пример: длина сэмпла - 12 бит, тогда значение амплитуды сигнала содержится в двуx байтаx, причем младшие 4 бита младшего (первого по счету) байта равны нулю.

Секция представления данныx:

"data" - сигнатура секции.

dwDataLength - длина данныx, представляющиx форму сигнала

(фактически, длина оставшейся части секции "data").

Секция "FACT" (необязательная):

dwFactLength - длина данной секции.

dwSamples - число сэмплов в файле.

Секция "FACT" в принципе актуальна для форматов представления звука, использующиx сжатие. В обычныx PCM-кодированныx файлаx она, в описанном виде, не привносит никакой дополнительной информации. Другое дело, что со временем в секцию могут быть внесены дополнения, которые на сегодняшний день тоже должны быть учтены разработчиками ПО.

Описанные три секции представляют, конечно, далеко не исчерпывающее описание формата WAVE. Копаясь в WAV"аx, можно найти кучу другиx сигнатур. Например, "slnt" (описание тишины), "cue" (разбиение файла на части), "plst" (установление порядка проигрывания частей, определенныx в "cue") и т.п. В эти и другие секции, равно как и в саму структуру WAVЕ-файла, могут вноситься разные дополнения и модификации. В такой расширяемости и состоит суть RIFF. Но, повторюсь еще раз, мыслящий программист учитывает и игнорирует неизвестные ему места формата.

И в заключение предлагаю рассмотреть реальный файл. Возьмем, к примеру, стандартный звук Windows - "chimes.wav". Вот его структура.

Файловые форматы MP3 и WAV - в числе самых популярных, что используются для цифровой записи звука. Насколько они схожи друг с другом?

Факты об MP3

MP3 - это мультимедийный файловый формат записи звука. Характеризуется большой универсальностью: его поддерживают практически все современные операционные системы ПК, мобильных девайсов, многие традиционные устройства для проигрывания музыки - MP3- и CD-плееры, проигрыватели, музыкальные центры.

Формат MP3 предназначен для записи аудиоданных со сжатием - намеренным снижением качества звука с целью уменьшения размера файлов. Но если осуществить соответствующую оптимизацию аудиоданных корректно, снижение качества звука будет в большинстве случаев малозаметным для человека.

Формат MP3, возможно, самый популярный в онлайн-пространстве. Но даже до того как интернет приобрел всеобщую распространенность, аудиофайлы соответствующего типа были вполне востребованы: они размещались, благодаря небольшому размеру, на флеш-памяти MP3-плееров или на дисках в большом количестве, часто формируя тематические коллекции аудиозаписей.

Факты о WAV

Формат WAV также используется для цифровой записи звука. В универсальности не уступает MP3 и поддерживается основными типами современных девайсов.

Данный формат предназначен, в свою очередь, для записи аудиоданных без сжатия. Таким образом, размер WAV-файлов практически всегда намного больше, чем MP3 с аналогичным содержимым. По уровню качества WAV-звук приближен к оригинальному - при условии, что он будет воспроизводиться на высокотехнологичном оборудовании.

Формат WAV востребован главным образом в сфере услуг по профессиональной обработке аудио: для фильмов, студийных альбомов, в игровой индустрии - везде, где предполагается работа с высококачественным звуком. Также файлы WAV популярны в среде меломанов, которые, к слову, в большинстве случаев очень легко определяют на слух разницу между мелодиями, записанными в MP3 и WAV.

Сравнение

Итак, основное отличие MP3 от WAV в том, что первый файловый формат предполагает запись звука со сжатием. При этом оно может иметь разную степень и «битрейт» (интенсивность воспроизведения звукового потока). Которые, в свою очередь, во всех случаях одинаковы для WAV-файлов.

Считается, что несжатый звук в формате WAV имеет битрейт порядка 1400 Кбит/сек. По качеству он примерно соответствует аудио, записанному на CD. В свою очередь, битрейт MP3-файлов может варьироваться: максимальный показатель составляет 320 Кбит/сек, минимальный - около 8-16 Кбит/сек. Те значения, что ниже, как правило, обеспечивают неприемлемый уровень качества звука - человек с трудом способен различать ноты в мелодиях, которые записаны в подобном битрейте.

Насколько могут различаться размеры файлов, записанных в формате MP3 и WAV?

Запись звука в MP3 длительностью в 1 минуту при максимальном качестве - 320 Кбит/сек - имеет объем порядка 2 мегабайт. Соответственно, 1 минута аудиопотока в формате WAV сформирует файл величиной около 9 мегабайт.

Таблица

Итак, теперь мы знаем, в чем разница между MP3 и WAV. Зафиксируем основные критерии, предопределяющие соответствующие различия, в небольшой таблице.

Объявление

Формат файлов WAV Audio

Файлы WAV (WAVE) были созданы компанией IBM и Microsoft. Они содержат различные аудиоданные - звуки, звуковые эффекты, музыку, а также записи голоса. Программы проигрывания медиафайлов (Windows Media Player, QuickTime и т.п.) могут воспроизводить и открывать такие файлы. Файлы WAV значительно больше файлов MP3, и именно поэтому они не пользуются популярностью. Отличительная черта файлов WAV - их технология сжатия звука без потерь. Полученные файлы отличаются высоким качеством и большими размерами, что значительно вредит их популярности. Отправка и загрузка таких файлов требует много времени и дискового пространства.

Технические сведения о файлах WAV

Файлы WAV используют формат файлов для обмена ресурсами, с помощью которого происходит сохранение данных. Данные хранятся в кластерах, которые содержат тег из 4 символов, а также кол-во байт в кластере. Аналог данного формата для ОС Mac - файлы AIFF. Файлы WAV могут иметь семплы от 8 до 16 бит при частотах от 11 025 до 44 100 Гц. Максимальное качество файлов WAV - 16 бит, 44 100 Гц, и именно такой частотой дискретизации обладают дорожки на компакт-дисках, на которых секунда звука "весит" 88 кБ. При кодировании цифрового потока обычно используется формат линейной-импульсно-кодовой модуляции. Системные звуки в ОС Windows при запуске ОС, нажатии на ярлыки, при выдаче ошибок, выключении компьютера и т.п. представляют собой несжатые файлы WAV.

Дополнительная информация о формате WAV


© 2024, leally.ru - Твой гид в мире компьютера и интернета
Расширение файла .wav
Категория файлов
Файл-пример (6,1 MiB)
(1,5 MiB)
Связанные программы CyberLink PowerDirector
Microsoft Windows Media Player
Roxio Creator 2009